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A B S T R A C T   

Understanding the interactions between different travel modes is crucial for improving urban transport resil
ience, especially during times of disruption and transit failure. As a flexible and sustainable travel mode, bike
share schemes are able to solve “first/last” mile problems in urban transit as well as provide an alternative to 
motorised traffic. This paper uses OD (origin and destination) trip data from the London Cycle Hire Scheme and 
temporal docking station bike availability data to explore the impact of four separate London Underground 
(Tube) strikes on bikeshare usage and behaviours. The results suggest that bikeshare usage generally rises in 
response to Tube disruptions, but the extent and nature of this rise in use varies according to the type of 
disruption. A novel measure of station pressure suggests that the scheme very quickly reaches saturated capacity 
and is unusable in certain parts of London during disruptions. A graph-based analysis reveals several changes in 
OD flow structures. This implies a modal shift from Tube to bikeshare and a change of route behaviours among 
bikeshare users. Weekday Tube strikes bring new behaviours and new OD pairs to the bike flow structures, whilst 
for weekend strikes existing patterns are consolidated. The corollary is that more heterogenous OD trip patterns 
are introduced by higher volumes of commuting trips and intense competition of cycles/docks. Cyclists are 
forced into using alternative (second or third preference) docking stations with new behaviours, and possibly 
users, as journeys that would otherwise be made via the Tube are made via bikeshare. This work comprehen
sively presents and compares the impacts of Tube strikes under varied circumstances and offers a detailed un
derstanding of the changed cycling behaviours that could be used in transport planning and management.   

1. Introduction 

Public transit disruptions have become more frequent in recent years 
due to the increasing maintenance needs of ageing infrastructure, nat
ural disasters as well as social and political events such as city-wide 
festivals and strikes (Zhu et al., 2017; Gonçalves and Ribeiro, 2020; 
Rahimi et al., 2020). Such events and disruptions can significantly affect 
the resilience of transportation systems. Disruptions have many different 
consequences across the transport network, and characterising them, as 
well as how travellers may respond to transit failures, can inform urban 
transport planning and decision-making. Among different travel modes 
in big cities, bikeshare schemes are low-cost, highly flexible and 

convenient (Shaheen et al., 2013). In urban contexts, they fill an 
important gap between pedestrian and vehicular transport (Curran, 
2008), and can provide a genuine alternative travel mode when other 
parts of the transportation system experience disruptions. Previous 
research (Green et al., 2012; Zhu et al., 2017; Younes et al., 2019) has 
shown that disruptions to metro and bus systems may result in a shift to 
bikeshare schemes, especially for low-income groups, as bikeshare is a 
low-cost alternative to, for example, private taxi and minicab services. 

Understanding the changes in cycling behaviour during transit dis
ruptions is crucial for minimising the impacts in the short-term, but also 
benefits sustainable transport planning in the long-term (Dill and Carr, 
2003; Zhu and Levinson, 2010). Mass transit disruptions can prompt 
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new behaviours and introduce new people to cycling. Research has 
shown that many new cyclists used bikeshare in London during previous 
transit strikes (Green et al., 2012), and may have continued to use 
bikeshare schemes subsequently (Zhu and Levinson, 2010). A more 
contemporary context is the reduced public transport capacity as a result 
of public health outbreaks, which require social distancing. This is likely 
to lead to an increase in cycling activities. Quinn (2020) predicts a multi- 
fold increase of cycling in London post-lockdown, and several plans have 
been made to overhaul the capital’s streets and public space. These 
include: (1) the rapid construction of a strategic cycling network to help 
reduce crowding on bus and metro services; and (2) the transformation 
of local town centres to allow people to walk and cycle where possible 
(Quinn, 2020). The impacts of reduced public transport on shifts to 
cycling may be determined from the analysis of historical bikeshare 
data, and the results can be used to inform related sustainable urban and 
transport planning. 

During disruptions, a range of different travel behaviours emerge 
according to the spatiotemporal characteristics of the incidents. To un
derstand the changes in travel behaviours, observational data need to be 
analysed within their spatial and temporal context. Such spatiotemporal 
analyses have been published (Vertesi, 2008; Zhu et al., 2017; Saberi 
et al., 2018), but not in a comprehensive and large-scale way, partly due 
to data availability. Large transit disruptions (e.g. Tube strikes) are 
relatively rare events, and difficult to compare whilst controlling across 
changing explanatory variables. Previous work has focused on changes 
in demand, i.e. related to user behaviour (Vertesi, 2008; Zhu et al., 2017; 
Saberi et al., 2018) and has not considered the resource supply such as 
the provision of cycles and cycle docks. Information on dock availability 
could provide supporting context to explain user behaviours and may 
also support bike scheme operators in their fleet management strategies, 
which include manually redistributing bikes. 

Until recently, reliable “impact” and “behaviour change” analysis 
has been problematic due to a relative lack of historical time series data. 
However, the London Cycle Hire Scheme (LCHS) has been in operation 
since 2010, and each timestamped user trip has been continuously 
recorded over this period. This greatly benefits long-term service anal
ysis (Lovelace et al., 2020) and comparative studies, for example, 
characterising how usage and behaviours change in response to different 
events and interventions (Beecham, 2015). 

The work presented in this paper tries to address the above problems 
by examining four London Tube strike events and their impacts on LCHS 
using freely available bike OD (origin-destination) usage data and sta
tion availability data. These strikes have varied temporal and spatial 
characteristics, which results in distinct patterns of change in LCHS. 
Temporal, spatial and structural patterns are examined to consider the 
impacts of Tube (i.e. metro, Underground) strikes on bikeshare schemes. 
The results have the potential to support LCHS service provision, to 
guide strategies for filling public transport gaps and to strengthen transit 
resilience. 

The structure of this paper is as follows: Section 2 reviews recent 
literature on bikeshare studies related to disruptions and user behaviour, 
and Section 3 introduces the methods as well as case study. The results 
are presented in Section 4, providing insight on user behaviour changes 
and scheme dynamics in bikeshare due to transit disruptions. Section 5 
summarises and compares the findings to those of other research, before 
conclusions are drawn (Section 6). 

2. Background 

Transit disruptions can adversely affect transport network reliability 
and bring substantial economic, social and safety impacts to cities and 
travellers (Wilson, 2007; Bauernschuster et al., 2017; Pregnolato et al., 
2017; Yu et al., 2020). To minimise the impacts, people may change 
their travel behaviours according to the characteristics of the disruption 
(Cairns et al., 2002a, 2002b). For example, a short-term disruption (e.g., 
transport strike or a bridge closure) may lead to temporary changes in 

travel mode, choosing alternative destinations, reductions in journey 
frequency, etc. The behaviours in response to disruptions may also 
become permanent as new travel habits emerge (Zhu and Levinson, 
2010). 

A number of studies have analysed individual perceptions of and 
preferred reactions to transit disruption using questionnaires and survey 
data (Tsuchiya et al., 2008; Fukasawa et al., 2012; Teng and Liu, 2015). 
These suggest that patterns of temporary modal shifts during transit 
disruptions are related to income (Zhu et al., 2017). Different sharing- 
economy travel options offer new ways to minimise the impact of 
transit service failure, with wealthier people more likely to switch to 
taxis or car ridesharing (e.g. Uber, Lyft), and people with lower incomes 
choosing lower-cost mobility services such as bikeshare (Zhu et al., 
2017). Studies evaluating the impact of transit disruption on bikeshare 
usage are critical for mitigating the impacts for disadvantaged groups. 

Many large cities such as London have introduced bikeshare schemes 
composed of a network of docking stations and bikes into their urban 
centres. They are used heavily by tourists and commuters, especially for 
short journeys that would otherwise be made by bus and metro (Shaheen 
et al., 2013). Bikeshare works well when linked to public transport, 
solving the so-called `first/last” mile problem in urban transit – for 
example, by supporting short connecting trips from a major transport 
hub to a workplace or home (Yang et al., 2019). The majority of bike
share studies can be grouped into two classes (Beecham, 2015): 
exploratory studies analysing variations in scheme usage related to the 
built and social-spatial environment (Faghih-Imani et al., 2014; El-Assi 
et al., 2017); and more narrowly-focused studies developing algorithms 
for supporting fleet management and rebalancing (De Chardon et al., 
2016). Nello-Deakin (2020) suggest that over the last twenty years there 
has been an abundance of empirical studies with similar conclusions 
drawn, namely that urban environments with dedicated cycling infra
structure, traffic calming measures and moderate to high urban densities 
are associated with higher cycling rates (Nello-Deakin, 2020) and 
bikeshare usage (El-Assi et al., 2017). Numerous algorithmic approaches 
have been proposed in the literature to solve the traffic prediction and 
rebalancing problems (De Chardon et al., 2016; Pan et al., 2019). In 
contrast, there are comparatively few studies examining the interde
pendence between bikeshare and other transit modes, especially during 
disruption events or infrastructure changes. 

Transit disruptions clearly have the most direct impact on public 
transport provision and influence bikeshare use substantially (Chen 
et al., 2016). The work of Chen et al. (2016) combined bikeshare usage 
data in New York with event data from multiple sources (Twitter, traffic 
data live feeds) to rank the impact of various social and transportation 
events on bikeshare. They suggest that metro delays have a much larger 
impact on bikeshare use than other disruption events such as surface 
road congestion and restrictions. Metro strikes (or closure for mainte
nance) are not included in Chen et al. (2016) ‘s events data set, and it is 
reasonable to speculate that they may have a higher or at least similar 
level of influence on bike ridership. This is due to the fact that strikes 
will make the metro service unavailable for a longer period, thus 
providing a more radical disruption than a delay to the schedule. 
Although highlighting the importance of understanding interdepen
dence between metro and bike, the work of Chen et al. (2016) does not 
extensively explore changes in spatiotemporal patterns of bikeshare 
scheme use. 

Further exploration into bikeshare ridership change may benefit 
scheme management activities, improve equity in mobility service 
provision, as well as long-term traffic planning. “Novice” cyclists who 
are not familiar with biking also make comparatively more trips on 
metro strike days (Green et al., 2012). These examples provide evidence 
that transit disruptions can introduce bikeshare to new users, potentially 
promoting and increasing cycling rates in the long-term. 

Reviewing the literature has demonstrated that transport users may 
look to bikeshare as an alternative to public transport during metro 
service failures. However, there is comparatively little research 
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quantitatively examining changes in usage patterns in bikeshare 
schemes while metro services are in disruption. Among the limited 
number of studies, Younes et al. (2019) analysed the impact of metro 
station closure for maintenance (a.k.a “Surge”) on bikeshare demand. 
They found that the “Surge” can lead to between 24% and 45% more 
trips in bikeshare stations within 0.5 mile to metro. However, Surges are 
very different to network- or line-level metro disruptions, because they 
operate over small spatial scales. Typically, only several (e.g. up to 
three) metro stations are closed for maintenance (Younes et al., 2019); 
therefore, travellers often find alternative routes within the metro sta
tion network. Network-level disruption is examined in the work of 
Saberi et al. (2018), which characterised the impact of a weekday Tube 
strike on all lines and stations in London, along with its effects on LCHS. 
The work suggests that the ridership increase shows a significant dis
tance decay pattern: the closer a docking station is to metro lines, the 
higher ridership increase it will experience. However, the findings may 
only be applicable for weekdays, when a lot of journeys are made for 
commuting purposes to complete the “last-mile” between the Tube or 
rail station and workplace. It is unclear whether this pattern still holds if 
the disruptions fall on holidays or weekends. 

Over thirty strikes have occurred on London’s Tube network since 
2010 (Transport for London, 2017). These are caused by a mixture of 
factors, including disputes related to pay, safety, pensions and job se
curity issues. The strikes may happen at the whole network-level, where 
at least the majority of the Tube service is unavailable, or at individual 
line-level, where only certain lines are disrupted. Impacts of these in
cidents on LCHS use will clearly be different depending on where and 
when disruptions occur as well as the duration of the disruption. Ac
cording to Transport for London (2017), line-level strikes are more 
common in the London Tube than network-level strikes. Despite this 
higher frequency, the impact of line-level incidents on bikeshare has 
rarely been examined in previous studies. An exception is Yang et al. 
(2019), which analyses how the introduction of a new metro line service 
stimulates bike sharing ridership. Data from new forms of bikeshare 
(dockless) are examined, which provide higher spatiotemporal granu
larity for understanding cycling activities and urban flows in the last 
mile. Yang et al. (2019) analyse the more flexible travel OD pairs in the 
dockless scheme, and the study indicates how a new metro line can 
rapidly boost local bike travel demand and result in emerging parking 
clusters within 250 m around new metro stations. The work also high
lights the structural changes caused by new OD pairs (when cast into a 
graph), capturing system-level adaptations and responses to changes in 
demand. Although this work focused on the impact of new metro lines, 
the graph structure and metrics it used suggest research opportunities 
for quantifying large-scale behavioural responses to line-level 
disruption. 

Whilst the existing literature (Saberi et al., 2018; Yang et al., 2019; 
Younes et al., 2019) has evaluated the impact of events using travel 
records on patterns of use (demand), the dynamics of bikeshare service 
supply have yet to be examined. Metro disruptions pose significant 
management problems for bikeshare scheme operators (Younes et al., 
2019), even if daily total trip frequencies do not substantially increase. 
Docking stations should always have cycles and empty docks available, 
but metro incidents may break this balance (Saberi et al., 2018). The 
dynamics in docking station capacity during disruptions have yet to be 
comprehensively analysed. The work presented in this paper starts to 
address the above gaps, by examining spatiotemporal and structural 
changes in bikeshare schemes in relation to metro (Tube) strikes. 

3. Method 

3.1. Case study: London cycle hire scheme (LCHS) and tube strikes 

The LCHS was launched by London’s public transport authority, 
Transport for London (TfL), in June 2010, initially with 315 docking 
stations and 5000 bikes. The scheme expanded its service significantly 

with more bikes and larger coverage areas in March 2012 and December 
2013. By 2014, it had become the world’s second-largest bikeshare 
scheme (Fishman, 2016), covering mostly central London. Due to the 
high prevalence of commuting activities, many LCHS trips are made to 
link travellers’ home, workplace and transit hubs. This presents a solu
tion to the “first/last mile” problem by combining with train and Tube 
trips, but this combination can be interrupted during transit disruptions. 

Whilst there have been more than 30 London Tube strikes over the 
last decade (Transport for London, 2017), several factors must be 
considered when studying the effect of such events on LCHS use. Both 
weather conditions and particular calendar events may also significantly 
change bikeshare use, thus introducing uncertainties when comparing 
bike ridership patterns between strike and non-strike days. To control 
for these types of events, this work only focuses on rain-free day Tube 
strikes, and not on national holidays such as Christmas or bank holidays. 
A total of four Tube strikes have been selected (Table 1), with two at 
network-level and two at line-level. Among these incidents, Strike 2 was 
at a weekend, while the others occurred on weekdays. A map of the 
London Tube and bike docking stations is shown in Fig. 1. The Piccadilly 
line is the fourth busiest line in the London Tube network, and serves 
many of London’s key tourist attractions, including Harrods, Hyde Park 
and Buckingham Palace. It also connects with the major London King’s 
Cross railway station. The Central line is the second busiest line, running 
through Oxford Street and the financial centre of the City of London. The 
Waterloo & City line is a shuttle line that runs between Waterloo and 
Bank with no intermediate stops. Its primary traffic consists of com
muters from south-west London, Surrey and Hampshire arriving at 
Waterloo station and connecting to the City, London’s financial district. 

3.2. Data 

3.2.1. London cycle hire scheme (LCHS) trip data 
The LCHS data detailing trip origin-destination pairs (OD) is pub

lished by Transport for London (TfL), covering the period from 2010 to 
present (2020), and can be retrieved using the R package bikeshare 
(Padgham and Ellison, 2017). Pre-processing work was carried out to 
remove redundant/duplicated and incomplete/faulty records from raw 
data. Each record in the cleaned dataset describes a single bike trip in the 
LCHS and contains complete information describing a trip’s start and 
end docking station, with associated timestamps. Therefore the trip OD 
flows can be examined in some spatial and temporal detail. Because the 
data covers over a decade, it can support longer-term analysis of the 
evolution of the scheme (Lovelace et al., 2020), or to understand and 
compare the behaviours and dynamics in LCHS during different events 
and periods, such as holidays, lock-down, and transit disruptions. In this 
research, bike travel records on four different strike days and their 
respective corresponding two non-strike days are examined and 
compared. To quantify the changes caused by Tube strikes, bike data on 
strike days (listed in Table 1), their two nearest rain-free days of the 

same day of the week are used for comparison (Saberi et al., 2018). For 
example, if a strike happened on Friday, then data of the previous and 
subsequent Fridays (both rain-free) are used. Docking station location 

Table 1 
London Tube strikes.  

Name Category Date Tube Line Day 

Strike 
1 

Network- 
level 

2015/07/ 
09 

All Tube lines Weekday 

Strike 
2 

Network- 
level 

2015/03/ 
07 

All Tube lines Weekend 

Strike 
3 

Line-level 2018/09/ 
27 

Piccadilly line Weekday 

Strike 
4 

Line-level 2018/10/ 
05 

Central line, Waterloo & 
City line 

Weekday  
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data, provided by the UK Consumer Data Research Centre,1 were applied 
to supplement spatial coordinates for trip origins and destinations. The 
data describes station-id, coordinates and several other variables such as 
the docking station’s opening-date. When linked to LCHS trip OD records 
by matching on station-id, spatial details of travel flows can be obtained. 

3.2.2. Docking station availability data 
Data on the availability of bike docks are obtained from the LCHS 

live feed.2 This records the number of available bikes and (empty) docks 
at each docking station every 10 min. The variables include station-id, 
timestamp, number of available-bikes and number of empty-docks. Stations 
can sometimes lack bikes or docks due to changes in bikeshare demand 
throughout the day. For example, Beecham et al. (2014) revealed that 
many people ride bikes from their home for commuting in the morning. 
This renders some docking stations unavailable to users at specific pe
riods. Examining the time-series of dock availability helps to evaluate 
variations in scheme “usability” during the course of the day, or in 
transit disruption. 

3.3. Analysis 

3.3.1. Spatiotemporal trip analysis 
In order to shed light on when and how Tube disruptions may impact 

or increase bike travel, temporal analysis compares the time-series of 
hourly bike travel counts over the four strike days and their comparison 
days. Within these periods, bike trip data were also aggregated over two 
different spatial units to characterise ridership change and its spatial 

patterns. Bike trips were first aggregated over a 500 m hexagonal grid 
(roughly 0.6 km2) covering the central London study area. The reason 
for using 500 m is that the average distance of nearby docking stations is 
reported as approximately 500 m (Duncan, 2015). Bike trip counts were 
allocated to the grid cells based on the origin station. The change in 
counts was determined by comparing counts from the control data 
(average value of 2 non-strike days for each disruption). The second 
approach was to aggregate bike trips over docking stations and to 
calculate changes (Saberi et al., 2018). Docking stations were cat
egorised into different groups based on their shortest distance to dis
rupted Tube stations. A spatial interval of 250 m was used as suggested 
in the work of Saberi et al. (2018). 

Fig. 2 shows the hexagonal grid map of the ridership on non-strike 
weekdays and weekends, based on the average value of the control 
group (non-strike days) of Strike 1 and Strike 2. On weekdays, areas in 
Waterloo (marked as 1 in Fig. 2 a) have the highest number of travels 
(more than 1100). There are also many trips around Liverpool Street 
Station (mark as 2) and the northeastern corner of Hyde Park (mark as 
3), and the number of trips in these hexagons are between 650 and 900. 
In contrast, trip numbers at the weekend are relatively smaller, the 
highest amount is at the northeastern corner of Hyde Park (mark as 4), 
reaching 358. Trips are heavily concentrated around west London, Hyde 
park (4), also many are made in areas close to Liverpool Street Station 
(5), and Soho (6). 

3.3.2. Docking station availability analysis 
When using bikeshare schemes, travellers may encounter the prob

lem of having no bike available at their desired trip origin, or more 
frustratingly, having no docks available at the desired destination. In
creases in bikeshare usage, and greater competition for bikes and docks, 
may lead to a higher rate of such “service outages” (De Chardon et al., 

Fig. 1. London Tube Lines and bikeshare docking stations.  

1 https://www.cdrc.ac.uk  
2 https://tfl.gov.uk/tfl/syndication/feeds/cycle-hire/livecyclehireupdates. 

xml 
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2016), decreasing the scheme’s reliability and attractiveness. During 
transport disruption, it is therefore especially important to ensure the 
availability of both bikes and docks. In LCHS, an individual station has 
24 docks on average. In this work, we use a threshold of 15% to identify 
stations that have low availability. That is to say, if a docking station has 
less than 15% bikes or 15% empty docks of its total capacity, then it is 
marked with the status of “low availability”. The proportion of 15% is an 
arbitrary choice; considering the typical dock capacity (24), it roughly 
equals to a mean value of three bikes or docks. We consider this to be a 
sensible threshold for our analysis. 

As described in Section 3.2.2, availability data indicates the number 
of available bikes and docks at a frequency of ten minutes. Therefore, 
each station has six observations describing its status each hour. This 
paper defines the sum of “low availability” timestamps in each hour as a 
“service pressure” index, so it has a range of between zero to six. Higher 
values indicate that more timestamps have seen insufficient availability, 
whilst lower values suggest that the stations are often at a more balanced 
state. By analysing the fluctuation in service pressure in different groups 
of stations, the dynamics of the service provision can thus be evaluated, 
also reflecting their varying spatiotemporal patterns during strikes. The 
time periods of low bike usage, i.e. late night hours, were removed from 
the analysis due to the small number of trips made and the steady service 
provision at those times. 

3.3.3. Graph (network) analysis 
Events in Tube networks may not only impact bike ridership vol

umes, but also change the structure of travel patterns and flows (Saberi 
et al., 2018; Yang et al., 2019). To quantify these structural changes, 
graph-based analysis was utilised in this study. First, the travel flows in 
LCHS were represented as directed and weighted graphs. A graph con
sists of a number of nodes (i.e. vertices), and they are connected by links 
(i.e. edges) to indicate their relationship and interactions. Examples 
include social network graphs and global flight line graphs. To present 
LCHS as a directed and weighted graph, the bike docking stations were 
cast as nodes, while the cycling trips between them were defined as the 
links, with direction (from origin to destination) and weight (frequency) 
attributes. Once graphs are constructed, different indices can thus be 
derived to describe the state of the structure. By comparing non-strike 
and strike day graph indices, it is possible to characterise related 
structural dynamics and evolution, leading to a more comprehensive 
understanding of the changed relationships between OD pairs, and the 
different roles of docking stations. The indices can be categorised as 
measures for graph nodes, graph links and whole graph structure. 

Node centrality measures are helpful for characterising graph nodes. 
They are indicators of the importance of individual vertices in a graph, 
and the definition of importance may vary over different indices. For 
example, the most common and basic node centrality is the degree. In 
this study, degree describes how many other bike stations in the graph 
are linked to a given bike station (with either in- or out-flows). There are 
also many other centrality measures such as flux, PageRank, node 
betweenness and eigenvector centrality. Eigenvector centrality 

(Bonacich, 2007) extends the idea of node degree by considering that 
nodes connected to other high centrality (degree) nodes should have a 
higher importance score than those connecting to low centrality nodes. 
It is also a relative measure, which ranges from zero to one, with higher 
values indicating larger importance and centrality. 

Graph links can also be evaluated by various indices, with the most 
common being link weight. In the context of bikeshare network, link 
weight represents the number of bike trips (OD frequency) connecting 
one docking station to another. 

There are also graph (global) level indices or metrics that can be used 
to characterise the state of the whole structure, for example, graph 
transitivity and assortivity. Transitivity (also called clustering coeffi
cient), indicates the extent of graph nodes within a network cluster (i.e. 
community, subgroups, cliques). It captures the degree of local cluster 
(sub-graph) interactions compared to connections with nodes outside of 
the cluster (Saberi et al., 2018). It is calculated from the ratio between 
the observed number of closed triplets (triangles) and the maximum 
possible number of closed triplets in the graph structure. 

Assortivity considers the preference for a graph’s nodes to attach to 
others that are similar in centrality (Newman, 2002; Noldus and Van 
Mieghem, 2015). In the context of bikeshare schemes, higher values 
imply that similar important docking stations, such as the ones close to 
transit hubs, are more likely to be connected by travel flows. 

The various graph metrics were calculated for the periods during 
each Tube strike, and compared to those calculated for non-strike days 
under the hypothesis that any changes in these may indicate the tem
porary structural responses to strike activity. Bike trips from the two 
comparison days were cast into two graphs, with their metrics calcu
lated. Then the average value of the two was used for comparison. In 
addition to this, changes in the maps of flows were examined to confirm 
the findings and to provide context for interpreting the various graph 
metrics, thereby providing a deeper understanding of the observed 
trends. A particular focus was placed on OD pairs that experienced 
ridership increases, as these were hypothesised to represent higher 
transport needs. Thus, this work compares how different places are more 
strongly connected by LHCS users, which helps to interpret underlying 
travel behaviours. 

4. Results 

4.1. Bikeshare usage characteristics 

4.1.1. Temporal pattern 
A consequence of Tube strikes is an increase in bike journeys, as 

shown in Fig. 3. A network-level weekday disruption (Fig. 3 a) was 
found to increase bike trip volumes from 37,070 to 69,734 (88%) 
throughout the day. At the weekend (Fig. 3 b), the numbers rise from 
15,910 to 24,160 (52%), with a more significant peak time around 2–3 
pm. 

The hourly use changes are also associated with the spatial scale of 
the incident. When line-level strikes occurred (Fig. 3 c, d), the increases 

Fig. 2. Trip count on non-strike days: (a) weekday; (b) weekend.  
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Fig. 3. Hourly LCHS bike use on strike days and non-strike days; (a) Strike 1; (b) Strike 2; (c) Strike 3; (d)Strike 4.  

Fig. 4. Ridership change in the hexagonal grid, white lines are disrupted Tube lines; (a) Ridership change - Strike 1; (b) Change ratio – Strike 1; (c) Ridership change 
– Strike 2; (d) Change Ratio – Strike 2; 
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are less pronounced. Total use increased by 9.9% during Strike 3, and for 
Strike 4, it is 12.2%. The smaller increases compared to network-level 
strikes is to be expected and suggests that additional increases in bike
share usage are likely to be constrained to parts of the city that fall 
within the disrupted line’s service catchment. A more subtle but inter
esting pattern can also be observed: trip volumes (Fig. 3 c, d) increase 
from noon to 8 pm, while there is only a marginal impact on trip vol
umes in the morning (6–10 am). This may be due to the fact that there is 
generally less flexibility when travelling in the morning peak. The 
observational data shows that the morning peak is consistently narrower 
than the afternoon peak (Fig. 3 a, c, d). This has particular implications 
for the LCHS, where usage is heavily constrained by the number of bikes 
and docking spaces available. Intense competition for bikes and spaces 
at peak times means that the scheme can support only a limited number 
of additional trips – and this is exacerbated when disruption events such 
as Tube strikes contribute additional demand. 

Overall, the different changes in patterns of hourly use indicate that 
network-level and line-level strikes have varied temporal impacts on 
people’s modal shifting to bikeshare. While network-level disruptions 
increase trip frequencies across most time slots, line-level strikes impact 
noon and afternoon periods more heavily. Weekend cycling has very 
different trends compared to weekdays, but increases are observed 
particularly in the afternoon of the strike days. 

4.1.2. Spatial patterns 
The spatial pattern of LCHS ridership also varies during different 

Tube strikes, as illustrated in Figs. 4 and 5. Fig. 4 (a,c) and Fig. 5 (a, c) 
show the changes in trip count in hexagonal grids; while Fig. 4 (b, d) and 
Fig. 5 (b, d) presents the relative change, which is the change ratio, and 
it is calculated as: 

Change Ratio =
Ts

TN 

Where Ts is the trip volume on the strike day, and TN is the average 
volume of trip count on non-strike days (the control group). Because TN 

may be very small in some regions, using a small number as the de
nominator to calculate the relative change can lead to calculation and 
sensitivity problems. Therefore, a relatively arbitrary threshold for TN is 
usually set in calculating the relative change in literature (Yang et al., 
2020). In this work, the threshold is set to 50. 

Trip volume significantly increased in central London during Strike 1 
(Fig. 4 a), with areas surrounding train stations experiencing the largest 
increases. For example, King’s Cross, Paddington, Liverpool Street and 
Waterloo train station (marked as 1, 2, 3, 4 in Fig. 4 a). The change ratio 
was also found to be higher in King’s Cross and Paddington. In contrast, 
during a weekend strike, areas with the highest number of increases are 
around Hyde park, especially the northeastern corner (marked as 5 in 
Fig. 4 b). Waterloo and Piccadilly Circus (7) and Regent’s Park (6) also 
have higher ridership and change ratios. Some hexagons at the periph
ery have a high value in change ratio. This is due to the small denomi
nator (TN) in these regions, and they are more sensitive to the changes in 
ridership. Overall, these varied patterns suggest that the spatial distri
bution of increases in bike use is severely impacted by whether the strike 
occurred during a weekday or weekend. 

For line-level strikes (Fig. 5), the impact is more localised, with re
gions closer to disrupted lines experiencing increases in use. In Fig. 5 (a, 
b), areas closest to south Kensington (marked as 1) and Knightsbridge 
(2), where numerous museums are located, show the greatest increase in 
bike use. Green park (3) and Piccadilly Circus (4) also show marked 
increases. The change ratios in west London are generally higher. During 
Strike 4 (Fig. 5 c, d), most regions along the Central line experienced 
higher LCHS trip counts and change ratios. 

The relationship between bike docking stations’ distance to Tube and 
bike use changes is examined by boxplots in Fig. 6. The x-axis indicates 
the distance to the nearest disrupted Tube stations, and the y-axis shows 
changes in trip frequencies at those docking stations (Saberi et al., 
2018). A distance decay pattern can be observed during weekday dis
ruptions (e.g. Fig. 4 a, d), with bikeshare stations closer to Tube stations 
experiencing a greater increase in use, and these increases reducing with 
distance to affected Tube stations. This is consistent with the findings of 

Fig. 5. Ridership change in the hexagonal grid, white lines are disrupted Tube lines; (a) Ridership change - Strike 3; (b) Change ratio – Strike 3; (c) Ridership change 
– Strike 4; (d) Change Ratio – Strike 4. 

Y. Yang et al.                                                                                                                                                                                                                                    



Journal of Transport Geography 98 (2022) 103255

8

Saberi et al. (2018). However, for weekend strikes (Fig. 4 b), the pattern 
is not replicated; rather increases are observed at greater distances with 
the peak at 1000–1250 m from the disrupted Tube stations. The differing 
patterns of distance decay may be driven by cycling purposes. On 
weekdays, bike use is more heavily associated with utility cycling 
(commuting), whilst weekend trips are more likely to be discretionary 
and made for leisure purposes. This inference can be further supported 
by comparing line-level strikes and associated trips. During Strike 4 
(Fig. 6 d), the distance decay trend is more similar to Strike 1 (Fig. 6 a); 
whilst in Strike 3, no (or a less) obvious distance decay exists. Tube lines 
affected by Strike 4 run through many employment-related locations 
and are associated with many cycling trips for commuting purposes. By 
contrast, The Piccadilly line, affected in Strike 3, covers comparatively 
more tourist attractions than Central and Waterloo & City (Strike 4). So 
utilitarian commuting trips are less displaced in Strike 3, as shown by a 
lack of distance decay in Fig. 6 (c). A further interesting pattern is 
observed in line-level strikes (Fig. 6 c, d). There is an increase in trip 
frequencies for the most distant group (2000 m). This may be observed 
due to displaced Tube travellers switching to other travel options (e.g. 
overland local train services, buses, etc.) combined with bike travel for 
their journey, thereby contributing to more bike trips in typically less- 
heavily used parts of the LCHS network (Larcom et al., 2017). This 
phenomenon and related route changing behaviour is further analysed 
in later sections (Sections 4.3 and 4.4). 

4.2. Changes in docking station availability 

The increased trip volumes during strikes pose challenges for service 
provision. Time-series of “service pressure” measures during network- 

level strikes are shown in Fig. 7. This shows the frequency with which 
stations suffer from “low availability” throughout the day. 

For weekend strikes, the number of stations recorded as under 
pressure doubles during the weekday morning peak (8 to 10 am). 
Increased competition for bikes creates availability problems for the 
scheme as a whole. Service pressure at weekends also increases under 
strike events but in a different way to the weekday strikes, with a peak 
observed around 16:00 (Fig. 7 b) during the disruption. 

Line-level strikes lead to more localised trip increases, thereby 
bringing generally more service pressures to LCHS. Fig. 8 shows service 
pressure around specific Tube lines in the event of network- and line- 
level Tube strikes on weekdays. When line-level strikes occur (Fig. 8 
b, d), all distance groups generally show higher service pressure in the 
morning, but for evening periods (e.g. around 6 pm), bike stations 
further from the affected Tube lines (750–1000 m) do not exhibit such 
higher pressure. 

The results from the service pressure analysis – characterising where, 
when and to what extent docking stations become unusable on strike 
days – could inform future targeting of rebalancing strategies. It should 
also be noted that disruption events may counter-intuitively lead to 
patterns of usage that are beneficial to fleet management. There is evi
dence that usage under strike conditions can become more heteroge
neous. Analysing the dynamics in LCHS usage in greater spatial detail 
may therefore be instructive, and in the following section we present 
such an analysis, considering full OD flow data. 

4.3. Graph statistics 

Different graph statistics are derived from the full LCHS OD trip data, 

Fig. 6. Box plots of bike use changes with distance to the nearest Tube stations affected by disruption; (a) Strike 1; (b) Strike 2; (c) Strike 3; (4) Strike 4.  

Fig. 7. Time-series of service pressure during network-level Tube strikes, blue lines indicate non-strike day, red lines represent strike day; (a) Strike 1, weekday; (b) 
Strike 2, weekend. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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providing various insights into changes in spatial travel behaviours 
under disruption. Table 2 presents these statistics from network-level 
strikes along with what would be expected under normal conditions (a 
control group). Disruptions lead to higher graph connectivity (δ),which 
indicates more heterogeneous cycling behaviours - new OD pairs. The 
number of new OD pairs (L) increased by 80% for the weekday and 38% 
for weekend strike events. On the one hand, this greater diversity in 
cycling behaviour may indicate that a wider and new set of users are 
attracted to the scheme during strike days. On the other hand, it is 
perhaps a function of parts of the scheme under service pressure 
becoming partially unavailable at peak times under strike conditions 

(established in Section 4.2), and so existing users must find alternative 
routes; new OD pairs are introduced by bikeshare cyclists forced to use 
second- or third- preference docking stations due to the additional 
competition for bikes/spaces during strikes. 

Differences in centrality scores are also observed under strike events. 
Average node degree, d, is larger under both events, implying that 
docking stations are linked to a larger set of other stations. But the co
efficient of variation in node degree, cv(d), shows a contrasting pattern. 
Whilst the indicator remained unchanged for the weekend strike, cv(d) 
increased from 0.62 to 0.68 for the weekday strike. The reasons are 
twofold: (1) during weekday disruptions, where commuting and utility 
cycling tends to be the dominant trip purpose, demand is concentrated 
at particular space-times. Because of increased service pressure, some 
bikeshare cyclists are required to use alternative docking stations either 
to pick-up or drop-off bikes in intense demand regions. This will link 
many more nodes to one vertice; (2) and more importantly, due to the 
dominant commuting behaviours, parts of the bikeshare network con
necting key employment centres and transit hubs (e.g. King’s Cross) 
experience disproportionally more trip frequencies and therefore serve a 
more diverse set of stations than other parts of the city that are less 
strategically important. During weekends, however, trip purposes are 
typically discretionary. There may be an overall increase in LCHS usage, 
but this is not so spatially concentrated, so the cv(d) remains unchanged. 

Average link weight, w increases as a result of more trips being made, 
but the coefficient of variation, cv(w), shows an interesting opposite 
pattern. The value of cv(w) decreased under weekday strike while it 
increased under the weekend strike. Combining this pattern with the 
larger w in Strike 2 than Strike 1, a speculative explanation can be 
proposed: many of the new flows (OD pairs) occurring under weekday 
disruptions are of comparatively lesser weight than those occurring 
during the weekend strike event. It is likely that the new weekday pairs 

Fig. 8. Time-series of service pressure in service catchment of specific Tube lines; (a) Piccadilly line - Strike 1 (b) Piccadilly line - Strike 3; (c) Central line and 
Waterloo & City line - Strike 1; (d) Central line and Waterloo & City line -Strike 4. 

Table 2 
Graph Statistics of network-level strikes.  

Graph 
Property 

Strike 1 
(weekday) 

Strike 1 
control 
group 

Strike 2 
(weekend) 

Strike 2 control 
group 

N 735 739 742 740 
L 50,455 28,027 16,474 11,973 
L/N 68.6 38 22.2 16.2 
d  137.3 75.9 44.4 32.3 
cv(d) 0.68 0.62 0.63 0.63 
w  1.38 1.32 1.47 1.32 
cv(w) 0.80 0.98 1.27 0.84 
δ 0.187 0.103 0.06 0.044 
T 69,734 37,070 24,160 15,910 
a 0.001 0.098 0.071 0.069 
t 0.31 0.23 0.17 0.14 

N represent number of nodes; L is the number of links; d is the average node 
degree, cv(d) is the cofficient of variabtion of node degree; w is the mean link 
weight; δ = 2 L/N2 is defined as network connectivity; T is the sum of all link 
weights; a is the graph assortativity; t is the transitivity. 
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are between alternative or less-popular docking stations – made by 
commuting cyclists who are not able to complete their preferred trip 
(OD pair) due to the additional and highly concentrated demand. 
Further evidence to support this assumption is in the graph assortivity 
scores (a). For strike 1, assortivity shows an exponential reduction from 
0.098 to 0.001. In contrast, under Strike 2, assortivity slightly increased 
(by 0.002). This difference indicates that under weekday disruptions, it 
is more common to observe bike trips between an important, heavily 
used hub docking station and another, previously underused docking 
station; and by extension that weekday strikes induce new trip combi
nations (OD pairs) and possibly new users. In contrast, assortivity 
increased slightly under weekend strikes, suggesting that these more 
discretionary trips tend to be made typically between similarly impor
tant (popular) docking stations. 

Overall, both Strike 1 and 2 have contributed to a denser cycling 
network, with a larger number of travel OD pairs and increased average 
link weights – a function of greater LCHS use during strike events. 
However, due to different travel purposes and docking station avail
ability, the weekday strike (Strike 1) makes the graph structure more 
heterogeneous in terms of node centrality (degree), while the weekend 
strike (Strike 2) does not. 

Further analysis on node centrality is shown in Fig. 9, and illustrates 
the CDF (Cumulative Distribution Function) of degree and eigenvector 
centrality. A high node degree indicates a node is connected to many 

other nodes, while a high eigenvector score means that a node is con
nected to many other nodes, which are also high in centrality (Oldham 
et al., 2019). All CDFs in Fig. 7 follow a power law. Fig. 7 (a,b) suggests 
there is a higher probability of observing a node (a docking station) with 
a larger degree (connects to many other stations) during strikes on both 
weekdays and weekends, this accords with the patterns of d in Table 2. 
Interestingly, Fig. 9 (c,d) shows a diverging pattern in eigenvector 
centrality: in Fig. 9 (c) there is a large difference between non-strike and 
strike days, while in Fig. 9 (d) no such difference exists. This further 
reinforces the patterns previously identified. When a low degree node 
links to a high degree node – a frequently used docking station connects 
to a less frequently used docking station – the eigenvector score of the 
low node (the less frequently used docking station) will increase. This 
kind of situation is more common in Strike 1, as indicated by the 
assortivity changes in Table 2. During a weekend strike, however, 
docking stations are more likely to link to other docking stations with 
similar centrality. Therefore, many low-scoring nodes do not link and 
benefit from other high centrality nodes – during weekend strike events, 
there is a ‘doubling-down’ on existing travel behaviours with increased 
trips between already frequently used docking stations, presenting a 
“rich-club” effect (Zhou and Mondragón, 2004). 

Strikes 3 and 4 are line-level strikes, which also happened on 
weekdays. Therefore, the changed graph statistics (Table 3) share many 
similar trends with Strike 1. For example, higher d and w have been 

Fig. 9. Node centrality change in network-level Tube strikes; (a) Strike 1: degree; (b) Strike 2: degree; (c) Strike 1: eigenvector centrality; (d) Strike 2: eigen
vector centrality. 
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observed in Strike 1, 3 and 4. But a different pattern can be identified in 
cv(w). While strike 1 (network-level) shows a lower value, decreasing 
from 0.98 to 0.8 (Table 2), strike 3 and 4 both show increases in this 
index (Table 3), and is due to the effect of changing Tube routes. For 
example, in the evening peak, when all Tube lines are unavailable 
(Strike 1), commuters may cycle a long distance directly from their 
workplace to home/train station. Due to the large variance in work- 
home/train station location pairs, the bike travel flows will present 
higher randomness to connect different docking stations. Hence, higher 
homogeneous link weights may be observed, and lead to lower cv(w). 
When only certain Tube lines are affected (Strike 3,4), people may 
change their Tube route, and combine it with a shorter bikeshare 
journey to their destination. In this case, the cycling origin/destination 
randomness is lower than Strike 1 because many bike trips are aggre
gated at (made from/to) certain docking stations close to unaffected 
Tube lines. 

To obtain a more comprehensive understanding, and to confirm the 
changed travel behaviours as speculated here as well as in Section 4.1.2, 
the next part provides a supplementary analysis using flow maps. 

4.4. Origin-destination visualizations 

Whilst the graph statistics provide useful aggregate-level summaries, 
visual analysis of the OD flow data allows us to characterise with greater 
richness the nature of changes in response to the strike events. 

In Figs. 10 and 11, cycled OD pairs are represented as curves, col
oured with a gradient to indicate journey direction, with a yellow end 
representing journey origin and a red end indicating journey destination 
(Beecham et al., 2014). Flows are encoded according to the increases in 
flow frequencies recorded during network-level strikes (Strike 1 and 2) 
using curve width. To improve the readability of the flowmaps, only 
major increases, namely the flows with a frequency of 5 or higher, are 
presented in Figs. 10 and 11. During Strike 1 (weekday), increased trip 
frequencies are distributed across central London and the City of Lon
don. London’s large transit hubs can also be identified here. For 
example, increased trips are made to depart from or arrive at King’s 
Cross, Liverpool Street, Paddington and Waterloo. 

For Strike 2 (weekend), a different pattern is identified. There is a 
sense that bikeshare users “double down” on their typical weekend 
travel behaviour - increases are observed for apparently leisure trips 
made within Hyde Park and West London. There is also a stronger bi- 
directional link between the southeast corner of Hyde Park and Picca
dilly Circus, which are close to major shopping and entertainment areas 
in London’s West End. Higher trip counts around Regent’s park can also 
be identified. One of the most substantial increases in trip frequencies 
runs through the northeast and connects Victoria Park and the Broadway 
Market, and there are some comparatively long distance journeys from 
docking stations aound Liverpool Street and Millwall Park. Overall, the 

increased OD pairs typically connect one leisure or shopping spot to 
another. 

Fig. 11 illustrates weekday line-level Tube strikes, and some differ
ences to network-level disruptions (Fig. 10 a) can be found. Many major 
links in Fig. 10 (a) disappeared in Fig. 11. For example, in the case of 
train transfer, the stronger flow from Paddington to King’s Cross station 
(Fig. 10 a) is not visible in Fig. 11 (a); instead, many more trips are 
observed connecting King’s Cross and locations close to Tube line (e.g. 
Bakerloo line and Central line) stations in central London and the City of 
London. This phenomenon strongly implies the change of Tube routes 
among travellers. When all Tube services are unavailable, people may 
cycle from Paddington to King’s Cross to transfer trains, while if only 
Piccadilly line is in disruption, transit users will firstly travel via other 
Tube lines to stations that are close to King’s Cross, then combine a bike 
trip to reach their destination (King’s Cross). This highlights the role of 
cycle hire as a flexible travel mode, and its advantages in providing a 
service under different conditions for travellers to complete their 
journey, and strengthen urban and mass transit resilience. 

5. Discussion 

Several findings can be abstracted from this analysis. Firstly, the 
effect of public transit disruptions such as Tube strikes on bikeshare 
usage clearly varies depending on the nature of the public transit 
disruption. A network-level strike will increase overall bike trip fre
quencies throughout the day, whilst line-level disruption leads to higher 
usage mainly in the afternoons. There is also an expected distance decay 
effect to these increased trip frequencies, with docking stations closer to 
the disrupted Tube lines experiencing the largest increases in trip fre
quencies during the strike events. This is consistent with other obser
vational studies (Saberi et al., 2018), but we add that this distance decay 
effect is much stronger where the tube strike events occur in parts of the 
city that typically serve commuting journeys. The distance decay effect 
is much reduced, or even disappears entirely, for parts of the city or time 
periods that are associated with leisure activities. 

Secondly, the consequences of increased bikeshare usage on the 
LCHS’s usability is quantified by creating a novel service pressure index. 
Tube strikes are found to increase service pressure and the likelihood of 
docking stations either containing insufficient available bikes or docks. 
The consequences are most severe for weekday network-level strikes – 
the number of observed instances of docking stations under pressure 
generally doubles when compared to the non-strike control. For line- 
level strikes, the patterns of increased service pressure vary depending 
on the proximity of a docking station to the disrupted Tube stations. 

Thirdly, graph-based analysis has identified several trends. The re
sults indicate that Tube strikes can lead to a denser cycling network with 
higher numbers of trips and graph links. But weekday strikes tend to link 
nodes (bike docking stations) with varied centrality scores, and this is 
opposite to weekend disruption events when slightly more nodes with 
similar centrality are connected. These opposing patterns relate not only 
to differences in travel purpose (commute versus leisure), but also dif
ferences in observed service pressure during weekday and weekend 
disruption events. Moreover, visually representing changes in trip pat
terns via flow maps is instructive, with increased bikeshare trips con
necting central London with major rail terminals, suggesting that 
bikeshare is being substituted for (commuting) journeys that would 
otherwise be taken by Tube. These all imply the importance and po
tential of bikeshare as a flexible travel mode that might therefore 
strengthen urban transit resilience. 

Whilst the LCHS is demonstrated to provide an alternative travel 
option when other parts of the transit network are under disruption, the 
scheme soon reaches capacity, especially at peak times. Efforts to 
maintain a functioning bikeshare network under disruption events may 
have important social benefits – providing a cheap and accessible travel 
alternative, especially to lower-income groups whose employment may 
be more precarious, shift-based and less flexible (Green et al., 2012; Zhu 

Table 3 
Graph Statistics of line level strikes on weekday; Strike 3: Piccadilly Line; Strike 
4: Central Line and Waterloo & City Line.  

Graph 
Property 

Strike 3 
(Weekday) 

Strike 3 
Control 
group 

Strike 4 
(Weekday) 

Strike 4 Control 
group 

N 784 785 785 784 
L 29,569 27,207 28,588 25,932 
L/N 37.7 34.7 36.4 33.1 
d  75.4 69.3 72.8 66.1 
cv(d) 0.64 0.65 0.64 0.64 
w  1.28 1.27 1.3 1.28 
cv(w) 0.74 0.64 0.68 0.65 
δ 0.096 0.088 0.093 0.084 
T 38,321 34,883 37,648 33,562 
a 0.092 0.096 0.09 0.098 
t 0.22 0.21 0.21 0.2  
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et al., 2017; Younes et al., 2019). The maintenance and bike fleet 
rebalancing work should take the impacted behaviours of travellers into 
consideration. For example, when line-level disruptions happen, it is 
also important to provide more cycles around unaffected Tube lines, 
because they will experience higher demand due to travellers’ changing 
Tube routes. Pop-up cycle lines may be set up between different hotspots 
locations as identified in this work. It helps to enlarge the space to meet 
the temporary increased cycling activities, provide a safer environment 
and eliminate potential congestion on cycle lanes. 

Disruptions and reduced capacity in other public transport will lead 
to higher usage of bikeshare, and these might be developed as new travel 

habits for people. The social distancing guidance may lead to much 
higher LCHS usage, combining with the increasing popularity of sus
tainable travel mode, more investment into LCHS, and improved service 
management and station capacity are required to meet the potential 
demand. This also helps to promote and facilitate greener and healthier 
travel of people. 

The results in this work are derived from analysing bike sharing data 
under the context of temporary public transit disruptions. But they also 
help to guide some long-term strategy directions to support sustainable 
travel mode in the future. The UK government has set its path to net-zero 
transport (2050), and the strategic priorities for transport 

Fig. 10. Increased OD flows during network-level Tube strike; (a) Strike 1; (b) Strike 2.  
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decarbonisation include “Accelerating modal shift to public and active 
transport” (Department of Transport, 2021). Public transport and active 
travel will be the natural first choice for daily activities in the future 
(Department for Transport, 2021). Therefore, a cohesive, widely avail
able and resilient net-zero transport network is the key to achieving this. 
It is important to consider how the bike-sharing system might better fit 
the existing public transport system and help fill various transit gaps 
caused by temporary incidents such as infrastructure maintenance, so
cial events, and pandemic. In addition, better cycling facilities, safer 
cycling routes, broader coverage of cycle hire service areas, higher 
density/capacity of bike parks and docking stations will make it easier 
for people to use cycle hire schemes (Department of Transport, 2021). 

The UK government also aimed to increase active travel modes such 
that cycling and walking account for at least half of all journeys made in 
towns and cities by 2030 (Department of Transport, 2021). In the 
context of Tube disruptions, people are “forced” to use alternative travel 
modes, and the newly observed travel behaviours (new OD pairs) cap
ture some additional structure around the geography of demand. 
Therefore, understanding the behaviours during various pubic transit 
disruptions, for example, road closure, major congestion, not limiting to 
Tube strike, may help direct infrastructure planning activity. In a sense, 
the result of “forcing” more people to use alternative sustainable travel 
modes (e.g. Tube strike) might be similar to “encouraging” people to use 
active travel (in the future). Uncovering and interpreting the changed 

Fig. 11. Increased OD flows during line-level Tube strike; (a) Strike 3; (b) Strike 4.  
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behaviour, especially the geography of increased trips, will be vital for 
planning, stimulating and matching future demand with cycling 
infrastructure. 

A shortcoming of this work is the lack of demographic and socio
economic information on bikeshare users. Some studies (Green et al., 
2012; Zhu et al., 2017) have suggested that low-income groups may 
benefit more from bikeshare during mass transit failure, also more oc
casional users have seen using the sharing bikes. Therefore, future 
research will examine the characteristics of different groups of users and 
compare their modal shift behaviours. Surveys will also be used to 
confirm the trip purpose during varied strike events, to gauge their 
attitude and preferences on using bikes as an alternative travel mode. In 
the analysis, we speculated that new users might have been introduced 
to the scheme through the strike events. Decreases in the assortivity 
scores during weekday strikes implied new, or non-standard, OD trip 
pairs were being made in larger numbers. To validate this, further ex
amination of assortivity scores immediately post-strike (residual effect) 
will allow more insights to be obtained. In Section 3.3.1, this work 
aggregated ridership in hexagonal gird cells with a length of the side of 
500 m. The choice of size is relatively arbitrary and based on the fact 
that the average distance between bike share stations is roughly 500 m. 
Because bike stations are not evenly distributed, this approach may lead 
to cells in the city centre have more stations, while cells at the fringe 
contain few or no stations. To address the problem and avoid creating 
misleading interpretations on the result, we have carefully generated 
and examined other maps and statistics (e.g. change ratio, individual 
station-level flowmap) to supplement the analysis drawn from the grid 
map. 

6. Conclusion 

This work combined spatiotemporal analysis and graph-based ap
proaches to explore the changing behaviour of bikeshare users in the 
LCHS as a result of four Tube strikes. Changes in user cycling activities 
and of bikeshare usability (the availability of bikes and docking points) 
were quantified. This study demonstrates that there is a distinct geog
raphy to affected travel behaviours and ridership that is consistent with 
previous studies (Saberi et al., 2018), with the pattern conditional on 
whether the disrupted parts of the city and the time periods relate to 
commuting activities. Systematic changes in travel behaviour were 
found by examining changes in OD flow graph structures. The observed 
variation in bikeshare usage under disruption events demonstrates the 
flexibility of cycle hire schemes and their potential for enhancing urban 
transit resilience. The findings of this work and the methods used pro
vide useful information and tools for scheme operators to better manage 
system resources and to support cycle infrastructure policy-makers and 
planners in designing interventions aimed at incentivising cycling. 
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