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ABSTRACT

Watching online videos has become more and more popular and

users tend to watch videos based on their personal tastes and pref-

erences. Providing a customized ranking list to maximize the user’s

satisfaction has become increasingly important for online video

platforms. Existing personalized search methods (PSMs) train their

models with user feedback information (e.g. clicks). However, we

identified that such feedback signals may indicate attractiveness

but not necessarily indicate relevance in video search. Besides, the

click data and user historical information are usually too sparse to

train a good PSM, which is different from the conventional Web

search containing users’ rich historical information. To address

these concerns, in this paper we propose a multi-task graph neural

network architecture for personalized video search (MGNN-PVS)

that can jointly model user’s click behaviour and the relevance

between queries and videos. To relieve the sparsity problem and

learn better representation for users, queries and videos, we develop

an efficient and novel GNN architecture based on neighborhood

sampling and hierarchical aggregation strategy by leveraging their

different hops of neighbors in the user-query and query-document

click graph. Extensive experiments on a major commercial video

search engine show that our model significantly outperforms state-

of-the-art PSMs, which illustrates the effectiveness of our proposed

framework.
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Figure 1: Motivation of multi-task learning. Example top

ranked results for the query łdiy furniture from wood": the

first video is for łdecoration with wood scraps", and the third

video is for łwoodworking tools" are not relevant to the query,

but may still be interesting to the user.

1 INTRODUCTION

With the popularity of smart phones and advancement of com-

munication technologies, people can easily record and edit videos.

Everyday, billions of new videos are created, shared and watched

[35]. Video search provides a convenient entry point for customers

to browse and watch videos from numerous videos. Different from

Web search, video search is mainly for entertainment and users’

preferences could be very diverse because of their different back-

grounds. For example, when issuing the query łWelcome to New

York", a music fan may want to find the music video from Taylor

Swift, while a film fan may want to watch the film directed by Abel

Ferrara. Similar to many other vertical search areas, there is a strong

need to return personalized search results to different users for the

same query in video search.

The user click information is often used to train personalized

searchmodels (PSMs), while the click signal in video searchmay not

necessarily indicate relevancy between the query and video [39].

Statistics show that clicks of irrelevant videos can be as high as 30%

of all clicks in our system. This may be due to the characteristics of
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video search, including: users tend to have more time when they

are browsing videos; videos serve more entertainment purpose

than non-video documents; videos contain richer information than

non-video documents. Therefore, users can be easily attracted to

interesting but irrelevant videos. Figure 1 shows a list of top videos

returned from YouTube given the query łdiy furniture from wood".

We can see that the first video (showing the wall decoration) and

the third video (showing the woodworking tools) are not very

relevant to the query. Given this list of videos, however, a user

who is currently doing some home improvement projects, may

also be interested in furnishing the walls and clicking on the first

video, or be interested in checking out the tools and clicking on

the third video. Therefore, we propose that both customized search

results and query-document relevance should be considered in

personalized video search, which have rarely been exploited by

current PSMs.

The most common paradigm of existing PSMs is to apply deep

learning to learn the semantic similarity of query-document pair

and personalize the search results by considering users’ information,

i.e., users’ location, meta information, social connections [14, 15,

34] or search history [1, 8, 20, 40]. While, the data in the video

search is usually too sparse to train a good PSM [13, 30]. Especially

when queries are short and vague, it is more difficult for PSMs

to learn accurate representations. Additional information such as

the relationship among users, queries in user-query, click graphs

respectively can provide rich information beyond textual and video

content [2, 5, 21], which have rarely been exploited by current

PSMs.

While intuitively useful to integrate similar users and click graph

information into personalized video search, and graph neural net-

works (GNNs) [10, 18] can be applied to model the topological

information of graph datasets. However, two unique challenges

arise in achieving this goal in our scenario. (i) The graphs are

heterogeneous and contain millions of nodes and edges. How to

design an efficient GNN architecture for real-world graphs is the

first obstacle we need to overcome. (ii) The user-query graph and

query-document click graph in the real industry system are stored

as user-query and query-document pairs, rather than entire graphs

used in typical GNNs, which could prevent the message passing

between different hops of neighbors. For a given user, both the

local information (issued queries) and higher-order neighbors, such

as similar users from the second-hop neighbors (user-query-user)

in the user-query graph are important for the user’s representa-

tion learning. Hence, how to jointly capture the local as well as

the higher-order neighborhood information remains a significant

challenge.

In light of the aforementioned motivations and challenges, we

propose a GNN-based multi-task learning framework for person-

alized video search where two bipartite graphs: user-query graph

and query-document 1 click graph are integrated into the learning

process, in addition to the semantic representations learned from

text (query and video title) and video content with BERR [6] and

Two-Stream Inflated 3D ConvNet (I3D) [4]. To efficiently utilize the

graph information, we perform the graph convolution by sampling

fixed-size neighbors from graphs and alleviate the need to operate

1In our paper, document equals to video.
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Figure 2: User-query graph and query-document click graph. In

user-query graph, nodes are users and queries, and edges mean users

issued queries. Query-document graph contains two types of nodes:

queries and documents and links mean clicks for query-document

pairs by any user.

GNN on the entire graph during training. To utilize different hops

of neighbors, we propose a hierarchical GNN architecture to simul-

taneously capture both local and higher-order interactions among

nodes. It learns user representations from their issued queries (users’

first-hop neighbors), neighboring users (user’s second-hop neigh-

bors) in the user-query graph. Query representations are learned

from clicked videos and neighboring queries in the query-document

click graph. Document representations are learned from their asso-

ciated queries and neighboring videos in the query-document click

graph. Considering the heterogeneity of the used information, we

design a hop-specific transformation strategy, which enables nodes

to treat different hops of neighbors differently.

In summary, our main contributions are summarized as follows:

• We design an efficient GNN-based multi-task learning frame-

work for real industry personalized video search. We uti-

lize two bipartite graphs: user-query and query-document

graphs to enrich the representation for users, queries and

videos. To the best of our knowledge, this is the first attempt

to apply graph information and GNN for personalized video

search.

• In real industry system, we identified that the click signal

may indicate attractiveness but not necessarily indicate rele-

vance. Different from other PSMs trained only by click label,

our model also considers the relevance between queries and

videos.

• We conduct extensive experiments on a large-scale real

dataset obtained from a well-known video search platform.

Experimental results show that our proposed model can

significantly outperform most state-of-the-art PSMs.

2 METHODOLOGY

In this section, we introduce our GNN-based multi-task learning

framework for personalized video search, which mainly consists of

two key part: 1) semantic representation learning that focuses on

text representation learning (query and video title) and video rep-

resentation learning; 2) graph representation learning that utilizes

the hierarchical GNN architecture to leverage user-query graph

and query-document graph to learn better user, query and video

representations.
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Table 1: Key Notations and Explanations.

Notations Explanation

G𝑢𝑞 User-query graph

G𝑞𝑑 Query-document click graph

U User ID embedding matrix

Q Query ID embedding matrix

D Document ID embedding matrix

q𝑞_𝑡 Query 𝑞𝑞 ’s text embedding

d𝑑_𝑡 Video 𝑑𝑑 ’s text embedding

d𝑑_𝑣 Video 𝑑𝑑 ’s video embedding

N𝑢𝑢_𝑞 User’ first-hop neighbors in G𝑢𝑞
N𝑢𝑢_𝑢 User’ second-hop neighbors in G𝑢𝑞
N𝑞𝑞_𝑑 Queries’ first-hop neighbors in G𝑞𝑑
N𝑞𝑞_𝑞 Queries’ second-hop neighbors in G𝑞𝑑
N𝑑𝑑_𝑑 Video’s second-hop neighbors in G𝑞𝑑

2.1 Preliminaries

For the personalized video search task, we first formulate our prob-

lem as follows. When a user 𝑢 issues a query 𝑞, the video search

engine is required to retrieve the most relevant videos as a ranking

list. Through re-ranking the unpersonalized list for different users

according to their interests, backgrounds, the video search engine

finally provides a personalized ranking list to each individual user.

Considering the sparsity of users’ search history, vague and short

queries, we leverage extra information from the click-through data

to learn their better representations. The click-through data con-

tains both the user search behaviours and user click-through behav-

iors, thus we utilize these information to construct two bipartite

graphs: user-query graph G𝑢𝑞 and query-document graph G𝑞𝑑 , as

shown in Fig. 2. In addition to the text and video information, our

goal is to leverage graph information G𝑢𝑞 and G𝑞𝑑 to learn high-

quality embeddings. Then, for a given triple (user, query, video), the

corresponding representations are fed into a neural network for

the final click score and query-video relevance score estimation.

2.2 Semantic Representation Learning

For a given triple <𝑢𝑢 , 𝑞𝑞 , 𝑑𝑑>, we firstly utilize text (query and

video title) and video information to learn the semantic representa-

tions of 𝑞𝑞 and 𝑑𝑑 .

Inspired by the great success achieved by the large-scale pre-

trained transformer-based language models, such as BERT [6], we

design a BERT_based Query-Title Matching Model (QTMM) to

obtain the embeddings of queries and video titles, as shown in Fig.

3. The input of the model includes three components: a query, a

positive title, and a negative title, where positive title is the title

of a clicked video given the query 𝑞𝑞 and negative title is chosen

randomly from the unclicked videos for 𝑞𝑞 . A special token [𝐶𝐿𝑆]

is attached at the beginning of each input component, which can

aggregate the sequence information to generate embeddings during

learning. Then, three multi-layer Transformer BERT with shared

parameters are adopted to capture the contextual information in

the text and generate the embeddings of query, positive title and

negative title (q𝑞_𝑡 , d𝑑_𝑡 , d
′

𝑑
_𝑡 ). We train QTMM with the triplet

loss [22] as following:

Shared 

Parameters
BERT

[cls] [Tok N][Tok 1]

BERT BERT
Shared 

Parameters

distance distance

triplet loss

... [cls] [Tok N][Tok 1] ... [cls] [Tok N][Tok 1] ...
Positive title Query Negative title

Video title 
embedding 

Query’s text
Embedding 

qq_tdd_t d’
d_t

Figure 3: Query-Title Matching Model: train BERT with the

triplet loss to get query text embedding q𝑞_𝑡 and video title

embedding d𝑑_𝑡 .

L𝑡 =𝑚𝑎𝑥 (𝑑𝑞𝑝 − 𝑑𝑞𝑛 +𝑚𝑎𝑟𝑔𝑖𝑛, 0), (1)

where 𝑑𝑞𝑝 is the euclidean distance of q𝑞_𝑡 , d𝑑_𝑡 and 𝑑𝑞𝑛 is the

distance of q𝑞_𝑡 , d
′

𝑑
_𝑡 .

To learn the video representation d𝑑_𝑣 , we apply the similar

strategy as in the text representation learning. Given the triple

<video, positive query, negative query>, we feed the query to BERT

and video to Two-Stream Inflated 3D ConvNet (I3D) [4], a popular

model for video representation learning and train them with the

triplet loss. To learn better semantic representations of queries and

videos, both QTMM and I3D are trained on billions of the construct

triples.

2.3 Graph Representation Learning

Beyond text and video information, we aim to apply GNNs to lever-

age graph information to alleviate the sparsity issue, as shown

in Fig. 4. There are mainly two steps: 1) neighborhood sampling

which samples fixed-size neighbors (from different hops in a graph)

for a given node; 2) hierarchical aggregation that utilizes differ-

ent hops of neighborhood information to enrich a given node’s

representation learning.

2.3.1 Neighborhood Sampling. GNN consists of two key steps:

neighborhood aggregation and feature transformation. So, we start

from how we define the neighborhood N𝑖 in the real industry

graphs, an important innovation of our approach [37].

For example, users’ information demand can be clearly revealed

by their issued queries (first-hop neighbors from G𝑢𝑞 ). Besides, the

relationship among users (second-hop neighbors from G𝑢𝑞 who

issued the similar set of queries) should not be ignored, which can

be extremely helpful to overcome the sparsity problem of users’

history. Thus both the first and second-hops of neighbors should

be considered in the neighborhood aggregations process.

Conventional GNNs can leverage 𝑘-hop neighborhood infor-

mation by stacking 𝑘 GCN layers or perform random walks on

the graph [10, 18, 19, 33, 36]. However, the user-query graph and

query-document click graph in the real industry system are stored
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Figure 4: An illustration of our GNN-based multi-task framework. Given the triple <𝑢𝑢 , 𝑞𝑞 , 𝑑𝑑>, we first apply the QTMM and

I3D to learn the semantic representations of 𝑞𝑞 and 𝑑𝑑 . Then, we sample fixed-size neighbors for 𝑢𝑢 , 𝑞𝑞 , 𝑑𝑑 from the u-q and q-d

graphs and leverage the graph information with the proposed hierarchical GNN architecture simultaneously capturing both

local and higher-order interactions among nodes to enhance their representation. Finally, we combine representations learned

from text, video and graph for the click task and query-video relevance task for personalized video search.

as user-query and query-document pairs, rather than the entire

graphs used in typical GNNs, which prevents the message passing

between different hops of neighbors and the utilization of random-

walk strategy. Besides, some hot queries and documents have tons

of neighbors. Considering the memory and efficiency problem, we

sample a fixed-size neighbors for each user, query and video from

their first-hop (user-query pairs) and second-hop ((user-user pairs)

neighborhood. For 𝑢𝑢 , the sampled neighbors are issued queries

(first-hop neighbors) N𝑢𝑢_𝑞 = [𝑞𝑢1, 𝑞𝑢2, ..., 𝑞𝑢𝐾 ] and similar users

N𝑢𝑢_𝑢 = [𝑢𝑢1, 𝑢𝑢2, ..., 𝑢𝑢𝐾 ]. Considering similar queries and clicked

videos for a given query in the query-document graph can be ex-

ploited to enrich the current query and provide more search context

to help disambiguation, especially for short and ambiguous queries,

we sample K clicked videos N𝑞𝑞−𝑑 = [𝑑𝑞1, 𝑑𝑞2, ..., 𝑑𝑞𝐾 ] and similar

queriesN𝑞𝑞−𝑑 = [𝑞𝑞1, 𝑞𝑞2, ..., 𝑞𝑞𝐾 ] from G𝑞𝑑 . Videos sharing many

co-clicked queries should also be close in the vector space and

we sample a fixed-size videos N𝑑𝑑−𝑑 = [𝑑𝑑1, 𝑑𝑑2, ..., 𝑑𝑑𝐾 ] from 𝑑𝑑 ’s

second-hop neighbors (clicked videos with same queries).

2.3.2 Hierarchical Aggregation. After getting sampled neigh-

bors for users, queries and videos, a natural idea is to aggregate

their neighborhood information to enrich their representations.

The conventional neighborhood aggregation in GNNs is

h
′

𝑖 = 𝑓𝑎 (h𝑗 , 𝑗 ∈ N𝑖 ), (2)

where 𝑓𝑎 is a predefined aggregation function (aggregator) and N𝑖
is the neighborhood. In feature transformation stage, the central

node h𝑖 first combines with h
′

𝑖 , followed by a linear mapping or

MLPs to get its new representation.

Different from conventional GNNs, the sampled neighbors (N𝑖 )

contain both homogeneous and heterogeneous neighbors for users

and queries. Such as N𝑢𝑢_𝑞 and N𝑢𝑢_𝑢 are heterogeneous and ho-

mogeneous neighbors for 𝑢𝑢 respectively. A naive approach is to

ignore the node/edge types and treat them as in a homogeneous

graph. 2 This, apparently, is suboptimal since different types of

neighbors have different traits and their embeddings should fall

in different feature spaces [9, 36]. Thus we design a hierarchical

aggregation strategy and apply different aggregation functions to

aggregate a given node’s first-hop and second-hop neighbors re-

spectively.

Take user 𝑢𝑢 in the user-query graph as an example, we apply

two different aggregation functions: 𝑓𝑢𝑞 𝑓𝑢𝑢 to learn user’s rep-

resentations by leveraging its first-hop (queries) and second-hop

(similar users) neighborhood information respectively, as shown:

u𝑢𝑞 = 𝑓𝑢𝑞 (q𝑢𝑖 , 𝑢𝑖 ∈ N𝑢𝑢_𝑞) . (3)

u𝑢𝑢 = 𝑓𝑢𝑢 (u𝑢𝑖 , 𝑢𝑖 ∈ N𝑢𝑢_𝑢 ), (4)

where 𝑓𝑢𝑞 and 𝑓𝑢𝑢 are query-type and user-type aggregators that

focus on aggregating homogeneous and heterogeneous information

respectively. A natural follow-up question is how to design the

aggregation function.

2A graph with one type of nodes and edges
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Ideally, the aggregation function would be symmetric (i.e., in-

variant to permutations of its inputs), which ensures our model

can be applied to arbitrarily ordered neighbors [10, 32, 38]. 3 Take

𝑓𝑢𝑞 as an example, candidate aggregation functions can be sum

(𝑓𝑢𝑞𝑠 ), mean (𝑓𝑢𝑞𝑚 ), maxpooling, (𝑓𝑢𝑞𝑚𝑝 )
4 and attention (𝑓𝑢𝑞𝑎𝑡𝑡 )

aggregation [26, 27] as shown:

u𝑢𝑞 = 𝑓𝑢𝑞𝑎𝑡𝑡 (q𝑢𝑖 ) =

𝐾∑︁

𝑖=1

𝛼𝑛𝑖q𝑢𝑖 (𝑢𝑖 ∈ N𝑢𝑢_𝑞), (5)

where 𝛼𝑛𝑖 can be learned from

𝛼𝑛𝑖 =
𝑒𝑥𝑝 (𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈 (W𝑢 [u𝑢 ∥ q𝑢𝑖 ] + b𝑢 ))

∑𝐾
𝑑=1

𝑒𝑥𝑝 (𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈 (W𝑢 [u𝑢 ∥ q𝑢𝑑 ] + b𝑢 )
, (6)

whereW𝑢 and b𝑢 are trainable parameters in the attention network,

∥ denotes concatenation.

Similarly, for a given query 𝑞𝑞 , we apply the hierarchical ag-

gregation strategy and utilize different aggregation functions 𝑓𝑞𝑑
and 𝑓𝑞𝑞 to aggregate its first-hop neighbors N𝑞𝑞_𝑑 (clicked videos)

and second-hop neighbors N𝑞𝑞_𝑞 (similar queries) in the query-

document graph to obtain q𝑞𝑞 and q𝑞𝑑 respectively. This can pro-

vide more search context to help disambiguation, especially for

short and ambiguous queries.

Videos sharing many co-clicked queries should also be close in

the vector space. For the given video 𝑑𝑑 , We apply 𝑓𝑑𝑑 as the aggre-

gator to aggregate its second-hop neighbors N𝑑𝑑_𝑑 as following:

d𝑑𝑑 = 𝑓𝑑𝑑 (d𝑑𝑖 ,N𝑑𝑑_𝑑 ). (7)

2.4 Incorporating User Meta Information

Besides the user-query graph information, we also have users’ ad-

ditional features and search history information. To better charac-

terize users and retrieve personalized search results, we augment

our model with additional user features which are represented in a

multi-field multi-hot encoding form. Each field contains multiple

discrete categorical features, such as gender, job, position, which

are translated into several high-dimensional sparse features via

one-hot encoding. For example, [gender=female, job=teacher] can

be represented as:

[1, 0, 0]
︸  ︷︷  ︸

𝑔𝑒𝑛𝑑𝑒𝑟

[0, 1, ..., 0]
︸      ︷︷      ︸

𝑗𝑜𝑏

. (8)

Then the raw sparse feature u𝑢𝑚𝑠 is fed into the MLPs to generate

low-dimensional real-valued dense vector u𝑢𝑚 :

u𝑢𝑚 = 𝑀𝐿𝑃 (u𝑢𝑚𝑠 ). (9)

User clicked videos can directly reflect users’ preference, such as

preferred video type, watching habits (prefer long or short video)

and so on. Applying the similar way as learning u𝑢𝑞 and u𝑢𝑢 , we

get u𝑢𝑑 as following:

u𝑢𝑑 = 𝑓𝑢𝑑 (d𝑢𝑖 , 𝑖 = 1, 2, ..., 𝐾), (10)

3There is no order between u𝑢1 , u𝑢2 ... u𝑢𝐾 . A user issued queries, q𝑢1, q𝑢2, ..., q𝑢𝐾
can be sequential datasets if we have their timestamp information.
4 𝑓𝑢𝑞𝑠 means summation of the embeddings of neighbors, 𝑓𝑢𝑞𝑚 means average of

these embeddings. 𝑓𝑢𝑞𝑚𝑝 applies max-pooling operator to each of the computed

feature.

where d𝑢𝑖 is the ID embedding from video ID embedding matrix

D ∈ R𝑁𝑞×𝐷 .

2.5 Ranking Score Generation

Finally, we concatenate 𝑢𝑢 ’s ID embedding u𝑢 , embeddings learned

from meta-information u𝑢𝑚 , u-q graph u𝑢𝑞 , u𝑢𝑢 and clicked videos

u𝑢𝑑 to get its new embedding u
′

𝑢

u
′

𝑢 = u𝑢 ⊕ u𝑢𝑚 ⊕ u𝑢𝑞 ⊕ u𝑢𝑢 ⊕ u𝑢𝑑 , (11)

where ⊕ is the operation of vector concatenation.

For query 𝑞𝑞 , we concatenate its ID embedding q𝑞 , text embed-

ding q𝑞_𝑡 and embeddings q𝑞𝑑 and q𝑞𝑞 learned from q-d graph to

get its new embedding q
′

𝑞

q
′

𝑞 = q𝑞 ⊕ q𝑞_𝑡 ⊕ q𝑞𝑑 ⊕ q𝑞𝑞 . (12)

For video 𝑑𝑑 , we concatenate its ID embedding d𝑑 and, semantic

embeddings learned from text and video d𝑑_𝑡 , d𝑑_𝑣 and d𝑑𝑑 learned

from neighboring videos in q-d graph to get it new representation

d
′

𝑑

d
′

𝑑
= d𝑑 ⊕ d𝑑_𝑡 ⊕ d𝑑_𝑣 ⊕ d𝑑𝑑 . (13)

After we got the new embeddings for user, query and videos,

we need to further refine the query representation by injecting

more personalized information. Instead of directly matching q
′

𝑞

and d
′

𝑑
, we first combine u

′

𝑢 with q
′

𝑞 to get the personalized query

embedding as following:

q
𝑝
𝑞 = 𝑓𝑢 (u

′

𝑢 ) ⊕ 𝑓𝑞 (q
′

𝑞), (14)

where 𝑓𝑢 and 𝑓𝑞 are MLPs and map u
′

𝑢 and q
′

𝑞 to the same vector

space. Meanwhile, d
′

𝑑
will be also projected to the same space with

q
𝑝
𝑞 by an MLPs 𝑓𝑑

d
𝑝

𝑑
= 𝑓𝑑 (d

′

𝑑
) . (15)

The click probability of <𝑢𝑢 ,𝑞𝑞 ,𝑑𝑑> is calculated as the inner product

of q
𝑝
𝑞 and d

𝑝

𝑑
,

𝑦𝑐 = (q
𝑝
𝑞 )
𝑇 d

𝑝

𝑑
. (16)

Besides, our model also considers the relevance between queries

and videos andwe calculate their correlation𝑦𝑟 by the inner product

of q
′

𝑞 and d
′

𝑑

𝑦𝑟 = (𝑓0 (q
′

𝑞))
𝑇 𝑓1 (d

′

𝑑
), (17)

where 𝑓0, 𝑓1 are MLPs to map q
′

𝑞 and d
′

𝑑
to the same embedding

space. The final ranking score can be obtained as following

𝑦 = 𝑦𝑐
𝛽𝑦

(1−𝛽)
𝑟 , (18)

where 𝛽 ∈(0,1) is a hyper-parameter. We use the final ranking score

𝑦 to rank the candidate videos.

2.6 Model Training and Optimization

The training objective of our model consists of two terms. The first

one is the binary cross-entropy loss

L1 = −
1

𝑀

𝑀∑︁

𝑗=1

𝑜 𝑗 ×𝑙𝑜𝑔𝑝 (d𝑗 |q𝑞) + (1−𝑜 𝑗 ) ×𝑙𝑜𝑔(1−𝑝 (d𝑗 |q𝑞)), (19)
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where 𝑀 denotes the number of training pairs and 𝑜 𝑗 represents

binary click label for d𝑗 . The second term is the mean squared error

L2 =
1

𝑀

𝑀∑︁

𝑗=1

(𝑦 𝑗 − 𝑦 𝑗 ), (20)

where 𝑦 𝑗 and 𝑦 𝑗 are respectively the real and predicted relevance

score. The final objective is

L = 𝛼L1 + (1 − 𝛼)L2, (21)

where 𝛼 is the hyper-parameters to control the balance.

3 EXPERIMENT

3.1 Datasets

To evaluate the effectiveness of our proposed framework, we collect

the online search logs of a major commercial video search engine

to construct a personalized search dataset, which could be a proper

test bed to evaluate personalized search models. We collect a total

of 21 days’ search logs, which are split into 3 parts. Graphs are

constructed based on the first part, i.e., search logs from the first

15 days. The constructed graphs have millions of nodes and tens

of millions of edges. When constructing the two bipartite graphs,

we only preserve five first-order and five second-order neighbors

for each node. The next five days’ logs are used to construct the

training set and the logs from the last day are used as testing data.

There are totally 1,289,314 unique users, 1,315,851 unique queries

and 5,368,904 unique videos, where the training set consists of

10,802,573 samples, and testing set consists of 3,335,752 samples.

For users, besides the user ID features, we also include users’ meta

information, such as age, education level, gender, profession and

city, for better user representation.

For the click task, we formulate it as a binary classification task

and collect the online user click feedback as the click label. Click

means one and not click means zero. For the query-video relevance

task, we formulate it as a regression task. The relevance labels are

collected using an internal tool which could automatically tag the

relevance label of a query-document pair. 5 The relevance labels

range from zero to four, where four indicates the highest relevance

level and zero means irrelevant.

3.2 Baselines and Experimental Setup

We compare our model with two categories of baseline methods:

classical information retrieval and semantic matching methods

(NCF [12], DSSM [16], DNN) and three representative personalized

search models: P-Click model (traditional statistic model) [7], two

types of DL-based models: NN-PVS (neural ranking model with

personalized information [15]) and RNN-PVS (RNN based sequen-

tial models to mining sequential information to learn users’ search

intents [1]). We evaluate above methods on the click task and the

relevance task. In both tasks, we use AUC and a commonly used

evaluationmetric, i.e., nDCG@k (k=1, 3, 5), to evaluate these models

and report results over 5 runs with random parameter initialization.

• NCF [12]. Neural Collaborative Filtering (NCF) is a neural

network architecture to model latent features of users and

5We could also get manual labels based on crowdsourcing platforms, such as Amazon
Mechanical Turk.

items for top-K recommendation. In our scenarios, we feed it

with the query IDs and video IDs instead of users and items.

• DSSM [16]. Deep Structured Semantic Model (DSSM) is pro-

posed for web search semantic matching. We measure the

similarities of query and videos’ representations learned

from their text information with BERT.

• CDL. Content-enhanced deep learning model (CDL) feed

query ID embeddings concatenated with text embedding

and video ID embeddings concatenated with text and video

embeddings into the MLP layers.

• P-Click model [7]. P-Click model predicts the probability

of clicking by counting the number of historical clicks. It

focuses on the user’s re-finding behavior.

• NN-PVS [15]. It is a neural ranking model with personalized

information introduced in [15]. In our paper, NN-PVS utilizes

users’ meta information to refine the query representation.

We concatenate the user embedding learned from users’ meta

information with the query embedding and use the MLPs to

map the concatenated vector to the same embedding space

with the video for the final matching.

• RNN-PVS. This is an RNN based sequential model that

learns users’ profile with their history information [1]. We

concatenate the user profile embedding with query embed-

ding for the final matching.

• GNN-PVS. Our proposed model, where only click labels are

used for training. We utilize four different aggregation func-

tions: mean (GNN-PVS_m), sum (GNN-PVS_s), maxpooling

(GNN-PVS_mp) and attention (GNN-PVS_att). 6

• MGNN-PVS: It is a variant of GNN-PVS, where a multi-task

learning framework is incorporated to simultaneously learn

the click and relevance task. Likewise, we also utilize mean,

sum, maxpooling and attention four different aggregation

functions in our model.

The the dimension of text embedding is 128 and 256 for the

video embedding. The other main hyper-parameters are set as: ,

the dimension of ID embedding ∈ {16, 32, 64}, the dimension of

learned user profile ∈ {16, 32, 64}, the batch-size: 512, the dropout

rate ∈ {0.2,0.4,0.6}, learning rate ∈ {0.01, 0.001, 0.0001}. These hyper-

parameters are finally selected according to the performance on

the validation dataset. We use the Adam optimizer [17] and apply

the early stopping strategy based on the validation accuracy to

avoid overfitting. Considering both accuracy and efficiency, we

choose the mean aggregation function in our framework. 𝛼 is set

as 1 for GNN-PVS which only learns the click label and set as 0.5

for MGNN-PVS to jointly model click and relevance.

3.3 Experimental Results.

3.3.1 Overall Performance Comparison. The experimental re-

sults are summarized in Table 2. Our proposed GNN-based models

(GNN-PVS and MGNN-PVS) significantly and consistently outper-

form all other baselines on both click and relevance tasks. Compared

with the best baselines, our model outperforms the best baselines

by 7.94%, 9.74%, 15.38%, 13.04% for the click task and 5.12%, 5.43%,

4.42% for the relevance task, which illustrates that utilizing graph

6Considering accuracy, efficiency and stability, we use mean as our aggregation func-
tion if there is no specification.
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Table 2: Overall performance of all models (%).

The best results are in bold and the best ones of other baselines are underlined.

Click Task Relevance Task

Methods AUC nDCG@1 nDCG@3 nDCG@5 nDCG@1 nDCG@3 nDCG@5

DSSM 67.82 ± 0.43 20.8 ± 0.55 35.0 ± 0.37 40.6 ± 0.30 67.0 ± 0.42 69.5 ± 0.40 72.4 ± 0.35

NCF 72.48 ± 0.61 21.8 ± 0.62 37.4 ± 0.49 45.1 ± 0.44 66.8 ± 0.40 68.9 ± 0.33 71.7 ± 0.40

CDL 73.02 ± 0.20 22.7 ± 0.39 37.6 ± 0.31 44.5 ± 0.42 68.6 ± 0.29 70.0 ± 0.22 72.3 ± 0.19

Pclick 60.8 15.9 26.9 35.0 64.4 66.4 69.4

NN-PVS 70.63 ± 0.27 23.3 ± 0.82 38.9 ± 0.62 46.2 ± 0.34 66.8 ± 0.34 67.6 ± 0.19 71.6 ± 0.23

RNN-PVS 68.33 ± 0.51 21.6 ± 0.45 37.0 ± 0.31 39.3 ± 0.40 66.6 ± 0.42 67.3 ± 0.23 70.8 ± 0.16

G
N
N

GNN-PVS_m 76.93 ± 0.46 27.6 ± 0.62 44.0±0.34 51.6 ± 0.22 70.5 ± 0.20 71.8 ± 0.17 74.0 ± 0.21

GNN-PVS_s 76.00 ± 0.19 25.3 ± 0.31 42.9±0.19 49.8 ± 0.12 70.2 ± 0.34 72.4 ± 0.22 73.8 ± 0.21

GNN-PVS_mp 78.87 ± 0.82 27.8 ± 0.73 44.4±0. 59 51.7 ± 0.62 70.3 ± 0.74 71.8 ± 0.48 74.2 ± 0.46

GNN-PVS_att 78.18 ± 0.27 27.9 ± 0.50 45.0 ±0.47 51.9 ± 0.19 70.6 ± 0.35 72.2 ± 0.25 74.9 ± 0.22

M
G
N
N

MGNN-PVS_m 75.52 ± 0.46 27.2 ± 0.72 42.9 ±0.33 50.6 ± 0.16 72.2 ± 0.41 73.3 ± 0.22 75.6 ± 0.17

MGNN-PVS_s 74.67 ± 0.50 24.8 ± 0.39 40.5±0.27 48.6 ± 0.21 71.7 ± 0.33 73.5 ± 0.27 74.1 ± 0.16

MGNN-PVS_mp 77.03 ± 0.69 27.5 ± 0.82 43.4±0.65 50.6 ± 0.58 72.3 ± 0.66 72.9 ± 0.49 75.0 ± 0.41

MGNN-PVS_att 76.00 ± 0.26 26.8 ± 0.52 3.2±0.31 0.7 ± 0.24 71.9 ± 0.40 73.8 ± 0.23 75.3 ± 0.21

Improvement % +7.94% +19.74% +15.38% +13.04% +5.12% +5.43% +4.42%

information greatly benefits the representation learning for users,

queries and videos. Compared with GNN-based models, MGNN-

based models get better performance on the relevance task, but

not the click task. This is because MGNN-based models are trained

with both click and relevance labels, while GNN-based models are

trained only with the click labels.

Besides, non-personalized baselines (DSSM, DCF, CDL) usually

perform better than personalized search models (Pclick, NN-PVS,

RNN-PVS) on the relevance task, but not the click task. The possible

reason is that incorporating user’s information benefits the click

task, but may introduce some noisy information, such as users

clicked the video only because of attractiveness, but it may be not

relevant to their issued queries. This also indicates the necessity of

training the model with both click and relevance labels.

The P-Click model, the traditional statistical method, gets poor

results, while other deep learning based models have shown strong

generalization ability by capturing the implicit similarities among

users, queries and documents. NN-PVS gets better results than

RNN-PVS. One possible reason is that RNN is more suitable for

sequential data, but there is no timestamp information for users’

history information in our scenario. Compared with RNN-PVS,

NN-PVS is a more general and easily applied PSM.

3.3.2 Trade-off between Two Tasks. For MGNN-PVS, a key

hyper-parameter is the trade-off parameter 𝛽 . We would like to

explore the influence of 𝛽 to the performance on the click task and

relevance task by varying the value of 𝛽 from zero to one. Results

are reported in Fig. 5. We found that MGNN-PVS achieves better

performance on the relevance task when 𝛽 is small. When the value

of 𝛽 increases, the performance of the click task increases while

the performance of the relevance task decreases. This observation

matches our intuition since 𝛽 controls the relative impacts of click

prediction score and relevance prediction on the final ranking score.

(a) nDCG of Click Task

(b) nDCG of Relevance Task

Figure 5: 𝛽’s influence to the prediction results.
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Figure 6: Effectiveness of each graphmodule: (a) and (b) show

the nDCG@1 of click task and relevance task. NN-PVS is the

baseline, only considering the user’s meta information. GNN-

ABmeans only A-B graph information is used in the training

process, such as GNN-UU means only the user’s neighboring

users (user-user graph information) are used in the learning

process.

3.3.3 Effectiveness of Graph Information. To validate the ef-

fectiveness of graph information, we add each component of the

graph to examine its relative importance as shown in Fig. 6. For ex-

ample, GNN-UUmeans ourmodel only leverages neighboring users’

information (user-user) from the user-query graph, without con-

sidering other components of the two graphs. Several observations

can be made from Fig. 6. First, adding user-user and user-query in-

formation has more improvements than adding query-query, query-

documents information for the click task. When uses’ history infor-

mation is sparse, they may not be well represented. Hence, adding

their neighboring users and queries may assist our model to learn

better representation. Second, the improvement brought by second-

order neighboring videos in the query-document graph outweighs

that brought by other graph information for the relevance task. One

possible reason is that videos can learn more accurate embeddings

with considering their neighboring videos. Finally, compared with

other graph information, the improvement brought by query-query

and query-document graph information is not that obvious. We

checked our dataset and found that the connection is very sparse

for query in the query-document graph, and this may result that

adding query-query and query-document graph information does

not perform as good as adding user-user or video-video informa-

tion.

3.3.4 Case Study. To get deep insights on how the graph infor-

mation assists the personalized search task. We choose two triples

<user, query, video> with the same query Shepherd of the Cocoa Sea

(SCS) and video Beautiful street performance of the Shepherd of the

Cocoa Sea, but different users with the ground truth labels zero for

user47 (no-click) and one for user75 (click). We compare the click

results of NN-PVS and our model. NN-PVS predicts both user47

and user75 click the video when issuing this query SCS, because the

query and video title are very relevant, containing both Shepherd

of the Cocoa Sea. But our model predicts zero for user47 and one

for user75.

From the user-query graph, we find three related first-hop neigh-

bors of user47 : the original singer of SCS, the complete and original

SCS, Wang CSC 7, which illustrates that user47 prefers the orig-

inal song CSC much. Beyond the text information of the query

and video, our model can utilizes these information and discover

people’s real interests, but NN-PVS can not. Besides we also ob-

serve that the query Cocoa Shepherd, a wrong expression of SCS,

has three second-hop neighbors (similar queries): SCS, SCS orignal,

Song of SCS in the query-document graph, which contains more

related and accurate expressions for the query SCS. Aggregating

these information can help the model learn a more accurate and

robust representation of queries, even with wrong expressions.

4 RELATED WORK

The main idea of traditional static personalized search algorithms

in [7, 24, 25] is that they evaluate the click probability by count-

ing the number of documents clicked by the same user under the

same query. Some studies attempt to extract the topics features by

utilizing Open Directory Project (ODP) [23, 31] or latent seman-

tic analysis(LSA) or Latent Dirichlet Allocation (LDA) techniques

[3, 11, 28, 29]. But these topic-based models are often trained in

an unsupervised manner, thus the performance of these models

on personalized search is not as good as expected. Recently, deep

learning methods have been successfully applied to a variety of

language and information retrieval applications. One category of

DL-based PSMs mainly follow the general framework of traditional

DL search methods [16], meanwhile incorporate more personal

information. [15] encodes both textual information of the query,

and users’ social connections [34] or location [14] to represent the

query. Another category methods aim to learn the user profile from

users’ long-term or short-term search history by bi-LSTM, RNN,

GRU or transformer to mining sequential information to learn users’

search intents [1, 8, 20, 40].

One of the biggest concerns in personalized video search is the

data sparsity issue, where each user only has a handful of queries

in their search histories and therefore limits the learning capability

of the personalization algorithms. Besides, current PSMs learn the

query and document representation only from their textual content.

7Wang is the original singer of CSC
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When queries are short and vague, it is difficult for current PSMs

to learn accurate representations. What’s more, current PSMs only

use the click signal to train their models and this manner is not

suitable in our scenario, because the real industry video platform

exists much noisy click information.

5 CONCLUSION

In this paper, we proposed an efficient multi-task graph convolu-

tional network architecture for personalized video search (MGNN-

PVS) and optimized both the click task and relevance between

videos and queries. In addition to learning the representations of

users, queries and videos from their own ID, textual and video con-

tent, our approach can leverage the user-query graph and query-

document click graph information to relieve the sparsity problem

and help disambiguate short and vague queries. Considering the

real data contains much noisy click information that users’ click

signals may indicate attractiveness but not necessarily indicate

relevance. Thus, we jointly model the user’s click behaviour and

the relevance between queries and videos in our algorithm. Experi-

mental results on the real-world dataset showed that our proposed

model significantly outperforms state-of-the-art PSMs on both click

task and relevance task, which illustrates the effectiveness of our

proposed framework.
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