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Abstract: A fully analytical model is presented for ballistic conduction in a multi-lead device that

is based on a π-conjugated carbon framework attached to a single source lead and several sink

leads. This source-and-multiple-sink potential (SMSP) model is rooted in the Ernzerhof source-

and-sink potential (SSP) approach and specifies transmission in terms of combinations of structural

polynomials based on the molecular graph. The simplicity of the model allows insight into many-lead

devices in terms of constituent two-lead devices, description of conduction in the multi-lead device

in terms of structural polynomials, molecular orbital channels, and selection rules for active and

inert leads and orbitals. In the wide-band limit, transmission can be expressed entirely in terms

of characteristic polynomials of vertex-deleted graphs. As limiting cases of maximum connection,

complete symmetric devices (CSD) and complete bipartite symmetric devices (CBSD) are defined

and solved analytically. These devices have vanishing lead-lead interference effects. Illustrative

calculations of transmission curves for model small-molecule systems are presented and selection

rules are identified.

Keywords: all-carbon devices; source-and-sink potential; ballistic conduction; molecular graph;

characteristic polynomial; vertex-deleted subgraphs; hyperdeterminants

1. Introduction

The study of molecular conduction and molecule-scale devices is and has been an active
area at the boundary between chemistry and physics for at least half a century [1], and by
now, it has accumulated a substantial number of textbooks in the literature, e.g., [2–6]. Over
this period, different theoretical approaches have emerged. Techniques for calculation have
mainly favoured Green’s Function (GF) methods, both equilibrium and non-equilibrium
GFs [7–19]. Especially in chemistry, there has been a sustained development of scattering
models for the ballistic conduction of electrons though molecular systems, with an emphasis
on conduction through channels governed by energies and symmetry characteristics of
orbitals [20–30]. An advantage of such pictures is that they lend themselves to even simpler
qualitative modelling of the effects of electron energy, relative interaction strengths, contact
placement, and qualitative features of molecular electronic structures, as treated in e.g., [31–34]
and as illustrated by many examples in our own work, as cited below.

One successful model of this type is the Source-and-Sink-potential (SSP) model pro-
posed and developed by Ernzerhof and co-workers in tandem with their DFT approach to
an a priori calculation of conduction [35–54]. The SSP approach replaces the doubly infinite
system of molecule and leads by the finite system of a molecule dressed with a source and
a sink pseudo atom equipped with complex potentials, hence in the tight-binding model
replacing an (n + ∞)× (n + ∞) matrix problem by an (n + 2)× (n + 2) problem [40,55].
These ideas have their roots in earlier work [56,57] and have parallels in approaches such
as SSM [58] and CAP [59].

A special feature of the SSP model in its graph theoretical incarnation [55] is that
it gives a useful qualitative account of the two-lead device, giving selection rules for
conduction, rationalisation of the sensitivity of current to placing of leads; models for
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composite devices; and a general classification of types of conduction behaviour, such as
equiconduction, omniconduction, omni-insulation, and perfect reflection [60–69]. Although
the graph theoretical version of SSP is based on the Hückel (tight-binding) model of
electronic structure, many of its most useful features persist at higher levels of theory.
Conduction of the Hückel device can be analysed in terms of internal channels based on
molecular orbitals of the central molecule, which are either active or inert [63]. It can be
shown [70] that, as the level of theory is raised, a similar analysis applies to Hartree–Fock
MO channels and, then at the second-order (or higher) Green’s Function level, to internal
channels associated with Dyson orbitals. This evolution of the channel picture is consistent
with the standard Meir–Wingreen [19] and Landauer–Büttiker [71,72] expressions for elastic
conduction of electrons through molecules.

Green’s Function approaches have been applied to various multi-lead configurations
at various levels of theory. For instance, Reference [59] quotes a dozen examples, and public
domain codes such as TRANSIESTA [73] allow for calculations with many leads. Explicit
high-level calculations of transmission for individual systems are undoubtedly valuable,
but there is still a role for simple models that can identify broad trends for families of
systems, can give a framework for interpretation, and can identify cases for more detailed
analysis by a priori/ab initio methods.

In line with this philosophy, our aim in the present paper is to generalise the two-
lead SSP formalism to deal with multi-lead devices, retaining its many advantages. To
be concrete, we call this version of SSP the SMSP (source-and-multiple-sink-potential)
model. The paradigm system for this model has a single-source lead connected to one
atom of the central molecule, and several drain leads attached to other specific atoms.
Ernzerhof already considered an extension of SSP with a three-lead device that has a gating
arrangement that includes two sources and one sink [51]. We defer treatment of the many
possible multi-source variations of SMSP to future work.

As with SSP, we are able to obtain an analytical solution at the Hückel/Tight-Binding
level for non-trivial molecular systems in terms of a set of characteristic polynomials. General
expressions for the currents in all the leads can be developed and used to identify global
selection rules. They suggest new classes of conductors, by analogy with developments in the
theory for the original two-lead device. The model shares with SSP the same opportunities
for seamless transition from Hückel to self-consistent and correlated treatments.

The structure of the paper is as follows: Section 2 describes the basic SSP model;
Section 3 introduces the SMSP model equations, their formal solution and simplification
for devices with symmetric (i.e., chemically identical) leads, and the analysis of molecular
orbital conduction channels and lead-lead interference effects; Section 4 treats two classes of
‘complete’ devices, in which either all vertices of the molecular graph (CSD) or all vertices
of a given partite set (CBSD) are connected to leads and which turn out to have minimal
interference effects; Section 5 shows how to break down conduction into contributions
from internal molecular channels; Section 6 reports illustrative results, Section 7 outlines
the connections of the present model with the Meir–Wingreen approach; and Section 8
reports our main conclusions.

2. Two-Lead Devices

In the standard two-lead SSP model, the device consists of a central molecule that
is attached by single-atom contacts to the leads (Figure 1). In the steady state, the source
lead supports an incoming electron wave that undergoes partial reflection at the interface
with the molecule, and the transmitted part of the wave scatters through the molecule
and exits into the sink lead. The essential observation behind the model [40] is that the
two semi-infinite leads may be replaced by source and sink pseudo-atoms equipped with
appropriate complex potentials, which play the roles of delivering the transmitted fraction
of the electron to the molecule and removing it downstream, respectively. In the purely
graph theoretical version of the model, this step allows replacement of a doubly infinite
system by one in which the n× n Hermitian (in fact, real symmetric) molecular Hamiltonian
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matrix is expanded to an (n + 2)× (n + 2) non-Hermitian matrix. It is convenient to recast
this generalised eigenvalue problem in the form of an inhomogeneous linear equation [63]:

Pc = b, (1)

where P is the SSP matrix, the solution vector c gives the device wavefunction specified by
complex entries on the n + 2 vertices, and b is the inhomogeneity term that embodies the
boundary conditions. The solution to this equation for each possible value of the energy
of the incoming electron yields a compact expression for the zero-voltage transmission as
a function of energy, T(E), and as a bonus, gives a useful analysis of current in terms of
bond or molecular-orbital (MO) contributions.

(a) (b)

Figure 1. The SSP model of a molecular device. (a) The full system: a molecule attached to two

semi-infinite leads via single-atom connections. Black and grey vertices are conjugated π centres

within the molecular region; gold vertices are on the leads. (b) The SSP graph: Left (source) and right

(sink) leads are replaced by pseudo-atoms L and R linked, respectively, to atoms L and R within the

molecule. Black vertices are molecular centres directly attached to leads. Grey vertices are molecular

vertices that are not directly linked to a lead. Resonance integrals are βL, βR for lead-molecule

contacts, βM for internal edges of the molecular graph, and βL, βR within the leads themselves.

Incoming and transmitted electron waves have wavevectors qL and qR.

The transmission function can be cast in terms of the characteristic polynomials of
four graphs, G, G − L , G − R , and G − L − R , where L and R are the centres within the
graph that are in direct contact with the leads. These polynomials are denoted s, t, u, and
v in [55]. Details of the algebra are given in the reference, but the result is that the device
transmission has the form [63]:

T(E) = B(qL, qR)
j2

|D|2
, (2)

where
B(qL, qR) = (2βL sin qL)(2βR sin qR)β2

LMβ2
RM (3)

is a band-pass function ensuring that the electron energy is within the conduction bands of
the leads, and the denominator is

D(E) = βLe−iqL βRe−iqR s − βRe−iqR β2
LMt − βLe−iqL β2

RMu + β2
LMβ2

RMv, (4)

where the polynomials s, t, u, and v are to be defined below in (7), The incoming and
outgoing wavevectors qL and qR satisfy the Hückel dispersion relations for the leads:

E = αL + 2βL cos qL = αR + 2βR cos qR, (5)

and we take the symmetric case where αL = αR = α, and βL = βR, and refer the zero of all
energies to α. The polynomial j2 satisfies [74]:

j2 = ut − sv, (6)
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where the four structural polynomials (SPs), s, t, u, and v, which are each the characteristic
polynomial of a graph, are defined with respect to the characteristic matrix E1 − A, where
A is the adjacency matrix of the molecular graph:

s = det(E1 − A),

t = det(E1 − A)[L , L ],

u = det(E1 − A)[R , R ],

v = det(E1 − A)[L R , L R ], (7)

and j can be calculated directly [55,74] as

j = (−1)L+R det(E1 − A)[L , R ]. (8)

In these equations, superscripts indicate the sets of rows and columns to be deleted
from the characteristic matrix.

The transmission T(E) is therefore a ratio of polynomial functions of E, taking values
between zero and one and depending implicitly on the molecular graph and the placement
of connections. Questions such as transparency, opacity, selection rules, and linkage of
transmission to MO channels can all be explored either analytically or numerically using
this function [55,60–69].

In going to the more general device with multiple leads, the conceptual framework
remains intact (Section 3), but the notation needs to be overhauled. The first point of
difference concerns the naming of leads. We replace the L and R nomenclature for leads
with numerical labelling. For the construction of derivations and proofs, it is convenient
to adopt the convention that the source is lead 1, and the sink leads have labels p = 2 to l
(l ≤ n). Centres in the molecule are then numbered 1 to n such that, for the first l centres, p
in the molecule is connected to lead p, and the numbers l + 1 to n are then used for any
centres that are not connected to leads. Formulas for transmission use this convention so
that T1→M describes the transmission from the source to the molecule and TM→p is the
transmission from the molecule to sink lead, p. Contiguous numbering of this type is
advantageous for proofs that use the block structure of the characteristic matrix of bipartite
molecular graphs, for example. (In this paper, we consider only devices where all leads
are connected to distinct vertices of the molecular graphs. Degenerate ‘ipso’ [60] devices
would need a modified numbering convention.)

A second adjustment is to the nomenclature for SPs. For larger numbers of leads, the
labelling of every SP with a different letter becomes unwieldy, so we adopt a single symbol
that can be extended to arbitrarily large cases. It is convenient to define

kp, q = βLMp cof (E1 − A)p, qβLMq ,

kpq, rs = βLMp βLMqcof (E1 − A)pq, rsβLMr βLMs ,

kpq···r, st···u = βLMp βLMq · · · βLMrcof (E1 − A)pq···r, st···uβLMs βLMt · · · βLMu , (9)

where the SPs of increasing order are now defined as cofactors (cf. Equation (8)) of
the characteristic matrix and where the indices indicate the rows (left of the comma)
and columns (right of the comma) to be struck out. We also chose to scale each SP by
multiplying by the connection parameters between each deleted vertex and its connecting
lead, a feature that makes the ensuing derivations simpler. Diagonal SPs, those for which
the two deletion lists are equal, are now scaled versions of the four structural polynomials
from the earlier two-lead papers, e.g.,

β2
LMt ≡ kL , L , β2

RMu ≡ kR , R , β4
LMv ≡ kL R , L R . (10)
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We can also define some related quantities by dividing by s, i.e.,

k̂pq···r, st···u = kpq···r, st···u/s. (11)

These ‘hatted’ SPs are important in two respects. First, they emerge naturally in
the solution of the SMSP equations, as we shall see in the next section. Second, they are
intimately connected with the molecular GF, which in the Hückel tight-binding formalism
is the inverse

gM = (E1 − A)−1. (12)

An extension of a theorem by Jacobi (cf. Equation (12), p. 774, [75]) establishes that all
our hatted polynomials are determinants:

k̂pq···r, st···u =

∣

∣

∣

∣

∣

∣

∣

∣

∣

(gM)ps (gM)pt · · · (gM)pu

(gM)qs (gM)qt · · · (gM)qu
...

...
...

...
(gM)rs (gM)rt · · · (gM)ru

∣

∣

∣

∣

∣

∣

∣

∣

∣

. (13)

It is also convenient to use an extra piece of notation for the traces of principal minors
of SPs. We define the traced quantities,

k̂(1) = ∑
p

k̂p, p, k̂(2) = ∑
p>q

k̂pq, pq, etc., (14)

where the sums are over the set of molecular vertices attached to leads. The transmission
for the two-lead device, expressed in this revised formalism, is

T(E) =
B(qL, qR)k̂2

L , R

β4
L + β2

L

(

−Ek̂(1) + (k̂(1))2 − 2 k̂(2)
)

+
(

k̂(2) + E(E − k̂(1))
)

k̂(2)
. (15)

The reader may object that this expression could diverge when the value of E is equal
to a molecule eigenvalue, ǫMi. The divergences in (15) are easily removed. The zero-rank
polynomial, s, is expressed in terms of molecular eigenvalues through

s =
n

∏
i=1

(E − ǫMi), (16)

and if we multiply numerator and denominator of (15) by s2, we obtain

T(E) =
B(qL, qR)k2

L , R

β4
Ls2 + β2

L

(

−Esk(1) + (k(1))2 − 2 sk(2)
)

+
(

k(2) + E(Es − k(1))
)

k(2)
, (17)

which with the equivalences k(1) = tβ2
LM + uβ2

RM and k(2) = vβ2
LMβ2

RM is identical with
the expression for T(E) in [55].

Expression (17) has no divergences at molecular eigenvalues and has been used in
our previous work [60,63,70] to derive selection rules for transmission. The numerical
computation of SSP transmission does not use expressions such as (15) directly, relying
instead upon a standard linear numerical solution of the SSP matrix equations that does
not suffer from numerical instabilities. The purpose of equations such as (15) is for analysis
to reveal the physics involved in the transmission process. Our aim in this paper is to
generalise these expressions for multi-lead devices.
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3. Multi-Lead Devices

We consider a device comprising a molecule with n atoms and a set of l leads (Figure 2).
The leads are simple ‘unstructured’ infinite atomic chains described in a Hückel tight-
binding model in which a given lead, p, has edge weights βLp and has a simple connection
to atom p (using an appropriate molecular numbering scheme) in the molecule with edge
weight βLMp . Without loss of generality, the first lead is the single source lead, and the
remaining (l − 1) leads are sinks. Each lead has a dispersion relation

E = 2βLp cos qLp (18)

that relates the energy, E, of a stream of electrons in the lead to the parameter βLp and
the associated wavevector qLp (0 ≤ qLp ≤ 2π) in an infinite wire. The description of the
molecule may, in principle, go beyond the Hückel model in the manner we have described
previously [70], but, for simplicity, here, we derive the Hückel version of the theory.

(a) (b)

Figure 2. The SMSP model of a molecular device. (a) The full system: a molecule attached to l
semi-infinite leads via single-atom connections. Black and grey vertices are conjugated π centres

within the molecular region; gold vertices are centres on the leads. (b) The SMSP graph: Each lead is

replaced by a pseudo-atom with the index p = 1, . . . , l, where lead 1 is the source and all others are

sinks. Black vertices are molecular centres directly attached to leads and indexed correspondingly.

Grey vertices are molecular vertices that are not directly linked to a lead and are indexed l + 1, . . . , n.

3.1. The SMSP Equations

The Source-Multiple-Sink potential (SMSP) equations are modelled on our previous
work with SSP [63], so that we can write them in the form (1) as

(

PL PLM

PML PM

)(

cL

cM

)

=

(

bL

0

)

, (19)

where the l-dimensional (diagonal) lead block of the S(M)SP matrix, P, is

(PL)pq = δpqβLp e−iqLp = (g−1
L )pp, (20)

Each nonzero element in PL is the matrix element for the terminal atom p of the
inverse Green’s function of the semi-infinite linear chain, g−1

L .
The molecule block is the characteristic matrix constructed from the molecular adja-

cency matrix, AM,

PM = E1 − AM = U(E1n − ǫM)U† = g−1
M . (21)

The diagonal matrix, ǫM, is the matrix of n molecular-orbital eigenvalues, and U is
the associated n-dimensional matrix of molecular-orbital eigenvectors. The unitarity of the
eigenvectors implies that

UU† = 1n = U†U. (22)
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The lead-molecule block, PLM = P†
LM, is an l × n-dimensional matrix with elements

(PLM)pq = −δpqβLMp . (23)

On the right-hand side of Equation (19), the inhomogeneity vector, bL, has a single
non-zero element

(bL)p = −iN1δp1, (24)

which corresponds to the fact that lead 1 is the single source lead. The vector bL ensures
that the system of equations satisfies the correct boundary conditions for a semi-infinite
source lead with current travelling in the forward direction with pseudo-momentum, qL1

.
The factor

N1 =
√

2βL1
sin qL1

, (25)

is the normalising factor (cf. [63]), ensuring that the forward current is equal to unity.
The SMSP solution vector c in Equation (19) is the (complex) device wavefunction.

Consequently, we can write the transmission from the molecule to lead p using the standard
formula for the electron current [2] as

TM→p = 2 βLMpℑ
(

c∗MpcLp

)

. (26)

This formula has the correct sign for transmission into sink leads (p 6= 1), but the sign
must of course be reversed to obtain the transmission from the source lead (p = 1).

3.2. The Formal Solution to the SMSP Equations

The SMSP equations in Equation (19) can be written out in terms of the separate lead
and molecule blocks as

PLcL + PLMcM = bL,

PMLcL + PMcM = 0. (27)

We can solve for cM in terms of cL using Equation (21):

cM = −P−1
M PMLcL = −gMPMLcL. (28)

In terms of components

cMp =
n

∑
i=1

l

∑
q=1

UpiU
∗
qi

E − ǫMi
βLMq cLq. (29)

We can now substitute our formal solution for the molecular coefficients into the lead
equation to give

PLcL = bL, (30)

where the reduced lead matrix, PL, is

PL = PL − PLMgMPML. (31)

Equation (30) can be solved by inversion to give

cLp = (P
−1
L )p1b1 =

(DL)p1

DL
b1, (32)
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where the cofactor matrix and the determinant are defined as

(DL)pq = cof (PL)pq, DL = det PL (33)

and from Equation (29)

cMp =
l

∑
q=1

(gM)pqβLMq

(DL)p1

DL
b1. (34)

Substitution of Equations (32) and (34) into (26) gives

TM→p =
2|b1|

2

|DL|2
ℑ

{

l

∑
q=1

(D∗
L)q1βLMq(gM)qpβLMp(DL)p1

}

, (35)

where we moved real quantities to the left of the imaginary part operator. Summing
Equation (35) over all leads, p, and using the molecular GF for real energies gives

l

∑
p=1

TM→p =
2|b1|

2

|DL|2
ℑ

n

∑
i=1

|∑
l
p=1 βLMpUpi(DL)p1|

2

E − ǫMi
= 0, (36)

since the terms under the summation on the right-hand side are all real, thus verifying
Kirchhoff’s law for the conservation of current in the device.

From the definition of the reduced lead matrix in Equation (31),

(PL)pq = βLp e−iqLp δpq − βLMp(gM)pqβLMq . (37)

We can now use the Laplace expansion of the determinant DL to show that

∑
q

(D∗
L)q1βLMq(gM)qpβLMp = ∑

q

(D∗
L)q1

(

βLp eiqLp δpq − (P
∗
L)pq

)

= (D∗
L)p1βLp eiqLp − δp1D∗

L. (38)

For a sink lead (p 6= 1), we deduce that

TM→p = N2
1 N2

p

|(DL)p1|
2

|DL|2
(39)

It follows from Kirchhoff’s conservation rule that

T1→M =
l

∑
p=2

TM→p = N2
1

l

∑
p=2

N2
p

|(DL)p1|
2

|DL|2
. (40)

Equations (35) and (40) give the general SMSP expressions for the currents that flow
through the single-source molecular device. These expressions can be used directly for
the calculation of ballistic currents in general SMSP devices. However, some far-reaching
simplifications are available when we restrict consideration to the usual case where a device
consists of a molecule connected to chemically identical leads, i.e., the symmetric device.

3.3. Symmetric Multi-Lead Devices

The leads in symmetric devices have identical lead parameters, βL, and identical con-
nection parameters, βLM. This enables a relatively easy simplification of the transmission
formula (39) into a cluster expansion, involving pairs, triples, etc. of leads. All leads satisfy
a single dispersion relation

E = 2βL sin qL, (41)
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and furthermore, the reduced lead matrix of Equation (31) is now

PL = βLe−iqL 1l − β2
LMU(E1n − ǫM)−1U

†
, (42)

where the bar over the matrix U indicates that we require rows of the matrix only for those
atoms connected to leads. The rectangular matrix U is obviously not unitary and indeed
gives different products

U U
†
= 1l , but U

†
U 6= 1n, (43)

but the first of these and the diagonal nature of the first term in the l-dimensional matrix
PL, allow us to write

PL = UQMU
†
, (44)

where the diagonal n-dimensional matrix, QM, which involves all eigenstates, is

QM = βLe−iqL1n − β2
LM(E1n − ǫM)−1. (45)

Equation (44) expresses the reduced lead matrix, PL, as a triple product involving rectan-
gular matrices. The Cauchy–Binet theorem [76,77] can be used to expand the determinant of
a product of two rectangular matrices. Hence, we obtain a further reduction in the quantities
in Equation (33) as a sum over a set of products of l-dimensional principal minors

DL = det PL = ∑
K

det UK det(QMU
†
)K = ∑

K

det UK ∏
k∈K

(QM)kk det(U
†
)K, (46)

where K = {k1, k2, · · · , kl} is an ordered subset of 1, 2, · · · , n, with |K| = l, and
1 ≤ k1 < k2 · · · < kl ≤ n. By deriving this equation, we are able to separate the roles
of eigenvectors, U, and the state energies contributing to QM. Further manipulation of
Equation (46) uses algebra familiar in the reduction of matrix elements over Slater deter-
minants in quantum chemistry. We can replace the restricted summation over the ordered
sets, K, by unrestricted summations from 1 to n over the state indices (i.e., Hückel MO or
GF pole indices), k1, · · · , kl . Equalities between the ki indices are allowed because they
give rise to zero contributions in Equation (46), since they produce determinants, det UK,
with identical columns. We can also use the antisymmetry of the determinants to replace
the first determinant by a simple product. Hence, we can conclude that

DL = ∑
k1,··· ,kl

(

l

∏
p=1

Upkp
(QM)kpkp

)

det(U
†
)K, (47)

The next step is to expand the product of the (QM)kpkp
using Equation (45) to generate

a cluster expansion in powers of βL and β2
LM. Whilst it is easy to pursue this generally, it is

probably more enlightening to consider the example of a three-lead case explicitly.

The Symmetric Three-Lead Device

In the case of the three-lead device, the denominator (47) is

DL = ∑
i,j,k

U1iU2jU3k(QM)ii(QM)jj(QM)kk det(U
∗
1iU

∗
2jU

∗
3k). (48)

The central triple product can be expanded exactly in the form

(QM)ii(QM)jj(QM)kk = β3
Le−3iqL − β2

Le−2iqL ∑
r

β2
LM

∆r
+ βLe−iqL ∑

r>s

β4
LM

∆r∆s
−

β6
LM

∆i∆j∆k
, (49)
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where r and s are in the set K = {i, j, k}, and we have defined energy denominators

∆i = E − ǫMi. (50)

Our aim is to obtain an expression in terms of generalised SPs. We proceed by
substitution of Equation (49) into Equation (48) and then by examining the resultant
coefficient of each power of βLe−iqL . The first term in (49) generates a coefficient

∑
i,j,k

U1iU2jU3k det(U
∗
1iU

∗
2jU

∗
3k) = ∑

i,j,k

U1iU2jU3k ∑
π

σππ U
∗
1iU

∗
2jU

∗
3k = 1, (51)

where π is a permutation of parity σπ belonging to the permutational group S3 of the lead
labels 1, 2 and 3, and we used the orthonormality of the U matrix rows.

Using the same methodology, the β2
Le−2iqL term in Equation (49) gives three contribu-

tions to the coefficient, the first of which is

∑
i,j,k

U1iU2jU3k ∑
π

σππ
U
∗
1i

∆i
U
∗
2jU

∗
3k = (gM)11. (52)

Likewise, the other two denominators give contributions (gM)22 and (gM)33. Re-
duction in the remaining terms proceeds in a similar manner, but the increased number
of denominators is analogous to going from one-electron to two- or three-electron matrix
elements over Slater determinants, and it is necessary to include more of the permutational
symmetry of the included determinant. Collecting terms, we reach an explicit formula for
DL

DL = β3
Le−3iqL − β2

Le−2iqL β2
LM ∑

p

(gM)pp + βLe−iqL β4
LM ∑

p>q

det
(

(gM)pp(gM)qq

)

− β6
LM det ((gM)11(gM)22(gM)33), (53)

or simply

DL = β3
Le−3iqL − β2

Le−2iqL k̂(1) + βLe−iqL k̂(2) − k̂(3), (54)

where we have used the Jacobi relation from Equation (13) and the generalised SP notation
in Equations (11) and (14). We derived this theory in terms of the Hückel tight-binding
approximation, but it also holds for correlated molecular GFs, where the MO coefficients, U,
in the definitions of SPs are replaced by the GF Dyson orbital coefficients [70]. Furthermore,
the cluster expansion in Equation (53) holds for devices with any number of leads. The
alternating sign expansion contains terms with determinants of GF matrix elements with
increasing dimension up to l, the total number of leads in the device.

Now that we have the denominator for the sink lead transmission, we also need to
derive an expression for the cofactor matrix element in Equation (39). As an example, we
take the 2, 1 matrix element for the three-lead case. We have the same structure as before,
but lead 2 matrix elements are omitted from the left-hand part of the expression and lead 1
matrix elements are omitted from the right so that the determinants are of order two:

(DL)21 = (−1)3 ∑
i,j

U1iU3j(QM)ii(QM)jj(U2iU3j − U3iU2j) (55)

We write out the determinant in full. The simplification of this expression is carried
out exactly as before. The first term, β2

Le−2iqL , in the expansion of the Q factors, however,
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gives no contribution because the off-diagonal nature of the cofactor creates matches only
between orthogonal U matrix elements. The final result for the cofactor is

(DL)21 = −βLe−iqL β2
LM(gM)12 + β4

LM

∣

∣

∣

∣

(gM)12 (gM)13

(gM)32 (gM)33

∣

∣

∣

∣

= −βLe−iqL k̂1, 2 + k̂13, 23, (56)

The difference between the cluster expansion of the determinant in Equation (53) and
the cofactor in Equation (55) is significant. The determinant expression has traces over
principal minors. These satisfy the interlacing theorems we previously utilised in our work
on two-lead devices to deduce selection rules [60].

It is straightforward to extend (53) and (56) to more leads. For example, the equivalent
formulas for four-lead SMSP devices are as follows:

DL = β4
Le−4iqL − β3

Le−3iqL k̂(1) + β2
Le−2iqL k̂(2) − βLe−iqL k̂(3) + k̂(4),

(DL)21 = −β2
Le−2iqL k̂1, 2 + βLe−iqL

4

∑
q=3

k̂1q, 2q − k̂134, 234. (57)

3.4. The Wide-Band Limit

The wide-band limit (WBL) is a commonly used approximation for calculation of
electron transport [41]. It is assumed that the wave-vector of the ballistic electron can be
taken to be q = π/2, and all other quantities in the expression for the transmission tend to
their values for E = 0. In the SSP model of the symmetric two-lead device, the wide-band
limiting transmission, TWBL, for non-ipso devices reduces to a formula in terms of the tail
coefficients of the characteristic polynomials of the four subgraphs induced by deletion of
0, 1, and 2 distinct connection vertices of the molecular graph G [55]. This expression has
been used to develop selection rules for Fermi-level conduction of two-lead devices [60,61].

A similar approach can be used for many-lead devices. As an example, the WBL
version of the sink transmission formula for lead 2 in the symmetric three-lead device is

TWBL
M→2 =

4 β2
L

(

β2
L k2

12 + k2
13, 23

)

β6
L s2 + β4

L

[

(k(1))2 − 2 s k(2)
]

+ β2
L

[

(k(2))2 − 2 k(1) k(3)
]

+ (k(3))2
(58)

This can be expressed entirely in terms of the characteristic polynomials of the seven
subgraphs induced by deletion of 0, 1, 2, and 3 distinct connection vertices as follows:

TWBL
M→2 =

4 β̃2
L [(t1 t2 − s v12) + (v13v23 − w123 t3) β̃2

L]

(s − V β̃2
L)

2 + (T − W β̃2
L)

2 β̃2
L

(59)

where β̃L = β2
LM/βL, and we understand the lower-case symbols s, ti, vij, wijk as the Fermi

limits of the characteristic polynomials of the graphs G, G− i, G− i− j, G− i− j− k, and the
upper-case symbols T, V, W as their traces. This expression reduces to the corresponding
two-lead equation (Equation (21) in [55]) when all SPs involving lead 3 are set to zero.
It is straightforward to extend Equation (59) to arbitrary numbers of leads. As the seven
polynomials in the three-lead case are linked by an identity for the principal minors of
the 2 × 2 × 2 hyperdeterminant (see, e.g., Equation (2) in [78]), TWBL can be calculated
from all seven or just six of them. In either case, the WBL approximation can be applied
to this instance of a many-lead device to give the transmission from a knowledge of the
graph itself and its connections. Only the tail coefficients of the characteristic polynomials
are required; this will have particular significance for future development of multi-case
selection rules based on the numbers of zero roots of the various polynomials.
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3.5. Analysis of Interference in Multi-Lead Transmission

In order to appreciate the nature of the transmission for multi-lead devices, we need
to examine the numerator and denominator quantities |DLp1|

2 and |DL|
2. Again taking the

three-lead case as the example, we have

|(DL)p1|
2 = β2

Lk̂2
1, p − Ek̂1, pk̂1q, pq + k̂2

1q, pq , for q 6= p . (60)

The first term in the expansion involves the same rank 1 off-diagonal SP that appears
in the two-lead device constructed from leads 1 and p, albeit with a different |DL|

2 denomi-
nator. We shall refer to this as the direct term for the constituent device (1, p). The remaining
two terms represent the effect of the third lead (i.e., q) on the conduction through the sec-
ond lead (p). We shall call these mixed interference and pure interference terms, respectively.
Each term has a different dependence on the lead parameter, βL, and the lead-molecule
parameter, βLM (cf. Equation (9)). The direct term varies as β2

Lβ4
LM, whilst mixed and

pure interference components vary as βLβ6
LM and β8

LM, respectively. The different scaling
implies that the relative importance of direct and interference effects may change markedly
for different choices of the relative sizes of these parameters.

The denominator term in the transmission is expressed using our trace notation as

|DL|
2 = β6

L + β4
L

[

−E k̂(1) +
(

(k̂(1))2 − 2 k̂(2)
)]

+ β2
L

[

E2 k̂(2) + E (−k̂(1) k̂(2) + 3 k̂(3))

+
(

(k̂(2))2 − 2 k̂(1) k̂(3)
)]

− k̂(3)
[

E3 − E2 k̂(1) + E k̂(2) − k̂(3)
]

(61)

Equation (61) is derived for the symmetric three-lead device with βLM1 = βLM2 =
βLM3 = βLM, and so the two-lead device cannot be recovered simply by taking βLM3 → 0,
but in the limit that k̂(3) → 0, Equation (61) tends to a product of a factor β2

L multiplied by
the denominator in Equation (15). The transmission formula for sink lead p in multi-lead
symmetric devices has the pre-factor N2

1 N2
p = (4β2

L − E2), which gives the quadratic rise
and fall in transmission as a function of energy near the lower and upper band edges, as in
the two-lead device.

The analysis of interference terms can be extended to the case where the device has
more leads. In the case of l leads, the leading term in the numerator is of the form

|(DL)p1|
2 = β2l−4

L k̂2
p1 + · · · . (62)

It has the same SP as the cognate constituent two-lead device, with a dependence on
β4

LM, and this can be expected to be the most important term in the transmission spectrum.
The other terms in |(DL)p1|

2 represent sink-lead interference terms. They form a cluster
expansion with the inclusion of higher rank SPs up to the number of leads, l, and traces
over all sink leads other than p. An analysis in terms of a hierarchy of constituent two-lead,
three-lead, etc. devices could be envisaged.

The equations for symmetric devices, exemplified by (60) and (61) can be used to derive
general features of transmission spectra, selection rules for Fermi transmission, and system-
atic trends in interference effects. Even further simplifications are possible with additional
assumptions about the choice of leads, in particular when the number of leads is large.

4. Symmetric Devices with Complete Structure

There are two limiting cases of symmetric multi-lead devices that have enough struc-
ture to give special algebraic properties in the Hückel tight-binding approximation. The
complete symmetric device (CSD) is a device with each atom of the central molecule attached
to a lead, with all leads being characterised by the same lead-parameter, βL, and the same
connection-parameter, βLM. A bipartite molecule has a graph with vertices (atoms) that can
be divided into two sets, such that there are no edges (bonds) between vertices belonging
to the same set. A complete bipartite symmetric device (CBSD) is a bipartite molecule where
all the vertices of one set connect to distinct leads, each lead having identical βL and βLM
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parameters, whilst vertices from the other set are unconnected to leads. Both CSDs and
CBSDs turn out to have interesting properties with respect to the conduction and (the lack
of) interference between leads.

4.1. The Complete Symmetric Device

We begin our derivation with Equation (35), written in the form

TM→p = 2|b1|
2β2

LMℑ
n

∑
q=1

(P
−1
L )∗1q(gM)qp(P

−1
L )p1. (63)

The CSD is distinguished by the fact that Equation (44) can be written using the
complete matrix U, so that we can exploit its unitarity to express the reduced lead matrix
inverse as

(P
−1
L )pq =

n

∑
i=1

Upi(QM)−1
ii U∗

qi. (64)

Using the definition of the molecular Green’s Function and the orthonormality of the
MOs, we find that

TM→p = 2|b1|
2β2

LMℑ
n

∑
i,j=1

U∗
1iUpi

(Q∗
M)ii

1

∆i

UpjU
∗
1j

(QM)jj
. (65)

We now observe that the eigenfunctions of a symmetric matrix can always be expressed
in terms of real quantities and that we can multiply the numerator and denominator by
(QM)ii(QM)∗jj to limit to the numerator the operation of taking the imaginary part:

TM→p = 2|b1|
2β2

LM

n

∑
i,j=1

U1iUpi

|(QM)ii|2
1

∆i

UpjU1j

|(QM)jj|2
ℑ
(

(QM)ii(QM)∗jj

)

. (66)

From the definition of QM in Equation (45),

ℑ
(

(QM)ii(QM)∗jj

)

= 2βL sin qLβ2
LM

(

ǫMj − ǫMi

∆i∆j

)

, (67)

and hence

TM→p = −N4
1 β4

LM

n

∑
i,j=1

[

U1iUpi

|(QM)ii|2
1

∆i∆j

UpjU1j

|(QM)jj|2

]

(

ǫMi − ǫMj

∆i

)

. (68)

The final step is to convert the unrestricted sums over the indices i and j into restricted
sums with i < j. This is performed by taking notice of which parts of the sum are symmetric
in the indices (those in square brackets) and those (in round brackets) which are not. It is
also convenient to define a denominator with the singularity removed:

Li = ∆i(QM)ii = ∆iβLe−iqL − β2
LM. (69)

The final expression for the sink transmission in a CSD is

TM→p = −N4
1 β4

LM

n

∑
i=1

∑
j>i

U1iUpi

|Li|2
U1jUpj

|Lj|2
(ǫMi − ǫMj)

2. (70)
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Using Equation (40) and orthonormality,

T1→M = N4
1 β4

LM

n

∑
i=1

∑
j>i

U2
1i

|Li|2

U2
1j

|Lj|2
(ǫMi − ǫMj)

2. (71)

This last formula shows the implicit dependence of the current transmitted through
the molecule on the position of the source lead, on the role of the attached vertex in all the
molecular orbitals, and on the shell degeneracies.

A notable feature of Equations (70) and (71) is that the coefficients, U, appear only in
the numerator, and therefore, the only energy dependence in the numerators arises from
the band-pass factor N4

1 . The denominators are all finite and positive within the band
window, and therefore, the transmission in the device vanishes only at the band edges. As
later examples show, however, individual sink transmissions may still be small at particular
energies.

The orbital sum in Equations (70) and (71) is actually a sum over shells by virtue
of the energy difference factor. Non-zero contributions to the total transmission in (71)
arise if and only if the source connection vertex carries non-zero density in both i and
j. Such pairs exist for all molecular graphs G, as all vertices have a non-zero entry in
the LOMO (the eigenvector with the largest eigenvalue, the Perron eigenvector), and
orthonormality requires that every vertex has a non-zero contribution to at least one other
shell. Equation (70) is more restrictive in that a non-zero contribution for lead p requires
both 1 and p to have a non-zero scalar product of entries over both shells of the pair.

Since the numerator for the transmission to sink p in Equation (70) makes no mention
of any other sink lead and the denominator is symmetric in all leads, the predicted trans-
mission for a CSD is free of interference terms: the current in lead p has exactly the same
numerator as for the current in the constituent device, and differs only in the denominator,
where all leads are democratically treated. Thus, the other sink leads influence the current
in a given lead, but only in this mean-field sense.

4.2. Analysis of the Complete Symmetric Device

In our previous work on two-lead devices, we were able to describe 11 specific cases
for conduction with leads attached to distinct vertices [60,63,70]. In particular, we identified
inert MOs (or Dyson orbitals for correlated molecular calculations) that had no effect on the
transmission at any electron energy, E. On the other hand, active orbitals—more correctly
active shells, allowing for possible degeneracy— each produce a maximum, or a shoulder,
in the transmission spectrum. This feature is produced by the presence of a pole in the
complex energy plane in the expression for the transmission. The width of the feature
associated with the pole depends upon the size of the imaginary part of the pole associated
with the eigenstate. Inert states do not have poles in the transmission formula, and hence,
they produce no such features.

In that treatment, we were also able to identify states i where the transmission van-
ished at E = ǫMi. Such pointwise insulation effects depend upon non-cancellation of
factors ∆i between numerators and denominators in the expressions for the transmission,
Equation (39). The separation into the 11 cases depended solely on the properties (specifi-
cally, the numbers of zero roots) of the SPs in the expression for the two-lead transmission.
In the multi-lead case, the quantities DL and (DL)p1 contain many more SPs of higher rank.
The number of different cases allowed by the Interlacing Theorem would be very large.
For the present, therefore, we restrict ourselves to a more limited analysis.

For CSD it is straightforward to identify two inertness classes. Strong inertness implies
that a specific MO (or Dyson orbital) does not affect the transmission in any lead at any
energy, E. From Equation (70), we can see that strong inertness for pole i obtains when the
vertex in contact with the source lead 1 is at a node in all orbitals of the shell i,

U1i = 0, (72)
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as the denominator Li does not then appear in the transmission formula. We can also have
inertness restricted to a specific sink lead, p. This we call weak inertness, and it occurs when
the connection vertex p is at a node for all orbitals of shell i:

Upi = 0. (73)

As noted earlier, the transmission is strictly positive across the energy range allowed
by the band-pass factor. The maxima in the CSD transmission spectra are close to the poles
of the device GF, which in this case are the zeroes of the denominators,

|Li|
2 = β2

L(E − ǫMi)
2 − Eβ2

LM(E − ǫMi) + β4
LM. (74)

4.3. The Complete Bipartite Symmetric Device

We consider a bipartite molecule with n1 vertices in one partite set (the black set), and
n2 in the other (the white set). If we number the black and white sets contiguously, the
adjacency matrix takes the form

A =

(

0 B

B† 0

)

. (75)

The (n1 × n2)-dimensional matrix, B, can be reduced to diagonal form using the
singular value decomposition

V†BW = Σ, (76)

where the (n1 × n2) dimensional matrix, Σ, is

Σij = δijσi, (77)

with
σ1 ≥ σ2 ≥ · · · ≥ σr > 0 = σr+1 = · · · = σmin(n1,n2)

.

Here, r = Rank(B), and V and W, are square n1- and n2- dimensional unitary matrices.
This approach leads to the well-known Coulson–Rushbrooke Pairing Theorem [79,80],
which states that the eigenvalues of a bipartite system are paired, with values ±σi. The
eigenvectors corresponding to those eigenvalues are specified mixtures of the V and W. In
the case where n1 6= n2, there is also a set of supernumerary zero eigenvalues to make up
the total number, n1 + n2, for the molecule, and the eigenvectors for these lie entirely in
one or other of the unitary spaces, depending on which of n1 or n2 is the larger.

In the present context, we assume, without loss of generality, that the black set of
vertices are all connected to identical leads with the source being lead 1, but we make no
assumption about the relative sizes of the two sets. The SVD decomposition shown in
Equation (76), the unitarity of the V and W matrices, and the identical nature of the leads
enable us to write the SMSP matrix as

P =





V 0 0

0 V 0

0 0 W









βLe−iqL 1n1
−βLM1n1

0

−βLM1n1
E1n1

−Σ

0 −Σ
† E1n2









V† 0 0

0 V† 0

0 0 W†



 , (78)

by analogy with our CSD treatment in the last subsection. We can now introduce trans-
formed equations





βLe−iqL1n1
−βLM1n1

0

−βLM1n1
E1n1

−Σ

0 −Σ
† E1n2









cLV

cMV

cMW



 =





bV

0

0



, (79)
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in terms of transformed quantities

(cLV)i = (V†cL)i = ∑
p

V∗
pi(cL)p

(cMV)i = (V†cM1)i = ∑
p

V∗
pi(cM1)p

(cMW)i = (W†cM2)i = ∑
p

W∗
pi(cM2)p

(bV)i = (V†bL)i = −iV∗
1iN1, (80)

where cM1, and cM2 refer to the black and white sets of atoms, respectively.
The SMSP matrix is composed of a set of diagonal blocks, which implies that the

equations separate into 3-dimensional matrix equations





βLe−iqL −βLM 0
−βLM E −σi

0 −σi E









(cLV)i

(cMV)i

(cMW)i



 =





(bV)i

0
0



, (81)

one for each singular value, σi. The solutions are





(cLV)i

(cMV)i

(cMW)i



 = −
iN1V∗

1i

Li





(E2 − σ2
i )

EβLM

σiβLM



, (82)

where

Li = (E2 − σ2
i )βLe−iqL − Eβ2

LM. (83)

The original quantities, cL and cM in the atomic orbital basis can be obtained by back
transformation, and then, the remainder of the derivation for the transmission follows that
of the CSD subsection.

The final expression for the CBSD sink transmission is

TM→p = −E2β4
LMN4

1

n1

∑
i<j=1

V1iVpi

|Li|2
VpjVj1

|Lj|2
(σ2

i − σ2
j )

2 (84)

The denominators are derived from the determinant of the 3 × 3 matrix in (81). The
expression

|Li|
2 = (E2 − σ2

i )
2β2

L − E2(E2 − σ2
i )β2

LM + E2β4
LM (85)

should be compared with Equation (69). We can also use Equation (84), with sign reversed,
for the source transmission

T1→M = E2β4
LMN4

1

n1

∑
i<j=1

V2
1i

|Li|2

V2
1j

|Lj|2
(σ2

i − σ2
j )

2 , (86)

The argument used above for CSD to show that there are no lead–lead interference
effects also applies here to CBSD.

4.4. Analysis of the Complete Bipartite Symmetric Device

In contrast to the CSD, the CBSD has a pre-factor of E2 in Equation (84). If uncancelled,
this would imply insulation at the Fermi level. Cancellation can occur for graphs with one
or more zero eigenvalues. For a non-zero contribution to total transmission, this requires
that the source connection vertex is not a node for every orbital of the non-bonding shell.
Conditions for individual lead transmissions involve both source and sink having non-
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zero coefficient products in the non-bonding shell. In these circumstances, the device is a
conductor at the Fermi level. Two cases of conducting CBSDs are those based on 4N-cycles,
and on odd chains where the leads are attached to the larger partite set. We see examples
of these in Section 6 below.

5. Internal Conduction Channels

We now turn to the question of how electrons are conducted through the central
molecular part of the device. We considered this in detail in our previous work [63] in terms
of two different models. The simpler of these models treats current as the resultant of the set
of atom-to-atom bond currents (see Section V B of [63]). Whilst this approach is chemically
appealing, it is closely associated to the Hückel tight-binding Hamiltonian. A more general
approach is to use the states of the (isolated) molecule as a vehicle for understanding the
conduction process. In the context of the tight-binding approximation, the wavefunctions
for these internal states are the MOs obtained from the diagonalisation the Hückel molecular
adjacency matrix. However, we also showed in [70] that the Dyson orbitals (DOs) coming
from a correlated GF treatment of the molecular ionisation and attachments states can be
understood to play the same role with respect to hole and particle conduction through the
SMSP device. In this light, the Hückel MOs are just the DOs from the uncorrelated GF
defined with respect to the Hückel Hamiltonian. DO currents offer a suitable SMSP model
for understanding conduction through molecular devices that is not limited to low-level
semi-empirical Hamiltonians and which can range from a one-electron treatment, through
Hartree–Fock, to a sophisticated correlated GF method.

We first consider the case of l non-equivalent leads and then proceed to expressions
for the special cases of CSD and CBSD devices.

5.1. The General Case

The SMSP equations, Equation (19), were defined using the AO basis for the molecular
block, PM. An alternative choice is to use the MO vectors, U, to describe the molecule in
terms of its internal states,

(PM)MO
ij = δij(E − ǫMi), (87)

so that in the MO representation, the molecule block is diagonal. In this representation, the
connection block is transformed to

(PMO
LM )pi = −βLMpU∗

pi, (88)

so that each lead, p, connects with all the MOs through the (p, i) matrix elements of the
coefficient matrix, U. The SMSP solution vector is unchanged in the lead block, but the
molecular block becomes

cMO
M = UcM. (89)

The inhomogeneity vector is unchanged because its non-zero component is within the
lead block.

The SMSP equations can be set up in the molecular basis and solved in the usual
manner, using the linear solution method on the SMSP equations, Equation (1). Having ob-
tained the solution vector, cMO

M , we can compute the transmission from a given component,
cMO

Mi , to lead p, using the current formula [2],

TMi→p = 2ℑcMO ∗
Mi βLMpU∗

picLp. (90)
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With these definitions, it is possible to carry out a derivation that parallels the treat-
ment in Section 3.2, to obtain

TMi→p = 2
N2

1

|DL|2
ℑ

l

∑
q=1

(D∗
L)q1βLMq

UqiU
∗
pi

∆i
βLMp(DL)1p. (91)

We can see immediately that

n

∑
i=1

TMi→p =
l

∑
q=1

(D∗
L)q1βLMq(gM)qpβLMp(DL)1p = TM→p, (92)

so that individual MO currents satisfy a sum rule. It is evident that we have achieved
a formula for internal channel currents, which is equivalent to a Mulliken-type current
analysis of the transmission expression given by Equation (35).

5.2. The CSD and CBSD Cases

The derivation of the CSD transmission starts with Equation (63), which is exactly the
form in which we can use the current analysis, since one merely removes the sum over the
index i present in the gM matrix element. The derivation follows exactly the same steps
as in Section 4.1, except that we have a fixed index, i, and a summation over j. The final
expression is

TMi→p = N4
1 β4

LM

U1iUpi

|Li|2
∑
j 6=i

U1jUpj

|Lj|2
(ǫMi − ǫMj)(E − ǫMj). (93)

The lack of a double summation implies that the conversion of the denominator (QM)jj

to Lj as shown in in Equation (69), leaves an uncancelled factor, ∆j.
The derivation of the CBSD internal currents follows exactly the same pattern. The

resulting expression is

TMi→p = −E2β4
LMN4

1

V1iVpi

|Li|2
∑
j 6=i

VpjVj1

|Lj|2
(σ2

i − σ2
j )(E2 − σ2

j ) , (94)

As they must, the CSD and CBSD internal currents satisfy the sum rules

∑
p

TMi→p = 0, ∑
i

TMi→p = TM→p. (95)

5.3. Symmetry Considerations

The presence of molecular symmetry has significant consequences for the transmis-
sion. We investigate this using the three-lead symmetrical device in the tight-binding
approximation. Using the cluster expansion of DL in Equation (53), we can explore the
consequences of symmetry by constraining the connection vertices for leads 2 and 3 to be
equivalent. This can be achieved by insisting that the molecular GF has elements

(gM)22 = (gM)33, and (gM)12 = (gM)13. (96)

With these restrictions, Equation (54) becomes

DL =
(

βLe−iq − k̂22 − k̂23

)(

β2
Le−2iq − βLe−iq(k̂11 + k̂22 + k̂23) + (k̂12, 12 + k̂12, 13)

)

, (97)

and Equation (56) becomes

(DL)21 = k̂12

(

βLe−iq − k̂22 − k̂23

)

, (98)
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so that the formula for the transmission, TM→2, necessarily involves cancellation of
(

βLe−iq − k̂22 − k̂23

)

, and effectively,

|(DL)21|
2 → k̂2

12 (99)

in the transmission formula, Equation (39). This is the direct term in Equation (60), so that
the mixed and pure interference terms in the numerator have vanished. The denominator,
|DL|

2, on the other hand, is a modified version of the two-lead analogue, with three-lead
terms giving shifts in pole positions that alter the positions of the features. Symmetric
three-lead devices, nevertheless, have sink-lead transmissions that are similar to those of
the corresponding two-lead device. Furthermore, leads 2 and 3 in this particular example
have identical transmission spectra, with each carrying exactly half the transmission at any
energy, E.

We now consider what happens when all three connection vertices in a three lead
device are equivalent. Then,

(gM)11 = (gM)22 = (gM)33, and (gM)12 = (gM)13 = (gM)23. (100)

Hence,

(DL)21 = k̂12

(

βLe−iq − k̂11 − k̂12

)

,

DL =
(

βLe−iq − k̂11 − k̂12

)2(

βLe−iq − k̂11 − 2 k̂12

)

, (101)

and (DL)p1 factors in the identical manner to Equation (98), because its underlying prop-
erties reflect the permutational symmetry of the sink vertices. Once again, this ensures
vanishing of interference terms. The cluster expansion form of DL, on the other hand,
does not distinguish between source and sink vertices and reflects higher permutational
symmetry. Devices with more leads exhibit even richer symmetry effects.

6. Results

The SMSP formalism described in Section 3 has been implemented in our suite of rou-
tines that use the Maple 2019 package [81] to provide analytical and numerical calculations
of the zero-voltage transmission curves T(E) for multi-lead systems.

The Hückel tight-binding calculations that are used for the central molecule use a
single 2pz-orbital basis function on each atom with a hopping parameter, β, to represent
the interaction between π-bonded carbon centres. Hartree–Fock (HF), and second-order
Green’s function (GF2) calculations require two-electron ππ-interactions. We used a
Hamiltonian with a Hubbard single-centre interaction parameter, U = 1β, for all centres
and a single two-centre interaction parameter, W = 0.5β, between atoms that are π-bonded.
The methodology is identical to that in our earlier work [70] for the two-lead SSP model,
where it is described in more detail. No two-electron interactions were used to describe the
source and sink atoms that represent the leads in the SMSP method. For most calculations,
we used βL = 2β for the lead hopping parameter and βLM = 1β for the lead molecule
connection parameter. All energies are shown in units of the negative quantity β.

The labelling schemes for the molecules under study are shown in Figure 3. Figures 4–7
show transmission curves plotted against electron energy. In each case, the black outer
envelope is the total transmission from the source lead into the molecule, and coloured
curves show (symmetry distinct) transmissions from the molecule into sink leads. A colour
code is used to distinguish the leads in clockwise order from the source. The plots also
indicate poles of the molecular Green’s function, using an encoding of blue for attachment
and red for ionisation poles.
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(a) (b) (c) (d)

Figure 3. Numbering schemes for the molecules used here in examples of multi-lead devices. They

are (a) benzene, (b) anthracene, (c) pentalene, and(d) heptatriene. The gold pseudo-atom symbol

shows the position of the source lead; the positions of sink leads are given by the device specifications

in the text. Green pseudo-atoms in (d) show the sink leads for two possible CBSD.

6.1. Devices Based on the Benzene Ring

As a first example, we take the six-membered ring of carbon atoms, which can be
connected as a two-lead device in three ways (‘ortho’, ‘meta’, ‘para’) and as a three-lead
device in six ways, leading to the nine transmission curves shown in Figure 4. All curves
are symmetric about the Fermi energy in the Hückel model, as the six-ring is a bipartite
graph. Transmission curves for the three two-lead devices are qualitatively different. The
ortho and para devices have non-zero transmission at the Fermi energy, with different
patterns in the wings, as predicted by the analytical expression for T(E) of a cycle [55] and
selection rules [61,63] for conduction at degenerate and non-degenerate eigenvalues (here,
α ± β). In contrast, the meta device is insulating at the Fermi level.

Plots for the various three-lead devices show a variety of patterns, but it is striking
that the overall shapes of the curves can be interpreted in terms of constituent two-lead
components: to a first approximation, the curve T(E) for the three-lead device with source
1, and sinks a and b has lead contributions that follow the patterns for devices (1, a) and
(1, b) in the region of the Fermi level but are damped in the higher and lower energy
wings. The implication is that the interference terms (see Equation (60)) have smooth,
predictable effects on T(E) for the composite device. This pattern is especially clear for
the symmetric (1, 3, 5) device (Figure 4i), where the source is in a meta relations to both
sinks, and the Fermi-level transmission is zero. In fact, this device is a CBSD: interference
terms between leads do not appear in the numerators of the lead currents, and the device
is interference-free. In other devices such as (1, 2, 3) and (1, 3, 4), a vanishing Fermi-level
contribution from the meta constituent device is masked by the contribution from the other
constituent. The counting of ortho, meta and para constituent devices works well as a
rough guide to T(E), though we may expect this simplicity to be diluted in larger systems
and devices with more leads.

The final row of Figure 4 shows the transmission curves calculated at the GF2 level
for (1, 2), (1, 4) constituent devices, flanking the plot for the composite three-lead device
(1, 2, 4). The plots show strong resemblances to those calculated at the Hückel level, and
interpretation of the lead contributions in terms of constituent devices survives intact in
the correlated treatment.
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Figure 4. Transmission curves for multi-lead devices based on benzene: Hückel theory results for (a) 1,2-; (b) 1,3-; (c) 1,4-;

(d) 1,2,3-; (e) 1,2,4-; (f) 1,2,5-; (g) 1,2,6-; (h) 1,3,4-; and (i) 1,3,5-attachments of leads; GF2 results for (j) 1,2,-; (k) 1,2,4-; and (l)

1,4-devices. Lead 1 is the source, with transmission equal to the total envelope, shown in black. Transmissions for the second

and third leads (counting clockwise in the numbering scheme of Figure 3) are shown in red and green, respectively. In the

case of repetition of identical curves, later colours overwrite earlier ones. Red vertical lines show positions of ionisation

poles, whilst blue lines mark attachment pole positions (in either Hückel or second-order correlated GF calculations). Dotted

vertical lines mark shake poles for the correlated calculations. Lead and connection parameters are βL = 2.0 and βLM = 1.
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6.2. Devices Based on Anthracene

This section presents results on devices based on anthracene, which, similar to benzene,
has a bipartite molecular graph. The devices considered here all have three leads, with
the source on atom 4 in the numbering of Figure 3. The devices for which transmission
curves are shown in Figure 5a–c are (4,8,14), (4,9,13) and (4,8,11), which span the types
(•, •, •), (•, ◦, ◦), and (•, •, ◦), where the colours of the circles represent the partite sets
(Figure 3b). All three necessarily have single-vertex deleted and triple-vertex deleted
graphs that are non-Kekulean and have at least one non-Kekulean constituent two-lead
device. Devices (4,8,14) and (4,9,13) are C2v symmetric, and their total tramsission is simply
twice the contribution of each sink lead. The second row of the Figure shows the three
two-lead constituent devices (4,8), (4,9), and (4,11). In each case, there is a clear qualitative
correspondence between the three-lead device and its constituent devices, i.e., (a) with
(d); (b) with (e); and in the mirror-symmetric (c), the distinct lead contributions strongly
resemble (f) and (d), generally as expected. Exceptions to this agreement are in the features
where the transmission falls sharply to zero at eigenvalues ±2 and ±1 in the two-lead (4,8)-
and (4,9) constituent devices; these are suppressed in the mirror symmetric three-wire
devices as an effect of specific cancellations with the denominator.

The final row of panels Figure 5g–i refers to interference terms in lead currents in the
three-lead devices. Explicit calculation of interference contributions to the numerators of the
expressions for the lead currents shows that the mixed and pure interference contributions
are identically zero for the mirror-symmetric devices (4,8,14) and (4,9,13) but not for the
non-symmetric one (4,8,11). As shown in Figure 5i, interference terms of both mixed and
pure types appear. It is risky to generalise too much from one example, but it is at least
interesting to see that these terms exert little effect in the central region of the spectrum
(where they are both small) but are more influential in the wings (where they are more
intense and have regions of opposite sign).

6.3. A Non-Bipartite Case: Devices Based on Pentalene

Figure 6 shows a cascade of calculated curves T(E) for non-bipartite (i.e., non-alternant)
pentalene. We take one example of a four-lead device and compare it with all of the
constituent two- and three-lead devices. The chosen four-lead case has connections at
vertices 1,3,5,7 (Figure 6a), which are the four core vertices for the non-degenerate non-
bonding LUMO of pentalene (i.e., they carry the non-zero charge/spin densities for this
orbital).

The plots are no longer symmetric, as the spectrum of a non-bipartite graph is not
paired, but there are still discernible qualitative features of the transmission curve that are
associated with eigenvalues: broad or compound maxima at most eigenvalues, and a sharp
spike in the transmission at the HOMO eigenvalue (α + 0.47068β in Hückel theory). The
plot also shows a broad dip in transmission at antibonding energies above the LUMO. The
origins of the lead contributions to devices in the middle row are plausibly traced from the
appropriate two-lead devices ((e) and (f) to (b); (e) and (g) to (d); (f) and (g) to (d)), and
the constituent device curves for (e), (f), and (g) appear in the plot for the full device (a),
with some blurring of features by interference effects. The family relationships of devices
with progressively increasing numbers of leads are yet again helpful as a rough guide to
the features of the transmission spectrum of a complex device.
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Figure 5. Transmission curves for devices based on anthracene: Hückel theory results for (a) 4,8,14-; (b) 4,9,13-; (c) 4,8,11-;

(d) 4,8-; (e) 4,9-; and (f) 4,11-devices. Lead 1 is the source, with transmission equal to the total envelope, shown in black.

Transmissions for the second and third leads (counting clockwise in the numbering scheme of Figure 3) are shown in red

and green, respectively. In the case of repetition of identical curves, later colours overwrite earlier ones. Red vertical lines

show positions of ionisation poles, whilst blue lines mark attachment pole positions. Analysis of interference terms is shown

for the source lead in (g) 4,8,14-; (h) 4,9,13-; and (i) 4,8,11-devices. Total transmission is shown in black, the direct term is

shown in red, and mixed and pure interference terms are shown in green and blue, respectively. The lead and connection

parameters are βL = 2.0 and βLM = 1.0.
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Figure 6. Transmission curves for devices based on pentalene: Hückel theory results for (a) 1,3,5,7,-; (b) 1,3,5-; (c) 1,3,5-; (d)

1,3,7-; (e) 1,3-; (f) 1,5-; and (g) 1,7-devices. Lead 1, at vertex 3 in all cases, is the source with transmission equal to the total

envelope, shown in black. Transmissions for the second, third, and fourth leads (in the numbering scheme of Figure 3) are

shown in red, green, and magenta, respectively. In the case of repetition of identical curves, later colours overwrite earlier

ones. Red vertical lines show positions of ionisation poles, whilst blue lines mark attachment pole positions. The lead and

connection parameters are βL = 2.0 and βLM = 1.0.

6.4. Complete Devices of Types CSD and CBSD

Figure 7 shows calculated curves T(E) for molecular devices of CSD and CBSD types
based on cycles and linear polyenes. The first three panels show the transmission curves for
CSD based on 6-, 8-, and 10-membered rings (Figure 7a–c). They show qualitatively similar
behaviour, with broad maxima, shoulders, and minima associated with the eigenvalues of
the respective graphs. The pattern of a central minimum for (4N + 2)-rings and a central
maximum for 4N-rings persists to larger ring sizes. Traces of the constituent devices are
apparent in the lead contributions, e.g., compare ortho, meta, and para benzene devices
(Figure 4a–c) with the CSD in Figure 7a. As noted in Section 4.1, transmission is non-zero
across the whole band window. However, the summed current can include some very low
sink-lead contributions. In the case of the 10-ring, for example, the lead transmissions at the
Fermi level for leads 2, 3, 4, 5, and 6 are 0.1581, 0.0445, 0.0853, 0.0042, and 0.0674, respectively.
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Figure 7. Complete symmetric and complete bipartite symmetric devices. Complete symmetric devices based on (a) the

C6 ring, (b) the C8 ring, and (c) the C10 ring. Complete bipartite symmetric devices based on (d) the C8 ring, (e) the C10

ring, and (f) the C12 ring. Complete bipartite symmetric devices based on heptatriene: (g) the (1,3,5,7)-device, (h) the

(2,4,6)-device, and (i) the (4,2,6)-device. (In each case, Lead 1 is the source, with transmission shown in black. The full

palette of colours is red, green, magenta, blue, and orange for sink leads, working clockwise from the source. In the case of

repetition of identical curves, later colours overwrite earlier ones. For all plots, βL = 2.0 and βLM = 1.

The next three panels (Figure 7d–f) show the transmission curves for CBSD based on
8-, 10-, and 12-membered rings (Figure 7a–c). Again, a pattern of alternating behaviour
at the Fermi level is apparent and is confirmed by extension of the calculations to larger
rings: CBSD based on 4N-rings show a central maximum in total transmission, consistent
with superposition of sink-lead curves with central maxima, whereas (4N + 2)-rings have
an insulating minimum at the Fermi level, indicating vanishing of all lead contributions.
As noted in Section 4.3, this is part of a general pattern based on the number of non-
bonding orbitals (NBOs), or in other words, the nullity of the graph. In the 4N-ring, the
nullity is 2 and all centres carry non-zero density arising from any occupation of the non-
bonding shell (i.e., a 4N-ring is a core graph [82]). Cancellation of the E2 factor between
numerator and denominator in the expression for lead currents therefore yields conduction
at the Fermi level for these rings. The (4N + 2)-rings have no such cancellation. This
convex/concave pattern for antiaromatic/aromatic rings is one example of a nullity-based
selection rule for a family of devices. There will be many more to be found.
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Finally, the third row (Figure 7g–i) deals with complete bipartite devices based on the
heptratriene linear polyene. As shown in Figure 3, the molecular graph has two partite sets
of vertices. The graph has nullity one and the unique Hückel NBO has non-zero entries
only on the larger (black) partite set. This leads to a qualitative distinction between devices
of CBSD type based on the two sets. For the (1,3,5,7) device, there is non-zero density in
the NBO at all lead positions, and cancellation of the E2 factor in the numerator leads to
Fermi conduction. On the other hand, the two devices based on the smaller (white) partite
set show insulation at the Fermi level, even though the underlying graph is still of course
singular, as all lead positions are at nodes in the NBO.

A comparison of Figure 7h–i shows that this central feature of the transmission
spectrum is independent of the choice of source lead position within the same partite set.
There is, however, a significant difference between the (2,4,6)- and (4,2,6)-devices. The
molecule has a mirror plane through the central vertex, so that MOs that are antisymmetric
with respect to the mirror have Ui4 = 0. The (2,4,6)-device in panel (h) displays weak
inertness for lead 2 attached to vertex 4 (in red) but not for lead 3 attached to vertex 6 (the
green curve). Hence, no maximum is visible in the red curve near the second eigenvalue
from the right or the second from the left. The (4,2,6)-device, in panel (i), exhibits strong
inertness for these same eigenvalues because the source lead is attached to vertex 4. These
observations are again indicative of the wealth of underlying selection rules.

7. Connections with the Meir–Wingreen Formula

The Meir–Wingreen (MW) formula gives an exact expression for the current through a
molecular device described using a correlated molecule but with leads and lead–molecule
interactions treated in the one-electron approximation. In previous work [70], we showed
that the SSP method is consistent with the MW formula, in the elastic-scattering limit when
the electron–phonon interactions are neglected (i.e., in the Born–Oppenheimer approxima-
tion). SSP produces identical formulae for the transmission, including the case in which
the description of the central molecule includes electron correlation.

The transmission in the SMSP approach is determined by boundary conditions on
a device wave function with conceptual advantages in the chemical interpretability of
the internal molecular channels for conduction. These channels are determined by the
attached and ionised states appearing in the Lehmann representation of the equilibrium
molecular GF. The properties of these channels are defined in terms of the characteristics of
the DOs associated with each of the GF poles. The sets of orbitals and poles define spectral
expansions of structural polynomials used to formulate the expressions we derived in this
paper. The relevant formal properties of the polynomials are retained regardless of the level
of theory, from Hückel, through HF, to sophisticated GF formalisms. The molecular part of
the problem may therefore be treated with empirical, semi-empirical, or ab initio methods,
with or without the inclusion of correlation, thus giving a seamless single formalism to
describe conduction through molecular devices.

At any of these levels of approximation, the inverse (P)−1 of the SSP/SMSP device
matrix is the device GF (Equation (85) of [70]). The poles of this matrix are complex-valued
and represent device resonances corresponding to the presence of an extra electron (or
hole) in the sea of (possibly correlated) electrons. The imaginary parts of these poles are
inversely related to the lifetimes of the resonances. These lifetimes represent transit times
for the particles or holes crossing the device, times that are particularly short for Koopmans
poles but long for shake poles. In the SMSP context, it can be seen that the poles of the
device GF can be obtained by solving the equation |DL(E)|2 = 0. Each complex conjugate
pair of poles is then associated with a Dyson orbital and (real) pole energy of the molecular
GF. Hence, the SMSP model gives a direct route to calculation and interpretation of all the
properties that can be accessed through GF methods.
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8. Conclusions

Working equations have been derived for an extended version of the SSP model for
calculation of ballistic currents flowing through molecular conductors under a potential
difference. They constitute the new Source-and-Multiple-Sink Potential model. The new
model describes systems with an incoming electron travelling along a single source lead
that drains out through the molecule into multiple sinks. As with its SSP predecessor,
SMSP lends itself to a graph-theoretical approach, which leads to a formulation that is
compatible with, but not confined to the Hückel/tight-binding description of electronic
structure of π systems. SMSP therefore retains the advantages of SSP. It yields closed-form
expressions for device transmission as a function of electron energy: for general lead
parameters (Section 3.2); for chemically symmetric leads (Section 3.3); and for leads with
coverage of all π-centres (Section 4.1), or of all starred or unstarred centres of an alternate
π-system (Section 4.3).

As its SSP predecessor did, the SMSP model gives predictions for qualitative selection
rules and generic patterns of conduction for families of molecular systems, such as the
opposite behaviour of aromatic and anti-aromatic rings at the Fermi level (Section 6.4).
In addition to a calculus for the prediction of total transmission with energy, the model
allows for an analysis of molecular current at various levels of detail: by bond current, by
orbital-based molecular channels, and by destination lead (Section 5). Patterns of current
in multi-lead devices can be interpreted as built up from notional constituent two-lead
devices, where SMSP gives a natural breakdown into direct contributions, interference
terms (again governed by selection rules), and mean-field corrections (Section 3.5). The
wide-band limit yields particularly simple expressions for transmission involving only
the characteristic polynomials of the set of vertex-deleted graphs (Section 3.4). In the
hypothetical limit of full or half coverage of a molecule by leads, the specific interference
effects are predicted to vanish (Sections 4.1 and 4.3). The symmetry of the device can also
cause the vanishing of interference effects (Section 5.3) when the connection point for the
sink leads are equivalent.

SMSP, similar to SSP, is a parameterised model, with two parameters βL, and βLM

(defined in units of β, the resonance integral for the molecule). Adjusting the parameters
affects the detailed appearance of the transmission spectrum and the relative importance
of interference effects. The effective lead parameter βL is likely to be larger in magnitude
than β, even in all-carbon devices since the co-ordination number is higher with structured
leads. The molecular energy levels, therefore, lie inside the band as assumed in our sample
calculations. The role of βLM is to describe the perturbation of the molecule by the leads, the
effect of which is to move poles of the molecular GF off the real axis, and hence, lower βLM

values give sharper transmission peaks. Interference effects become more important as the
ratio β2

LM/βL increases, as shown in (Section 3.5). Perhaps the main advantage of models
such as SMSP is that many interpretative features persist when more realistic models of
electronic structure are used. In particular, the analysis by molecular-orbital-based channels
survives the introduction of electron–electron interaction into the theory.

Thus far, we are not aware of experimental work on molecular systems with dense
attachment of leads to single molecules. Mechanically controlled break-junction (MCB)
techniques [83] provide IV characteristics that give insight into averaged conduction
for two-lead molecular devices rather than their detailed transmission spectra. Even
so, an impressive range of data on the factors influencing molecular conductivity can be
inferred from painstaking experimentation based on careful molecular design. For example,
encouraging agreement with experimentally observed regiospecificity of conduction [84]
can already be achieved using non-empirical and graph-theoretical SSP calculations [43,60].
The long-term aim of the present work is to carry forward this modelling of trends to
multi-lead devices, in the hope that it may be of use in the design of future experiments on
these intriguing systems.
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Abbreviations

The following abbreviations are used in this manuscript:

CAP Complex Absorbing Potential

CBSD Complete Bipartite Symmetric Device

CSD Complete Symmetric Device

DO Dyson Orbital

GF Green’s Function

GF2 Second Order Green’s Function

HF Hartree–Fock

HOMO Highest Occupied Molecular Orbital

LB Landauer–Büttiker

LOMO Lowest Occupied Molecular Orbital

LUMO Lowest Unoccupied Molecular Orbital

MO Molecular Orbital

MW Meir–Wingreen

NBO Non-Bonding Orbital

SMSP Source and Multiple Sink Potential

SP Structural Polynomial

SSM Source and Sink Model

SSP Source and Sink Potential

SVD Singular Value Decomposition

WBL Wide-band Limit
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