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ABSTRACT

Introduction: An innovative computational

model was developed to address challenges

regarding the evaluation of treatment sequen-

ces in patients with relapsing–remitting multi-

ple sclerosis (RRMS) through the concept of a

‘virtual’ physician who observes and assesses

patients over time. We describe the implemen-

tation and validation of the model, then apply

this framework as a case study to determine the

impact of different decision-making approaches

on the optimal sequence of disease-modifying

therapies (DMTs) and associated outcomes.

Methods: A patient-level discrete event simu-

lation (DES) was used to model heterogeneity in

disease trajectories and outcomes. The evalua-

tion of DMT options was implemented through

a Markov model representing the patient’s dis-

ease; outcomes included lifetime costs and

quality of life. The DES and Markov models

underwent internal and external validation.

Analyses of the optimal treatment sequence for

each patient were based on several decision-

making criteria. These treatment sequences

were compared to current treatment guidelines.

Results: Internal validation indicated that

model outcomes for natural history were con-

sistent with the input parameters used to

inform the model. Costs and quality of life

outcomes were successfully validated against

published reference models. Whereas each

decision-making criterion generated a different

optimal treatment sequence, cladribine tablets

were the only DMT common to all treatment

sequences. By choosing treatments on the basis

of minimising disease progression or number of

relapses, it was possible to improve on current

treatment guidelines; however, these treatment

sequences were more costly. Maximising cost-

effectiveness resulted in the lowest costs but was

also associated with the worst outcomes.

Conclusions: The model was robust in gener-

ating outcomes consistent with published

models and studies. It was also able to identify
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optimal treatment sequences based on different

decision criteria. This innovative modelling

framework has the potential to simulate indi-

vidual patient trajectories in the current treat-

ment landscape and may be useful for

treatment switching and treatment positioning

decisions in RRMS.

Keywords: Relapsing–remitting multiple

sclerosis; Treatment-sequencing model;

Treatment switching; Decision criteria;

Resource utilization

Key Summary Points

In health economics, Markov models are

widely used to represent

relapsing–remitting multiple sclerosis

(RRMS), but usually evaluate only a single

line of treatment.

Here, we report on the implementation

and validation of an innovative

computational model designed to address

challenges regarding treatment sequences

in patients with RRMS. We also apply this

modelling framework as a case study to

determine the impact of different

decision-making approaches on the

optimal treatment sequence and

associated outcomes.

Internal and external validation of our

model showed that outcomes were

consistent with those of existing Markov

models and the published literature.

Each decision-making criterion generated

a different optimal treatment sequence; it

was possible to improve patient outcomes

compared with current treatment

guidelines.

The model presented here has the

potential to simulate individual patient

trajectories and may be useful in

supporting treatment switching decisions

as well as informing future clinical

guidelines.

INTRODUCTION

Multiple sclerosis (MS) is a chronic autoim-

mune-mediated inflammatory disease of the

central nervous system that affects an estimated

2.8 million people worldwide [1, 2]. Of these,

approximately 85% are diagnosed with relaps-

ing–remitting multiple sclerosis (RRMS), which

is characterized by periodic acute exacerbations

of disease activity (relapses) that can lead to

neurological disability over the patient’s life-

time [2]. Several disease-modifying therapies

(DMTs), targeted at delaying the progression of

disability, have received regulatory approval

over the past 20 years, significantly increasing

the number of treatment options and improv-

ing quality of life for patients [3]. The number of

DMTs on the market, coupled with the reality

that RRMS requires long-term treatment

wherein most patients will switch DMTs at least

once over the course of their disease, poses

challenges for physicians regarding the choice

of, and appropriate times to switch, a patient’s

DMT [4, 5]. Additionally, health economists

and policymakers are challenged with how to

evaluate DMTs appropriately in order to capture

the heterogeneity of disease trajectories and

treatment patterns in patients with RRMS [6, 7].

Currently, the majority of health economic

models for RRMS are Markov models, which

typically evaluate a single line of treatment in a

cohort of patients with RRMS [6, 7]. As such,

these models are not able to address questions

regarding treatment sequencing. Here we

describe an approach, based on an innovative

model framework, designed to address the

challenges regarding treatment sequences in

RRMS. This approach replicates the process of

clinical decision-making, through simulating a

‘virtual’ physician who makes treatment deci-

sions according to his or her evolving under-

standing of a patient’s disease as it manifests

over time. As a computational model of physi-

cian behaviour, this approach has the potential

to simulate individual patient trajectories in the

current treatment landscape in order to support

treatment switching and treatment positioning

decisions in RRMS.
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In the current paper, the implementation of

this innovative approach to modelling treat-

ment sequences in patients with RRMS is

described in detail, along with results of several

validation exercises. In addition, the modelling

framework was applied as a case study to

explore the impact of different decision-making

criteria on the optimal sequence of DMTs, as

well as to determine the costs, quality of life,

and hospital resource usage associated with

each sequence.

METHODS

Model Concept

Disability worsening in RRMS is commonly

assessed using the Expanded Disability Status

Scale (EDSS). An EDSS score of 6.0 (on a scale

from 0 to 10) is used to define a disabling level

of disease [8]; time from disease onset to

EDSS 6.0 (ttEDSS6), without treatment, can be

regarded as a proxy for severity of disease

[9, 10]. Patients with RRMS have heterogeneous

disease trajectories, i.e. differing ttEDSS6 or

severities. The core assumption underlying this

model is that physicians use DMTs to slow dis-

ability progression and prolong ttEDSS6. Each

DMT involves potential benefits and potential

risks and the choice regarding treatment con-

sists of a trade-off for each individual patient;

the probability of serious adverse events (SAEs)

may be identical but the potential benefits

associated with the additional treatment effi-

cacy may be greater for more severe patients

who are deteriorating more rapidly [11]. As

such, the physician’s expectation of severity

drives treatment switching decisions.

The model centres on the patient–physician

interaction during iterative outpatient visits

(Fig. 1). Initially (1), a patient is simulated with

characteristics including age at disease onset

and sex. Severity (ttEDSS6 without treatment),

time to non-MS related death, and relapse rate

are then assigned to the patient on the basis of

these simulated characteristics. During each

visit, the virtual physician observes relapses,

disability worsening, and adverse events (AEs)

(2a) and forms/revises their expectation about

the patient’s disease severity and probability of

response to treatment (i.e. prior/posterior) on

the basis of these observations (2b). The

observed clinical outcomes (2a) also drive the

decision whether to switch treatment when

either tolerability or response is insufficient,

and when this occurs the current expectation

(prior) of severity is used to determine the

optimal DMT for the patient (2c/d). Note, as in

clinical reality, the actual severity level and all

future events simulated by the model are

unknown to the physician.

The optimal DMT at treatment initiation and

subsequent switch is identified using a Markov

model which represents RRMS (2c). This Mar-

kov model yields the expected outcomes for

each DMT, from which the physician selects the

best option (2d) based on a specific decision

rule. The clinical outcomes and patient trajec-

tory are then simulated (3) on the basis of the

treatment selected as the optimal option (at 2d).

The process continues until treatment with

DMTs is terminated (e.g. due to death, attaining

EDSS7 or EDSS8 as determined by the model, or

reaching the maximum number of lines of

treatment). This approach ultimately yields an

optimal DMT sequence for each individual

patient inclusive of costs and quality of life

outcomes associated with the patient’s disease

trajectory.

Model Implementation

The virtual physician model was built as a

patient-level discrete event simulation (DES) in

order to (1) capture the heterogeneity in disease

trajectories and outcomes, (2) resemble the

patient–physician interaction during visits, and

(3) record individual patient histories. A sche-

matic overview of the model is shown in Fig. 2.

The model outcomes included costs and quality

of life (represented as quality-adjusted life years,

QALYs) related to disease management linked

to EDSS scores, relapses, and SAEs. The model

was programmed in R [12]. Please refer to the

Supplemental Materials for a more detailed

description of the methods, including calcula-

tions and model inputs.

Adv Ther



Disease Trajectory

For each simulated patient, the process com-

mences at the diagnosis of RRMS. At this point,

sex and age at onset, randomly drawn from

independent statistical distributions in the

patient population of interest, are assigned to

the patient. Next, the patient’s disease trajec-

tory, a list of events that may happen to the

patient over the natural history of the disease, is

simulated (on the basis of the British Columbia

Multiple Sclerosis [BCMS] registry data [13, 14]).

For each specific treatment, the disease trajec-

tory for relapses and EDSS progression is deter-

mined through application of a treatment effect

to the natural history. The treatment effect

applied is based on a published network meta-

analysis (NMA) of cladribine tablets versus

comparators [15].

The modelled events include the time of (1)

the next EDSS step, (2) a relapse, (3) an SAE, (4)

the next routine visit, and (5) death due to

causes other than MS. Secondary progressive MS

(SPMS) is not explicitly modelled here as it is

considered a later stage of RRMS [16] and con-

version to SPMS has little or no implications for

costs and QALYs [17, 18].

The time of the next EDSS step is based on

the patient’s severity (ttEDSS6), which is ran-

domly drawn from a distribution of patient

severities stratified by sex and age at onset [13].

Fig. 1 Visualization of the iterative treatment decision process. DMT disease-modifying therapy, ttEDSS6 time from disease
onset to Expanded Disability Status Scale state 6, MS multiple sclerosis
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The time of a relapse is based on a patient’s

individual annualised relapse rate (ARR). In the

first 5 years following diagnosis, the ARR is

determined by the patient’s simulated severity

[14]. Beyond 5 years, disability worsening and

relapses are modelled independently as no data

were identified regarding the relationship

between EDSS and relapses in natural history

[14, 19]. In addition, the ARR is assumed to

decrease over the course of the disease on the

basis of the age at onset. A relapse can either be

severe (requiring hospitalisation) or non-severe.

The time of an SAE is based on incidence rates

which were sourced from pivotal trials [20–29].

Furthermore, the probability of progressive

multifocal leukoencephalopathy (PML), a

potentially fatal complication first linked with

natalizumab treatment and now thought to

occur with a variety of DMTs, increases over

time and is modelled on the basis of the

patient’s anti-John Cunningham virus (JCV)

antibody serological status and the duration of

exposure to natalizumab [15, 30]. Routine visits

take place at regular time intervals, by default

set at 1 year. The simulation ceases for each

patient only at the point when the patient dies,

either from MS (i.e. when EDSS10 is reached) or

from other causes. The time of death due to

causes other than MS is calculated given the

patient’s age and sex, using the life expectancy

of the general population [16].

Following an event, the disease trajectory is

modified in one of two ways: (1) if the event

does not trigger a switch of treatment, an

updated time is simulated for the event which

occurred with times for all other events

remaining unchanged or (2) if the event leads to

a treatment switch, the disease trajectory is re-

simulated to reflect the treatment effects and

SAEs associated with the new treatment. When

a patient reaches the point of DMT termination,

the patient is ‘switched’ to natural history. From

this point, the trajectory only contains relapses

and EDSS steps to allow the calculation of life-

time costs and effects; SAEs associated with

DMTs are no longer modelled. In natural his-

tory, it is assumed that no further treatment

switches are possible.

Switching Indicators

Re-evaluation of the treatment decision fol-

lowing an event is triggered by inadequate

effectiveness, safety concerns such as the

occurrence of a SAE, or an unacceptable PML

risk. For effectiveness, the model switches a

proportion of patients on the basis of

Fig. 2 Schematic overview of the virtual physician model
implementation. The current events determine what
occurs at each visit (based on the earliest of the current
events). Update simulation clock and age: the time and age

of the patient are updated to reflect the passage of time to
the current event. DMT disease-modifying therapy, EDSS
Expanded Disability Status Scale, SAE serious adverse
event, PML progressive multifocal leukoencephalopathy
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assumptions regarding relapses and/or EDSS

worsening (see Supplemental Table 10).

Updating the Prior of Severity

The physician’s expectation (prior) of a

patient’s severity is updated at each visit and

based on observations about EDSS progression.

The prior of severity is implemented by 11

severity groups, each representing a different

ttEDSS6 in 5-year bands: (1)[0–5 years,

(2)[5–10 years,…,11)[50–55 years. The prior

of severity gives a probability distribution for

the patient residing in each of these severity

groups. These probabilities are collectively

exhaustive, i.e. the probabilities must sum to

one. The virtual physician’s prior of severity at

baseline is equal to the distribution of severity

groups from which the patient’s individual

severity is drawn (e.g. male, onset age 35 years).

The approach taken to update the prior of

severity as the physician interacts with the

patient over time is described in the Supple-

mental Materials.

Determination of the Optimal DMT

At treatment initiation or switch, the alterna-

tive treatment options are evaluated, under the

assumption that a patient can only receive any

DMT once. A Markov model component [16],

which represents the decision process con-

ducted by the physician, is used to identify the

optimal DMT given the patient’s current age,

sex, and expected ARR given disease duration

and the prior of severity (the Markov model

makes use of the same clinical parameters as the

DES but uses average/population values rather

than individual estimates). The Markov model

consists of 11 health states ranging from EDSS 0

to 9 plus death and is evaluated for each of the

EDSS severity groups and for all available DMT

options. The transition probabilities are depen-

dent on the severity and are adjusted by a

treatment effect (see Supplementary Materials

for more detail).

For each available treatment and for each of

the severity groups, the Markov model predicts

the time the patient would spend in each EDSS

state until the end of the time horizon (set at

5 years on the basis of a Delphi study [31]) or

death. The Markov model generates costs and

QALYs related to treatment, disease manage-

ment, relapses, and AEs. The outcomes associ-

ated with each possible treatment are

determined as a weighted average of the out-

comes associated with each severity group using

the distribution of patient severities (prior of

severity) as weights. This yields the expected

outcomes for the patient for each treatment.

The virtual physician then determines the

optimal treatment based on a specific decision

rule. Decision rules that may be considered

include minimising number of relapses, max-

imising the time to disability progression, and

cost-effectiveness (best value for money).

Model Validation

Both the DES and the Markov model were sub-

jected to internal and external validation.

Internal validation assessed whether model

outcomes for natural history were in line with

the input parameters used to inform the model.

The DES model for natural history was based on

the BCMS registry data [13, 14, 32]. The relapse

rate and ttEDSS6 were validated against their

original sources, including modelling the med-

ian simulated ttEDSS6, the impact of age at

onset and sex on simulated ttEDSS6, and

relapses conditional on disease duration, age at

onset, and severity. External validation com-

pared costs and quality of life outcomes from

the DES model against outcomes produced

using the model described in a recently pub-

lished cost-effectiveness analysis [33]. This ref-

erence is a cohort-based Markov model that

compared alemtuzumab, cladribine tablets,

natalizumab, and natural history (best sup-

portive care, BSC). In the DES, these four treat-

ment strategies were evaluated, one at a time;

after discontinuation of active treatment

patients were moved to BSC.

The Markov component of the treatment-

sequencing model is crucial as it determines the

patient’s next treatment. As such, a separate

validation was undertaken and the Markov

component was validated against the reference

model developed for cost-effectiveness purposes

[33]. This validation comprised two elements:

Adv Ther



first, the progression rates in natural history

were compared to published progression rates

[16], then the cost and QALY outcomes were

compared to the reference model [33].

Case Study: Modelling the Optimal

Treatment Sequence and Assessing

the Impact of Different Decision-Making

Criteria

A case study was developed to model how dif-

ferent decision-making criteria identified the

optimal sequence of DMTs, along with the

associated impact on costs and quality of life

outcomes, as well as hospital resource usage. A

cohort of 1500 patients was simulated in the

DES over their future lifetime; treatment deci-

sions were re-evaluated annually over a 5-year

time horizon, which is a typical time horizon

for decision-making according to the Delphi

study with neurologists [31]. The analyses

included a set of nine DMTs (alemtuzumab,

cladribine tablets, dimethyl fumarate, fin-

golimod, glatiramer acetate, interferon beta-1a,

natalizumab, ocrelizumab, and teriflunomide)

as well as the option of no treatment.

Current Treatment Guidelines

Initially, a sequence based on current treatment

guidelines was estimated using the National

Health Service (NHS) England’s ‘Treatment

Algorithm for Multiple Sclerosis Disease-Modi-

fying Therapies’ [34]. To find a suitable scenario

for the population simulated in the model, it

was assumed that at the start of the treatment

sequence, the patient is diagnosed with RRMS

on the basis of one relapse in the last 2 years and

radiological activity. Additionally, it was

assumed that the physician would not choose

interventions that are indicated in the algo-

rithm as being high risk for that line of therapy.

As such, the chosen guideline treatment

sequence was (1) interferon beta-1a; (2)

cladribine tablets; (3) ocrelizumab. The NHS

report gives no recommendations of optimal

DMTs after third-line treatment; therefore, the

analyses presented here focused on the first

three lines of treatment only.

Decision Rules

Three different decision rules were selected for

this case study; the optimal treatment sequence

for each was calculated and compared to cur-

rent treatment guidelines. The ‘number of

relapses’ criterion selects the optimal DMT

based on the lowest relative risk of relapses. The

‘number of EDSS steps’ criterion estimates the

optimal DMT based on the lowest average EDSS

value at the end of the 5-year time horizon. The

‘cost-effectiveness’ criterion uses the Markov

model component to calculate the optimal

DMT over the 5-year period based on the

highest number of QALYs with an associated

incremental cost-effectiveness ratio (ICER)

below the cost-effectiveness threshold. This is

implemented as the treatment that yields the

highest expected net monetary benefit (NMB =

QALYs 9 willingness-to-pay threshold - costs),

calculated using a willingness-to-pay threshold

of £30,000 per QALY gained.

Estimating Resource Usage

Three DMTs (alemtuzumab, natalizumab, and

ocrelizumab) included in the model require

infusion visits for patients. These visits are

associated with additional resource use and

costs, which are included in the model, but also

require the availability of physical capacity in

the hospital (e.g. chair time) for the duration of

the infusion. The capacity required over time,

in terms of proportion of patients on treatment

requiring infusion visits, was calculated for the

current treatment guidelines and optimal

sequence of DMTs based on each of the three

decision rules presented above. These calcula-

tions assumed a fixed cohort of patients

requiring capacity and no newly diagnosed

patients entering the model.

Compliance with Ethics Guidelines

This article does not contain any new studies

with human participants or animals performed

by any of the authors.
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RESULTS

Model Validation

DES Internal Validation

Tremlett et al. reported a median ttEDSS6 of

32.6 years (95% confidence interval [CI] 29.2,

36.0) for patients with RRMS [13]. Before

adjustment for background mortality (compet-

ing risks), the DES provided a good prediction of

the median ttEDSS6 (32.5 years; 95% credible

interval [CrI] 32.0, 33.0) based on 25,000 sim-

ulated patients. A Cox model, fitted to the

simulated ttEDSS6, predicted the hazard ratio

(HR) of ttEDSS6 due to age at disease onset and

sex well (Table 1).

After correction of the ttEDSS6 for back-

ground mortality, the severity at baseline was

re-simulated for 25,000 patients. The median

ttEDSS6 after correction was 26.8 years (mean

27.7; 95% CrI 27.5, 27.9). The DES was then run

for 2000 patients given natural history. A Cox

model was fitted on the ttEDSS6 censoring

patients who died before reaching EDSS6. The

median ttEDSS6 reached by patients in the DES

(27.1 years, 95% CI 26.0, 28.2) was similar to

the simulated values at baseline, suggesting that

disability worsening until EDSS6 was imple-

mented correctly in the DES.

In terms of relapse data, the mean ARR from

the DES was 0.24 (median 0.22; interquartile

range [IQR] 0.14, 0.31), which was similar to the

ARR of 0.23, calculated as 11,722 events/(mean

follow-up [20.6 years] 9 patients [2477])

observed by Tremlett et al. [14]. This shows that

the model predicted relapses appropriately.

DES External Validation

The results of the comparisons of alemtuzumab,

cladribine tablets, natalizumab, and BSC are

shown in Table 2. Overall, the results of the DES

model were in a similar range to the results of

the reference model. The most important dif-

ferences were those associated with drug costs,

relapse-related costs and QALYs, and AE-related

costs and QALYs. Furthermore, the disease

management costs associated with alem-

tuzumab and cladribine tablets were higher in

the DES than in the reference model. The dif-

ferences in drug and disease management costs

are mainly explained by higher discontinuation

rates in the DES than in the reference model.

Differences in AEs are explained by including

only severe AEs in the DES. The average ttEDSS6

was 26.4 years in the DES compared to

20.9 years in the reference model; this would be

expected from the relatively more severe popu-

lation used in the latter.

Markov Model

The proportions of patients who had not

reached EDSS6 over time are displayed in

Appendix Fig. 1. The weighted average across all

severity groups produced by the Markov model

Table 1 DES internal validation results on time to EDSS6

Reference model HR (CrI) [13] DES HR (CrI)

Onset age (years)

\ 20 1 1

20 to\ 30 1.21 (0.95–1.51) 1.20 (1.14, 1.25)

30 to\ 40 1.82 (1.44–2.30) 1.73 (1.65, 1.82)

40 to\ 50 1.95 (1.47–2.58) 1.90 (1.79, 2.01)

C 50 2.22 (1.49–3.31) 2.14 (1.96, 2.34)

Sex

Female/male 1:1.11 (0.96–1.30) 1:1.08 (1.04, 1.11)

DES discrete event simulation, HR hazard ratio, EDSS6 Expanded Disability Status Scale state 6, CrI credible interval
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closely matched the data from Palace et al. until

year 5 [16]. Beyond this point, the proportion of

patients who had not reached EDSS6 declined

more slowly in our model.

Appendix Fig. 2 displays the average time

spent in each health state for a time horizon of

25 years. These outcomes are well aligned

between the models, although patients in the

reference model spent relatively more time in

EDSS6 and EDSS8 compared to the Markov

component of our model, while they spent rel-

atively less time in EDSS4 and EDSS5. When the

modelled cohort starts at EDSS3, patients in the

reference model again spent more time in

EDSS6 and EDSS8 than patients in our model.

The most striking difference was observed for

EDSS state less than 3: no patients resided in

EDSS0 to EDSS2 in our Markov model since no

backward transitions were allowed, as compared

to the reference model where patients spent

approximately 5 years in EDSS0 to EDSS2 within

a 25-year time horizon.

The outcomes of the Markov component of

our model were also compared to the outcomes

from the reference Markov model [33]. The

results of the validation for a time horizon of

25 years are shown in Table 3. The outcomes of

our Markov model are reasonably aligned with

the outcomes of the reference model. The most

prominent differences are (1) life years and

associated QALYs are lower in our Markov

model because MS-related mortality was mod-

elled differently, (2) the number of relapses in

natural history and the associated costs and

QALYs are higher in our Markov model because

it used a more detailed method to calculate

relapses in natural history; specifically the

number of relapses with treatment are lower

Table 2 DES external validation results

Outcomes Natural history Cladribine tablets Alemtuzumab Natalizumab

Reference
model [33]

DES Reference
model [33]

DES Reference
model [33]

DES Reference
model [33]

DES

Total costs (�) 77,480 79,735 118,148 128,019 133,075 144,566 250,904 193,151

Drug

acquisition

0 0 50,608 49,390 64,076 59,876 118,392 73,900

Drug

administration

0 0 0 0 4874 4941 55,622 37,545

Drug

monitoring

0 0 761 835 777 1118 4235 2854

Total drug-

related

0 0 51,368 50,225 69,727 65,935 178,250 114,299

AE-related 0 0 348 33 372 0 297 51

Relapse-related 9198 15,026 6319 13,437 5709 14,096 7319 14,048

EDSS-related 68,282 64,708 60,113 64,324 57,267 64,535 65,038 64,752

Total QALYs 21.258 21.049 24.615 24.117 25.834 22.844 22.730 22.629

AE-related 0 0 - 0.008 0.000 - 0.015 0.000 - 0.004 - 0.001

Relapse-related - 0.041 - 0.161 - 0.029 - 0.143 - 0.027 - 0.150 - 0.034 - 0.150

EDSS-related 21.300 21.211 24.652 24.260 25.876 22.993 22.769 22.780

DES discrete event simulation, AE adverse event, EDSS Expanded Disability Status Scale, QALY quality-adjusted life year
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because no discontinuation is assumed, and (3)

the treatment costs of natalizumab, the only

continuously administered DMT included in

this model, are considerably higher in our

Markov model because no discontinuation was

assumed.

Case study: Modelling the Optimal

Treatment Sequence and Assessing

the Impact of Different Decision-Making

Criteria

Figure 3 presents the optimal treatment

sequences based on the current treatment

guidelines as well as for each of the three deci-

sion criteria. As illustrated, each generated a

different optimal treatment sequence. Cladrib-

ine tablets is the only DMT that was common to

all sequences; however, its positioning within

treatment lines changed with the choice of

scenario. The sequences based on minimising

the number of relapses or EDSS steps were sim-

ilar, with the second- and third-line treatments

(natalizumab and ocrelizumab) switching. The

sequence optimising for cost-effectiveness had a

common DMT for all patients (glatiramer acet-

ate) for first-line therapy. For second and sub-

sequent treatment lines, different patients

receive different treatments.

Table 4 presents the impact of the treatment

sequences in terms of the proportion of patients

reaching EDSS6, time spent in the model, costs,

and QALYs. The results indicate that the lowest

Table 3 Markov model validation results based on a 25-year time horizon

Outcomes Natural history Cladribine tablets Alemtuzumab Natalizumab

Reference
model [33]

Markov
model

Reference
model [33]

Markov
model

Reference
model [33]

Markov
model

Reference
model [33]

Markov
model

Life years 24.24 21.70 24.24 21.92 24.24 21.98 24.24 21.96

Number of

relapses

4.77 5.20 3.18 2.03 2.94 1.55 3.82 1.64

Total costs

(�)

39,397 34,377 84,953 80,432 101,891 98,063 210,065 511,178

Treatment-

related

0 0 51,378 52,512 69,746 71,201 174,176 484,105

AE-related 0 188 348 213 372 226 297 202

Relapse-

related

7751 8529 5058 3334 4518 2537 5877 2691

EDSS-

related

31,646 25,660 28,168 24,373 27,255 24,100 29,715 24,181

Total

QALYs

15.403 14.184 17.194 15.516 17.728 15.992 16.470 15.803

AE-related 0.000 - 0.060 - 0.008 - 0.072 - 0.015 - 0.082 - 0.004 - 0.103

Relapse-

related

- 0.035 - 0.091 - 0.023 - 0.036 - 0.021 - 0.027 - 0.028 - 0.029

EDSS-

related

15.438 14.335 17.225 15.624 17.764 16.105 16.503 15.935

EDSS Expanded Disability Status Scale, AE adverse event, QALY quality-adjusted life year
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proportion of patients reaching EDSS6 (1.07%)

occurred when the treatment decision was

made based on the sequence most likely to

minimise the number of EDSS steps. Choosing

treatments to minimise the number of relapses

in turn maximised the time spent in the model,

as well as QALYs, but this sequence has the

largest associated costs. Choosing the optimal

treatment based on cost-effectiveness was asso-

ciated with the lowest costs and the lowest

QALYs. The main differences between the

treatment sequences in terms of costs come

from drug acquisition and administration. As

higher costs were associated with better out-

comes in these scenarios, it suggests that the

more efficacious treatments in terms of the

number of relapses and reducing the number of

EDSS steps are also more expensive. Addition-

ally, the second- and third-line treatments in

these sequences (natalizumab and ocrelizumab)

require infusions and are among the most

expensive treatments both in terms of annu-

alised drug and administration costs.

Figure 4 presents the results of the scenarios

on a cost-effectiveness plane relative to the

current treatment guidelines. This indicates

that at the illustrated threshold of £30,000 per

QALY gained, the optimal sequences for min-

imising EDSS steps or relapses were not cost-ef-

fective compared to the current treatment

guidelines sequence. The sequence obtained

from optimising cost-effectiveness decision cri-

teria is cost-effective at this threshold; however,

it does reduce the number of QALYs (at reduced

cost) for patients compared to the sequence

based on current guidelines.

Figure 5 presents the number of patients on a

treatment that require an infusion visit over

time. When choosing the optimal treatment

sequence based on cost-effectiveness, no treat-

ments that require an infusion visit are inclu-

ded; this is likely due to the increased cost in

terms of drug acquisition and administration

associated with these treatments. The graphs

based on minimising EDSS steps or relapses

decision criteria are similar. This can be

explained by the similarity in the treatment

sequences (see Fig. 5), with the second and third

treatment lines alternating between the two

sequences. In all cases, the number of incident

patients requiring infusion visits peaks at 10–-

20 years after treatment initiation.

DISCUSSION

New modelling approaches are needed to

address questions regarding treatment sequen-

ces in RRMS, including what decisions rules are

currently used when considering the bene-

fit–risk profiles of different DMTs in clinical

settings and what thresholds should be used to

determine that a DMT is not performing con-

sistent with expectations. The approach descri-

bed in the current paper is proposed to help

decision-makers address these complex ques-

tions and provides an innovative framework for

the explicit modelling of treatment sequences

in RRMS. The model focuses not only on what

treatment a patient will, or should, switch to

but also on when a patient should switch treat-

ment. The conceptualisation of the (virtual)

physician as someone who updates his/her view

of a patient’s expected severity each time he/she

observes the patient was introduced to reflect

the fact that physicians develop an

Fig. 3 Optimal treatment sequences using different treat-
ment decision criteria. Note that proportions do not sum
to 100% after the first treatment because patients may
drop out of treatment or the model (because of death).
EDSS Expanded Disability Status Scale
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understanding of the patient over time and, in

theory, can make more informed treatment

decisions as time progresses.

The internal validation of the DES showed

that disease severity, survival, and number of

relapses are appropriately simulated for natural

history. It is worth noting that the narrower

CrIs calculated by the DES compared to the

reference model can be partially attributed to

the large number of patients simulated. The

external validation showed that the outcomes

of the DES and Markov model matched the

reference models reasonably well, except for

some differences which relate to modelling

choices. The most prominent difference was the

discontinuation rate, which was modelled using

a user-adjustable decision rule in the DES and

may have resulted in different discontinuation

rates than those used in the Markov model. The

relapse outcomes also differed between the

models; however, given the ARR in the DES has

been validated against the average relapse rate

from the BCMS registry, we are confident that

the DES simulates relapses appropriately. Dif-

ferences were also observed in natural history

progression of the Markov model compared to

the reference cost-effectiveness model [16, 33].

These are as expected as Palace et al. [16] used a

selection of patients from the BCMS registry

with relatively severe disease (at least two

relapses in the last 2 years), whereas the severity

groups in our model captured patients from the

BCMS registry without any requirements for

disease activity. In addition, our Markov model

provided no allowance for backward transitions

(i.e. EDSS improvements) because these are

considered temporary improvements, whereas

backward transitions are included in the refer-

ence model [16]. Any other differences in Mar-

kov model outcomes are as expected and are

attributable to different inputs and modelling

choices. Overall, the results of the Markov

model are considered robust and reliable.

Table 4 Results based on treatment decision-making criteria

Outcome Decision rule

Current treatment
guidelines

Cost-
effectiveness

Number of
relapses

Number of EDSS
steps

Proportion reaching EDSS6

(%)

1.80 2.20 1.27 1.07

Years in model 21.38 18.99 22.13 22.09

Total costs (£) 293,912 173,730 350,300 348,195

Drug acquisition 254,665 145,160 269,355 270,954

Drug administration 9429 487 49,042 45,714

Drug monitoring 3973 4540 5123 4909

AE-related 125 40 171 177

Relapse-related 3235 3508 2765 2687

EDSS-related 22,484 19,995 23,845 23,754

Total QALYs 16.56 14.65 17.50 17.47

AE-related - 0.00 - 0.04 - 0.00 - 0.00

Relapse-related - 0.04 - 0.04 - 0.03 - 0.03

EDSS-related 16.60 14.73 17.53 17.50

EDSS6 Expanded Disability Status Scale state 6, QALY quality-adjusted life year, AE adverse event
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One of the challenges with patient-level DES

are the data requirements. The current imple-

mentation of the model used published, aggre-

gate data and the key assumptions were

validated in a Delphi study [31]. Although nat-

ural history was consistently based on the BCMS

registry [13, 14, 32] and the validation process

showed that the model can reproduce the pub-

lished population level estimates, the use of

aggregate data to populate the DES means that

the covariance between simulated patient

characteristics could not be included, neither

could any relation between disability worsening

and relapses nor a correlation between treat-

ment effects within a patient. As such, the

individual outcomes might be incorrect. A

possible next step in the development of this

model would be to fill these gaps using data

from real-world studies. For example, magnetic

resonance imaging test results were omitted

from the current model because, as a result of

Fig. 4 Results based on different treatment decision
criteria relative to the current treatment guidelines
sequence. EDSS Expanded Disability Status Scale

Fig. 5 Number of patients on treatments requiring infusion visits by treatment decision criteria. NMB net monetary
benefit, EDSS Expanded Disability Status Scale
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the high correlation with relapses, it was

deemed inappropriate to include them in the

patient-level simulation, based on published

aggregate data only [31]. However, the inclu-

sion of radiology in the DES next to relapses and

disability worsening, as well as in the decision

rule for treatment switching, may potentially

improve the model. Similarly, the probability of

PML was only modelled for natalizumab treat-

ment; real-world data on the incidence of PML

in other DMTs for RRMS would be useful.

The virtual physician uses a likelihood

function to update his/her belief of the patient’s

disease severity. This likelihood function

describes what a physician learns about the

patient’s severity when the physician makes

observations regarding disability worsening.

Currently, a Gompertz distribution with a shape

parameter of 0.1 was used to model this rela-

tionship between EDSS steps and a patient’s

severity. This assumption was based on the

progressive nature of RRMS and the assumed

uncertainty in this relationship. Additional

research is required to determine the accuracy

of the current likelihood function and/or pro-

pose suitable alternatives. One of the key chal-

lenges in modelling treatment sequences in

RRMS, as well as other autoimmune diseases

including rheumatoid arthritis, is locating evi-

dence for the effectiveness of treatments when

given in later lines [17, 35, 36]. Whereas this

model does not present a solution to this data

gap, modelling treatment sequences in more

detail makes knowledge gaps apparent and

enables researchers to investigate the impact on

treatment decisions. In addition, the physi-

cian’s choice of treatment will be affected by

factors other than perception of disease severity,

including patient choice, lifestyle, pregnancy,

and co-morbidities; further research is required

to develop the model to incorporate these

factors.

This innovative framework enables the user

to explore different decision criteria for choos-

ing the optimal treatment strategy. In the case

study, it was possible to improve on the current

treatment guidelines strategy in terms of

reducing the proportion of patients who reach

EDSS6, duration of time spent on the first three

lines of treatment, and associated quality of life.

This was accomplished by choosing the optimal

treatment sequence based on minimising the

expected number of EDSS steps or relapses.

However, this improvement does come at a

financial cost. The treatments that minimise

EDSS steps and relapse rates are more costly in

terms of drug acquisition and administration

costs. Optimising treatment by maximising

cost-effectiveness is the least expensive treat-

ment sequence, but also has the lowest QALYs.

Furthermore, in addition to direct patient ben-

efits, an important consideration in identifying

optimal treatment sequences is the impact a

treatment sequence may have on hospital

capacity. Our analyses indicated that the

capacity required over time is dependent on the

choice of sequence, with resource use peaking

10–15 years after treatment initiation. The

required capacity is presented in terms of the

number of patients on each of the treatments

requiring infusion visits. However, this may not

be a clear indicator of the capacity required in

the hospital as it is unlikely that all these

patients would require their infusion visit at the

same time. It is therefore important to consider

treatment schedules along with the operating

hours of the units.

It should be noted that the choice of the

base-case treatment guidelines using the NHS

treatment algorithm [34] may not be represen-

tative of the treatment sequence used in prac-

tice. A change in the treatment guidelines

sequence will have a subsequent impact on the

relative costs and benefits of the other sequen-

ces compared to it. Furthermore, these analyses

focused on the relative benefits of treatment

sequences for the first three treatment lines, in

order to compare the results to the NHS treat-

ment algorithm which gave no clear informa-

tion on treatments that should be used in the

fourth and subsequent treatment line [34]. In

addition, there was limited information on the

effectiveness of treatments when given in later

treatment lines [17, 35, 37]. This lack of infor-

mation adds some strength to our decision to

concentrate on the first three treatment lines.

Alternatively, focusing on the first three treat-

ment lines may underestimate the treatment

benefits to the extent that improvement could

appear in later lines. An example of this is when

Adv Ther



patients are given less efficacious and less costly

treatments in earlier treatment lines. Those

patients with more severe RRMS would likely

switch away from these treatments quickly to

more effective and costly treatments, whereas

patients with milder RRMS may stay on these

earlier treatment lines for longer. Furthermore,

as the benefits of the treatment are deferred

until later lines for the more severe patients,

this would mean that the total number of

QALYs gained from the treatment sequence

would be increased, impacting the value of the

cost-effectiveness scenario.

CONCLUSIONS

From a validation perspective, the model

proved to be robust in generating outcomes

consistent with existing RRMS models and

published studies on natural history. This

approach can be used to identify optimal

treatment sequences for patients with RRMS

using different decision criteria. Improvements

to the current treatment guidelines sequence in

terms of the proportion of patients reaching

EDSS6 after three lines of treatment and quality

of life outcomes were possible. However, this

comes at both a financial and capacity cost.

Moving forward, this innovative framework has

the potential to reliably simulate individual

patient trajectories in the current complicated

treatment landscape and therefore may prove

useful to support treatment switching, treat-

ment positioning, and treatment guideline

decisions in RRMS.
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