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Highlights 9 

 10 

i. Xylem embolism resistance, P50, and minimum leaf water potential, Pmin, vary 11 

substantially across nine studied H. brasiliensis clones. 12 

ii. Across clones there is a growth-hydraulic safety trade-off such that fast-growing 13 

clones have lower hydraulic safety margins.  14 

iii. Hydraulic traits are important predictors of clone growth rate.   15 

 16 

Abstract 17 

 18 

Competition for land resources is forcing rubber (Hevea brasiliensis Müll. Arg.) production 19 

into more agroclimatically vulnerable zones, which are more likely to be affected by 20 

drought. It is therefore of interest to determine whether there are particularly drought 21 

resistant rubber genotypes. Established plant drought-resistance indicators include xylem 22 

resistance to embolism under water stress (P50, water potential at which 50% xylem 23 

conductivity is lost), and hydraulic safety margins (HSM50), defined as the difference 24 

between P50 and minimum leaf water potential (Pmin) under driest conditions in the year. 25 

We report here on measurements of in-situ growth performance of nine mature rubber 26 

clones at an agro-climatically marginal site in North-Western Malaysia and their hydraulic, 27 

leaf and stem traits to investigate inter-clonal variation in drought resistance and growth 28 

rate. We find that P50 varies substantially across clones, between -3.05 and -1.37 MPa, 29 

while HSM50 varied within the range of -0.11 MPa to 1.37 MPa. Similar to what has been 30 

reported across species, we find a growth-hydraulic safety trade-off between rubber 31 



 

2 
 

clones with faster growth rates associated with a lower HSM50 and less negative P50, with 32 

one exception. Based on hierarchic linear regression we find that almost all of the best 33 

growth models include hydraulic traits, besides morphological traits, indicating that 34 

hydraulic traits are important to predict growth accurately. Furthermore, rubber genotypes 35 

with high growth rate and low hydraulic safety margin (HSM50) were associated with lower 36 

wood density, higher leaf to sapwood area and larger leaf area. Overall while there are 37 

clones that are more drought resistant and are thus suited for plantation in marginal areas, 38 

they tend to be less productive. 39 

 40 

Keyword: rubber clones; hydraulic traits; growth; rubber; Hevea brasiliensis; 41 

drought resistance 42 

 43 

1.0 Introduction 44 

 45 

Anthropogenic climate change has led to substantial increases in global temperature and 46 

is altering hydrological regimes, with important functional consequences for woody 47 

species (IPCC 2021). In many regions of the Earth, continued climate change is predicted 48 

to increase the frequency, duration and intensity of drought events (Chiang et al. 2021) 49 

that lead to reduced tree growth and increased risk of drought mortality (Criado et al., 50 

2020; McDowell et al., 2018; Panchen et al., 2014). Plant hydraulic properties that 51 

describe the ability of the xylem to transport water under soil water stress are 52 

fundamentally important for understanding the impacts of drought on growth. Xylem sap 53 

is transported under tension (negative pressure), and this tension intensifies under 54 

progressive soil water depletion. Very high tensions (very negative pressures) lead to air 55 

formation in the xylem (cavitation), disrupting the water column and restricting water 56 

transport to the leaves (Li et al., 2018; Choat et al., 2012).  57 

 58 

Species with high assimilation rates are known to have more efficient water transport 59 

systems (higher hydraulic conductivity in the xylem). However, high water transport 60 

efficiency may also be associated with reduced ability to resist cavitation in the xylem 61 

under water stress conditions (e.g. Yan et al. 2020) and thus may be more susceptible 62 
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to drought-induced mortality (e.g. Rowland et al. 2015). The metric most often used to 63 

characterise xylem resistance to embolism is the water potential associated with a 50% 64 

reduction in xylem hydraulic conductance (P50). Plants can regulate their stomates to 65 

avoid low water potentials, and thus a further important hydraulic property is the hydraulic 66 

safety margin which how close plant water potential drops relative to critical cavitation 67 

thresholds such as P50. HSM integrates soil water status with plant properties including 68 

rooting depth and stomatal regulation strategies. In recent years, a number of studies 69 

have focused on interspecies vulnerability in xylem resistance to embolism formation 70 

(Feng et al., 2021; Chen et al., 2021; Savi et al., 2019; Zhu et al., 2017; Saiki et al., 71 

2017; Anderegg et al., 2016; Li et al., 2015). Only a relatively small number of studies 72 

(e.g. Yáñez et al. 2021; Jinagool et al. 2018) have focus on intraspecific variation in 73 

hydraulic attributes. An understanding of intra-specific heterogeneity is vital for 74 

considering the adaptive potential of a given species. Such variability may result from 75 

genetic distinctions between individuals or maybe the expression of phenotypic plasticity 76 

(Aitken et al., 2008).  77 

 78 

It was recently proposed that a fundamental trade-off exists between hydraulic safety 79 

margins and plant growth rates such that plants with acquisitive strategies (high growth 80 

rates) take more hydraulic risks (i.e. have lower safety margins) than those with more 81 

conservative strategies (Oliveira et al., 2021). Such a trade-off has important implications 82 

for carbon storage as it suggests that those plants that accumulate carbon most rapidly 83 

and contribute more to ecosystem woody productivity are also the most vulnerable.  This 84 

framework has received some support at the species level (e.g. Eller et al., 2018) but 85 

has, to the best of our knowledge, never been evaluated at the intraspecific level. In this 86 

study, we provide an explicit test of the HSM-growth trade-off across clones of a single 87 

species, Hevea brasiliensis (rubber), considering nine clones planted in a climatically 88 

marginal region of Malaysia.   89 

 90 

H. brasiliensis was chosen for our study not only to test ecological theory but also because 91 

of its important place in the Malaysian economy. Rubber is Malaysia’s second most 92 

important crop, covering a planted area of over one million hectares (~3% of Malaysia's 93 



 

4 
 

area) and providing substantial income and employment. In 2015, the entire rubber 94 

production was 722,122 tonnes, and the rubber industry contributed 7.2% of the national 95 

agriculture GDP (MESTECC, 2018). The optimal climate window for rubber production 96 

consists of annual rainfall between 1,500 and 2,500 mm and mean annual temperatures 97 

of 23°C to 30°C (MRB, 2009; Priyadarshan and Goncalves, 2003; Subramaniam, 98 

1987). An increase in annual temperatures above 30°C, together with a reduction in 99 

rainfall below 1,500 mm, has been predicted to prolong the immature period and reduce 100 

rubber yield by up to 10 per cent. Thus an understanding of the drought sensitivity of 101 

Malaysian rubber clones is crucial in the context of a changing climate.  102 

 103 

Given competing demands for other land uses, rubber plantations now occupy 104 

increasingly marginal lands in Malaysia. Indeed, only 35% of Malaysian rubber 105 

plantations are in areas with a suitable or highly suitable climate and soil, with the 106 

remainder considered marginal with regards to soil, climate or both factors combined 107 

(Hazir et al., 2020). Climate change is expected to affect production disproportionately in 108 

marginal areas as even relatively small climate-induced reductions in growth could mean 109 

that they will become economically unviable. In Malaysia, climate change may be 110 

expected to have the highest impact on agro-climatically marginal lands in the more 111 

drought-prone North-Western states. It is therefore of interest to determine how climate-112 

resilient rubber trees are in general and whether there are particularly well-suited clones 113 

regarding resistance and productivity for expected future climate conditions. 114 

 115 

Although inter-clonal variation in xylem vulnerability to cavitation has not been studied in 116 

rubber clones mainly used in Malaysia, it has been studied at other locations. Jinagool 117 

et al., 2015 found that in Thailand vulnerability to cavitation in branches in H. brasiliensis 118 

did not vary among clones, despite differences in growth and latex yield. A recent study 119 

conducted by Waite, 2020 in Indonesia also found no significant difference in xylem 120 

embolism resistance between mature rubber trees from the same clone planted in a well-121 

drained vs. a riparian environment. However, none of these studies have considered how 122 

hydraulic safety margins, considered to be the strongest predictor of drought-induced tree 123 
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mortality (Anderegg and Meinzer, 2015) vary across clones. Our study thus provides the 124 

first examination of how this critical property varies across clones.  125 

 126 

We specifically consider the following questions: 1) Do Malaysian rubber clones vary in 127 

P50 and HSM? 2) Is there evidence that HSM-growth trade-off applies across clones of 128 

H. brasiliensis? 3) Are hydraulic traits related to commonly measured leaf/wood traits? 129 

and 4) How important are hydraulic traits relative to other functional traits in determining 130 

growth of H. brasiliensis? To address these questions, we integrate measurements of 131 

hydraulic traits with measurements of stem growth and of commonly measured leaf/stem 132 

traits including leaf area (LA), leaf mass per area (LMA), leaf dry matter content (LDMC), 133 

leaf thickness (LT), leaf area to sapwood area (LA: SA), wood density (WD), tree height 134 

and bark thickness were measured (Bhusal et al., 2021; McGregor et al., 2020, Chen 135 

and Cao, 2015; Chaturvedi et al., 2011; Kitajima and Poorter, 2010). Attributes such 136 

as wood density are much easier to sample than hydraulic traits and the existence of 137 

strong bivariate relationships between such traits and hydraulic properties could facilitate 138 

the assessment of sensitivity to drought. 139 

 140 

2.0 Methodology 141 

 142 

2.1 Site 143 

 144 

The study was performed inside a 40 ha area at Sungai Sari Research Station which is 145 

part of a 640-ha plantation operated by the Malaysian Rubber Board in Kedah, Malaysia 146 

(6° 24' 41" N, 100° 36' 25" E; altitude 166 m). Sungai Sari is located in the Northern region 147 

of Peninsular Malaysia in the Padang Terap and Kubang Pasu district of Kedah (Figure 148 

1). The main economic activities are agriculture and trading. The climate is tropical 149 

monsoonal (Am in the Köppen and Geiger classification). Climatic seasonality is more 150 

pronounced at the study site compared to other rubber-planting areas of Malaysia, with 151 

marked reductions in rainfall (< 50mm month-1) in the Northeast monsoon season 152 

(December 2019 until February 2020). Sungai Sari is also characterised by higher 153 

maximum air temperatures compared to other rubber plantations in Malaysia, with daily 154 
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maximum temperatures close to or exceeding 32 degrees in most months of the year. It 155 

is located in hilly terrain and considered an agro-climatically marginal area. The soil falls 156 

under the Bungor series based on the Malaysian Soil Taxonomy or Ultisol under US Soil 157 

Taxonomy and subgroups of Typic Paleudult according to the USDA Soil Taxonomy or 158 

Haplic Acrisol under FAO Unesco Legend classification. The texture of Bungor soils is 159 

the result of these soils developing over mixed sedimentary rocks and shale with brown 160 

colour (hue 7.5-10 YR in the Munsell system), while the subsoil (15-30 cm) is sandy clay 161 

to clay (Shamshuddin and Darus, 1976; Zainol, 1985; De Dapper and Debaveye, 162 

1986; DOA, 2010; DSM, 2015). The area initially was primary forest before the Malaysian 163 

Rubber Board (MRB) developed it as a rubber research station. 164 

 165 

We focus here on 20 different stands (called 'tasks'), with each task covering an area 166 

between 0.8 and 1.3 hectares. Each task was planted on an 8 m wide terrace with 167 

individuals belonging to a single H. brasiliensis clone or a mix of two to three rubber 168 

clones. Trees were planted at 2.3 m distance from each other, resulting in a planting 169 

density of 550 trees per hectare. All nine rubber clones investigated in this study are 170 

known as Latex-Timber Clones (Aris, 2005) and are listed in the MRB Clone 171 

Recommendation 2021 (MRB, 2021) except for RRIM 929 and RRIM 2025. All trees were 172 

planted in 2010 and are thus of the same age (Supplementary Table A.1). Hired rubber 173 

tappers tap the trees for latex on the lowest tapping level (1.5 m above ground) where the 174 

bark had been removed to harvest latex (so-called 'first basal virgin panel') once every 175 

three days. This sampling protocol is known as the d/3 tapping system and had been 176 

applied for four to five years prior to the data collection undertaken in this study. 177 

 178 

We randomly sampled twenty healthy trees from each of the nine rubber clones. Thus, in 179 

total, 180 trees were selected. Each selected tree was marked and tagged. We generally 180 

chose trees close to each other to reduce soil and topographic variability. Maximum 181 

temperature (Tmax, °C), mean temperature (Tmin, °C), minimum temperature (Tmean, °C), 182 

rainfall (mm), and relative humidity (RH, %) were measured by an in-situ weather station 183 

(Davis Instruments WeatherLink, Vantage Pro) as well as by a weather station owned by 184 
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the Malaysian Department of Irrigation and Drainage located approximately 5 km from 185 

the study site (as a backup) (Figure 1).  186 

 187 

Our measurements were made from August 2019 until September 2020. This period 188 

includes the dry season from December 2019 to February 2020 with low rainfall (less than 189 

50 mm month-1) and high temperatures (above 30°C) which are followed by the wet 190 

season. During the dry season, rubber trees lose their leaves, with leaf flush occurring 191 

between March and May. Total rainfall during our study period of 1,427 mm is lower than 192 

the national annual average rainfall for Peninsular Malaysia (about 2,000 mm) and lower 193 

than the historical average annual rainfall for the North-Western region of Peninsular 194 

Malaysia (2,213 mm) (MESTECC, 2018). It is also slightly below the recommended 195 

minimum total annual rainfall for rubber plantation of 1,500 mm (MRB, 2009).  196 
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197 

Figure 1 Study site and climate data within the study period.198 
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2.2 Tree height and stem growth rate 199 

 200 

We measured tree height using a laser rangefinder embedded with a hypsometer (Nikon 201 

Forestry Pro II, Tokyo, Japan). Growth was measured monthly at the end of the month, 202 

starting in August 2019 until September 2020, except for the total national lockdown 203 

period because of the Covid-19 pandemic (March 2020 until May 2020). The dendrometer 204 

bands, built by ourselves based on the design of Kho et al. (2013), were installed at 160 205 

cm height or slightly above the tapping panel, usually at 165 cm height. Circumference 206 

increments (mm month-1) were determined from the bands using a high precision digital 207 

Vernier calliper from which diameter growth rates was calculated (dividing by 𝜋). 208 

 209 

2.3 Hydraulic traits 210 

 211 

2.3.1 Xylem vulnerability curves 212 

 213 

The measurement of branch xylem embolism vulnerability was made using the recently-214 

developed pneumatic method (Pereira et al., 2016; Bittencourt et al., 2018) combined 215 

with the bench dehydration technique used to induce cavitation (Sperry et al., 1988). The 216 

pneumatic method measures xylem air discharge which can be translated into a 217 

quantitative measurement of embolism formation. The pneumatic method has now been 218 

widely tested, and embolism resistance metrics derived from this method have been 219 

found to agree well with those derived from traditional hydraulic methods (Tavares 2019; 220 

Bittencourt et al., 2020; Zhang et al., 2018; Pereira et al., 2020; Wu et al., 2020; Brum 221 

et al., 2019; Oliveira et al., 2019; Barros et al., 2019), as well as with a new non-222 

hydraulic optical method (Guan et al., 2021) although some recent studies suggest it may 223 

overestimate vulnerability to embolism in relation to other methods (Sergent et al. 2020, 224 

Chen et al. 2021). The pneumatic method is ideally suited to deployment in the field due 225 

to its low cost (Paligi et al., 2021), rapid accessibility of the methodology during the study 226 

period (during Covid 19 pandemic), easy setup and applicability in a remote location. 227 

Simultaneous measurements of air discharge and water potential were made repeatedly 228 
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for each sampled branch over three to four days while the branch was dried to construct 229 

xylem vulnerability curves.  230 

 231 

In total, we measured vulnerability curves for 30 branches. We harvested three branches 232 

from three individuals for all rubber clones except RRIM 2007, RRIM 2025 and RRIM 233 

3001, where we harvested four branches from three individuals. Branches of 234 

approximately 1 m in length were cut using a long telescopic pruner, selecting only sunlit 235 

branches, and sampling before dawn under non-transpiring conditions. After cutting, 236 

samples were immediately wrapped in wet tissue and covered with thick black plastic 237 

before transporting the branches from the plantation to a small field laboratory (~10 238 

minutes by four-wheel drive). Upon arrival in the laboratory and before connection to the 239 

air discharge apparatus, branches were recut under water to preserve full hydraulic 240 

conductivity and covered with an opaque black plastic bag for at least one hour to allow 241 

equilibration of leaf and xylem water potentials.  242 

 243 

Before attachment to the pneumatic apparatus, a small amount of bark was cut from the 244 

branch to ensure that latex exudation did not block the xylem vessels during the 245 

measurement. After that, the branch end was fixed inside a rubber tube. To obtain an 246 

airtight seal between the rubber tube and the branch, the branch was wrapped with plastic 247 

film before being inserted into the rubber tube. A plastic clamp was fastened around the 248 

rubber tube where the branch had been inserted.  249 

 250 

The vacuum reservoir's partial vacuum (2L conical glass flask) was created using an 251 

electric pump (35-40 kPa). After opening the vacuum reservoir to the branch, air was 252 

discharged from the branch for 2.5 minutes, after which the absolute pressure was 253 

measured again (Pf, kPa). The sample was then disconnected from the pneumatic 254 

system. From the pressure change, the air discharge volume is calculated. Immediately 255 

after air discharge determination, a random leaf was cut from the measured branch to 256 

determine its leaf water potential using a Scholander pressure chamber (Model 1505D, 257 

PMS Instrument, Oregon, USA) coupled to a portable microscope to capture precisely 258 

the pressure at which liquid starts to exude from the leaf petiole. Glue was applied to the 259 
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leaf cut to prevent the entry of air into the branch. The branch was then left to dry (bench 260 

dehydrated) for an hour before placing it inside a black plastic for equilibration between 261 

leaf and xylem water potentials. The above steps (joint determination of air discharge and 262 

water potential) were repeated throughout the bench dehydration process. We did not 263 

establish a priori a terminal water potential value at which to conclude the measurements. 264 

Instead, we followed protocols in other studies where measurements were continued until 265 

a plateau in air discharge values was reached (Pereira et al. 2016; Barros et al. 2019).  266 

We note that for two clones (RRIM 2002 and 2024), leaves fell from the branches prior to 267 

clear plateaus being reached (Supplementary Figure A.2). 268 

 269 

Data processing and analysis were done using RStudio (R Core Team, 2016 [version 270 

1.1.463.0]). To estimate P50, the leaf water potential at which 50% of conductivity is lost, 271 

we followed Pammenter and Willigen (1998) and fitted the model using Equation 1 to 272 

the air discharge versus leaf water potential data. Here PAD is percentage of air 273 

discharged from the branch relative to the maximal discharge (%); S is the slope of the 274 

curve; Px is xylem leaf water potential (MPa). 275 

 276 𝑃𝐴𝐷 = 1001 + e[ 𝑆25(𝑃𝑥−𝑃50)] Equation 1 

 277 

P50 represents the steepest part of the vulnerability curve (Choat et al., 2012), where 278 

small changes in xylem tension result in large changes in conductivity.  P12 and P88 were 279 

also estimated based on Sparks and Black (1999) and Domec and Gartner (2001), 280 

respectively as Equation 2 and Equation 3. 281 

 282 𝑃12 = 𝑃50 + 2( 𝑆25) Equation 2 

𝑃88 = 𝑃50 − 2( 𝑆25) Equation 3 

Curves were fitted for each clone in turn, combining all individuals of each rubber clone.  283 

 284 
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2.3.2 Determining hydraulic safety margins 285 

 286 

Predawn (before sunrise) and midday (12 AM to 14 PM local time) leaf water potential 287 

from five individuals was measured in situ for top of canopy sun-exposed fully expanded 288 

branches (two leaves per branch, a branch per individual) for five individuals for each of 289 

the nine rubber clones in both the wet and the dry seasons using a Scholander pressure 290 

chamber (Model 1505D, PMS Instrument, Oregon, USA). The minimum leaf water 291 

potential, Pmin is the midday leaf water potential during the peak of the dry season. As all 292 

H. brasiliensis clones evaluated in this study lose their leaves in February (the final month 293 

of the 3-month dry season – see Figure 1), Pmin was measured in January 2020 as this 294 

corresponded to the driest time of the year before leaf senescence ensued. Combining 295 

independently measured leaf water potentials measured over the year, Pmin and P50, the 296 

hydraulic safety margin (HSM50), can be calculated:  297 

 298 𝐻𝑆𝑀50 = 𝑃𝑚𝑖𝑛 − 𝑃50        . Equation 4 

  299 

2.4 Leaf and stem traits  300 

 301 

We measured the following leaf and stem traits: leaf area (LA), leaf mass per area (LMA), 302 

leaf dry-matter content (LDMC), leaf area to sapwood area (LA: SA), leaf thickness (LT), 303 

wood density (WD) and bark thickness. Leaf traits were measured using the same 304 

branches samples from hydraulics traits measurement. We measured these traits during 305 

the wet season and avoided the dry season and the leaf flushing period. Only fully 306 

expanded mature leaves were used. Fresh leaves were collected from five individuals for 307 

each rubber clone (Supplementary Table A.6). In total 494 leaves were scanned (LiDE, 308 

Canon, Japan) and processed using ImageJ v1.52p (Schneider et al., 2012) to 309 

measured its leaf area (cm2) (Supplementary Table A.6).  Leaf mass (g) per area (m-2) 310 

(LMA) and leaf oven-dry mass (mg) per unit leaf fresh mass (g-1) (LDMC) were 311 

determined following standard protocols (Wilson et al., 1999; Vendramini et al., 2002; 312 

Cornelissen et al., 2003).   313 

 314 
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The fresh mass of an individual leaf was measured using a precision balance (Jadever - 315 

0.01 g, Taipei, Taiwan). Then, samples were wrapped in moist paper and kept in sealed 316 

plastic bags to promote rehydration. All samples were kept inside a closed polystyrene 317 

cooling box filled partially with ice to maintain the temperature below 6°C. We measured 318 

the leaf's water-saturated fresh and dry mass using an analytical balance (Ohaus Pioneer, 319 

0.0001g). Samples were oven-dried (Memmert B40, Germany) at 70 °C for at least two 320 

days before measuring dry mass. Fresh leaf thickness was measured using a digital 321 

thickness gauge (Mitutoyo - 0.001 mm, Kanagawa, Japan) at least four points of each 322 

leaf. The sapwood area (n=90) was measured on sunlit terminal branches after bark 323 

removal using a high precision Vernier calliper.  324 

 325 

To measure stem bark thickness and wood density we extracted cores from 10 individuals 326 

for each rubber clone using an increment borer (Haglöf 3, Ø 5.15 mm, Långsele, Sweden) 327 

at a height of 1.5 m above ground. Bark thickness was then measured using a thickness 328 

gauge. After removing the bark, the remaining tree cores (of 6-9 cm length) were also 329 

used to determine wood density (via the fixed volume of cores). The fresh weight and 330 

length of core samples were weighed and measured before they were oven-dried until a 331 

constant weight was achieved (105°C, ~72 hours) (Farias et al., 2020; Schuldt et al., 332 

2013).  333 

 334 

2.5 Statistical analysis 335 

 336 

We tested for normality of measurements using the Shapiro-Wilks test (rejection level p 337 

> 0.05). We used one-way analysis of variance (ANOVA) followed by post-hoc Tukey 338 

tests to test for differences among clones in P50, hydraulic safety margins and leaf/stem 339 

functional traits. Linear regressions were used to test for significant relationships between 340 

traits and growth rates using York's method (York et al., 2004; Pieter, 2018), which 341 

accounts for errors in x and y (York, 1968;). Significance of linear relationships was 342 

assessed using the reduced chi-square test, with relationships considered significant at 343 

p< 0.05.  Bivariate regressions were repeated excluding the two clones where a clear 344 
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plateau was not reached to assess the influence of these values on the overall 345 

relationships. 346 

 347 

Linear mixed-effects models of the relationship between rubber growth rate and the total 348 

rainfall were constructed using the "lme4" function (Bates et al., 2012), with rainfall 349 

treated as fixed effect, and rubber clone included as a random effect.  350 

 351 

We applied backward stepwise regression (Chatterjee and Hadi, 2015; Yan and Su, 352 

2009) to determine which combinations of hydraulic, leaf and stem traits best explain H. 353 

brasiliensis growth, and separately height, and retained only those traits with the highest 354 

partial correlation with the growth. We measured multicollinearity using the variance 355 

inflation factor (VIF), adopting as a rule of thumb that VIF must be less than 10 (Kalnins, 356 

2018; O'brien, 2007; Kutner et al., 2005). We removed variables from the models if they 357 

were highly correlated with other variables and led to VIF higher than five. Model 358 

performance was assessed using Akaike’s Information Criterion (AIC) to distinguish 359 

among a set of possible models describing the relationship between hydraulic traits, tree 360 

traits, and growth. The best-fit model was selected based on fewer traits, VIF less than 361 

five and had the lowest AIC. All of the tests were executed using SPSS v25 (IBM Corp., 362 

Armonk, New York) and RStudio (version 1.4.1103, PBC).   363 

 364 

3.0 Results  365 

 366 

At the starting point of the stem growth measurements in August 2019, all nine rubber 367 

clones had a diameter-at-breast-height (DBH) between 16.8±1.8 cm and 22.1±3.7 cm 368 

(F(8,171)= 8.042, p= 0.00) (Supplementary Table A.2). In general, all rubber clones 369 

followed a similar growth pattern with a slow stem growth rate and shrinking phase during 370 

the first 6 months of data collection (September 2019 to February 2020) and a high growth 371 

rate in the last 6 months (March 2020 to August 2020) (Figure 2 and Supplementary 372 

Figure A.1).  373 

 374 
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Mean (±standard deviation) growth rate from September to November 2019 varied from 375 

0.17±0.27 mm month-1 (RRIM 2007) and 2.2±1.53 mm month-1 (RRIM 2023) across 376 

clones (F(8, 170)= 16.062, p= 0.00) (Supplementary Table A.2). From March to May 377 

2020, stem growth rates of all rubber clones increased substantially with the highest and 378 

the lowest recorded growth rate for RRIM 928 and RRIM 2007 of 6.91±2.54 mm month-1 379 

and 2.77±1.27 mm month-1, respectively (Figure 2). Growth rates continued to increase 380 

until September 2020. During June to September, a period with high rainfall 381 

(Supplementary Table A.3), the leaves were in a mature stage. Over the entire study 382 

period, the highest mean growth rate was 4.07±1.39 mm month-1 (RRIM 928) and the 383 

lowest growth rate was 1.17±0.45 mm month-1 (RRIM 2007) (Supplementary Table A.2). 384 

 385 

The stem growth rate was not related to tree height (p= 0.587). The tree height for the 386 

same age trees varied between 13.4±1.7 m for two rubber clones of RRIM 2007 and 387 

RRIM 2025 and 8.4±1.4 m (RRIM 2001) (Supplementary Table A.2). 388 

 389 

 390 
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Figure 2 Cumulative stem growth (mean±sd) of nine rubber clones (n=180) during the 391 

study period (August 2019 – September 2020). 392 

 393 

3.1 Leaf water potential daily and seasonal cycle 394 

 395 

Daily leaf water potential cycles follow the familiar pattern of lower leaf water potentials 396 

at midday compared to predawn (Figure 3a), both during the wet and dry season. During 397 

the dry season, mean leaf water potentials are more negative for both predawn and 398 

midday (dry season: -0.70±0.25 MPa and -1.37±0.30 MPa; wet season: -0.42±0.14 MPa 399 

and -0.90±0.23 MPa). There are some inter-clonal differences: midday leaf water 400 

potentials varied between -1.87±0.18 MPa (RRIM 2002) and -0.94±0.08 MPa (RRIM 401 

2025) during the dry season and -1.27±0.04 MPa (RRIM 2007) and -0.64±0.02 MPa 402 

(RRIM 2025) during the wet season, respectively (Supplementary Table A.4). Midday 403 

leaf water potentials were strongly associated with predawn leaf water potential 404 

regardless of the wet or dry season (r= 0.88, p< 0.01 and r= 0.90, p< 0.01) but were not 405 

significantly related to tree height (r= -0.21, p= 0.596 and r= -0.29, p= 0.444) 406 

(Supplementary Figure A.3).  407 

 408 

3.2 Interclonal hydraulic trait variation 409 

 410 

3.2.1 Xylem embolism resistance and hydraulic safety margin 411 

 412 

Xylem resistance to embolism, P50, of nine H. brasiliensis genotypes ranged between -413 

3.05±0.83 MPa (RRIM 2007) and -1.37±0.23 MPa (RRIM 928) (Figure 3b). P88, varied 414 

between -4.16±0.85 MPa to -2.29±0.4 MPa (Supplementary Figure A.2) and P12 varied 415 

between -1.58±1.05 MPa and -0.54±0.02 MPa (Supplementary Table A.4). P50 was 416 

strongly positively associated with the minimum leaf water potential observed in the dry 417 

season (Pmin) (r= 0.68, p< 0.05) and also with pre-dawn leaf water potential in the wet 418 

season (r= 0.68, p< 0.05) and the dry season P50 (r= 0.64, p< 0.05) (Supplementary 419 

Table A.5). 420 

 421 
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Hydraulic safety margins, HSM50, were positive for most clones with one exception (RRIM 422 

3001) (Figure 3b). For almost all rubber clones (except RRIM 2007 and RRIM 929) safety 423 

margins were smaller during the dry season than during the wet season. For a few clones, 424 

the safety margin during the dry season was close to 0 (RRIM 2002 and RRIM 928). Only 425 

two clones were found to have statistically different dry season HSM50, with RRIM 2007 426 

having a significantly higher safety margin than RRIM 3001 (Supplementary Table A.4). 427 

The diurnal range of midday and predawn leaf water potential during the wet and dry 428 

season were -0.33 to -0.92 MPa and -0.34 to -1.2 MPa, respectively (Supplementary 429 

Table A.4). 430 
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 431 

Figure 3 Variability in hydraulic traits of nine rubber clones: a) leaf water potential in predawn and midday during the dry 432 

season and wet season (mean±sd) b) xylem embolism resistance (P50) and hydraulic safety margin in the wet (HSM50 Wet 433 

season) and dry season (HSM50 Dry season) (mean±sd) 434 
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3.3 Interclonal variability in leaf and stem traits 435 

 436 

Leaf area across the nine rubber clones varied between 26.1±5.1 cm2 (RRIM 2001) and 437 

70.50±26.7 cm2 (RRIM 3001) with an average of 49.2±20.7 cm2 (Supplementary Table 438 

A.6). The average leaf thickness of H. brasiliensis was 0.24±0.04 mm, with thinnest and 439 

thickest leaf thickness of 0.17±0.03 mm and 0.28±0.04 mm, respectively. The average 440 

LMA, LDMC, wood density and leaf density for nine rubber genotypes were 84.7±15.5 g 441 

m-2, 433.6±17.4 mg g-1, 0.53±0.02 g cm-3 and 0.37±1.2 g cm-3, respectively. RRIM 2001 442 

had the highest LMA, LDMC, wood density and leaf density of all clones investigated.  443 

 444 

3.4 Relationship between stem growth rate and studied traits 445 

 446 

We find that faster-growing rubber clones are associated with lower (less negative) xylem 447 

embolism resistance (R2= 0.30, p= 0.04) (Figure 4a) and higher minimum (less negative) 448 

leaf water potentials (R2= 0.12, p= 0.05) (Figure 4b). Moreover, we find a trade-off 449 

between stem growth rate and hydraulic safety margin (R2= 0.19, p= 0.03) (Figure 4c). 450 

Rubber clones with a lower stem growth rate tend to have a lower vulnerability (more 451 

negative P50) to cavitation and a higher (more positive) hydraulic safety margin (HSM50). 452 

Exclusion of the two clones where a clear plateau in the vulnerability curves was not 453 

reached had very little impact on the relationships between hydraulic traits and growth 454 

and between hydraulic traits and other traits (Supplementary Table A.7). Clone-level 455 

growth rates are also correlated with the leaf area to sapwood area ratio (Huber value) 456 

(R2= 0.41, p= 0.04 when using all clones (Figure 4d). However, if RRIM 928 is removed 457 

from the analysis, the relationship between the growth rate and inverse Huber value is 458 

not strong anymore (R2= 0.08, p= 0.5). Leaf area to sapwood area ratio varied between 459 

44.74 cm2 cm-2 (RRIM 2001) to 294.21 cm2 cm-2 (RRIM 928) (Supplementary Table 460 

A.6).  461 

 462 

There was no significant relationship between stem growth rate and other studied traits 463 

at 0.05 significance level (Supplementary Table A.8). The stem growth rate had a weak 464 

negative association with wood density, with genotypes with faster growth rate having 465 
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lower wood density (R2=0.10, p=0.06) (Figure 4e). There is also a very weak relationship 466 

between growth rate and leaf density (R2= 0.02, p=0.08) (Figure 4f). Furthermore, we 467 

also found that higher tree height is associated with lower wood density (F(1, 7)= 7.669, 468 

R2= 0.52, p= 0.03) (Supplementary Figure A.4a) and lower leaf density (F(1, 7)= 7.215, 469 

R2= 0.50, p= 0.03) (Supplementary Figure A.4b). 470 

 471 
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 472 

 473 
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Figure 4 Relationship between stem growth rate and studied traits (mean±se): a) 474 

Growth rate vs P50 b) Growth rate vs minimum leaf water potential c) Growth rate vs 475 

HSM50 d) Growth rate vs leaf area to sapwood area (inverse Huber value) e) Growth 476 

rate vs wood density f) Growth rate vs leaf density (stripping line indicate without RRIM 477 

928). Solid black and dotted lines depict the best-fit slopes from York’s regression. 478 

 479 

3.5 Coordination of hydraulic traits and tree traits  480 

 481 

High (more negative) xylem embolism resistance, P50, is associated with high wood 482 

density (p< 0.01) (Figure 5a) and there is a weak positive correlation with LMA (p< 0.01) 483 

(Figure 5b). There are strong correlations between hydraulic traits (P50, P88, HSM50 and 484 

HSM88) and leaf area (Supplementary Table A.9). Moreover, predawn leaf water 485 

potential in the dry season and LMA were positively correlated (R2=0.20, p< 0.05). 486 

 487 

 488 

Figure 5 Relationship between xylem embolism resistance and tree traits (mean±se): a) 489 

P50 vs wood density b) P50 vs LMA. Solid black lines depict the best-fit slopes from 490 

York’s regression. 491 

 492 

3.6 Multiple regression analysis of growth and tree height 493 

 494 
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For the regression analysis we included the following traits: P50, HSM50, LWP, LA:SA, 495 

Wood density, leaf thickness, leaf area. The results are shown in Table 1 and 496 

Supplementary Table A.11. 497 

 498 

The best model identified by the AIC criteria for stem growth (Equation 5) is  499 

 500 

Stem growth (mm month-1) = 2.176 x LWPwet season (MPa) - 1.197 x 

HSM50,dry season (MPa) – 25.893 x Wood density (g cm-3) – 20.015 x Leaf 

thickness (mm) + 123.157 

Equation 5 

 501 

Given the observed ranges of each of these variables (Supplementary Table A.4 and 502 

Table A.6) all terms are of similar importance to predict observed growth variation across 503 

clones.  504 

 505 

We similarly examined determinants of tree height. The best model in this case is 506 

 507 

Tree height (m) = – 1.166 x LWPwet season (MPa) - 1.553 x P50 (MPa) – 

41.599 x Wood density (g cm-3) + 20.050 x Leaf thickness (mm) + 25.167 
Equation 6 

 508 

Table 1. Models of stem growth, coefficient of determination and their ranking according 509 

to the Akaike Information Criterion (AIC) 510 

 511 

Stem Growth Model Predictors 

Stem growth (mm month-1) 

R2 
Adjusted 

R2 
∆AIC 

1. -HSM50, +LWP, -Wood density, -Leaf thickness 0.86 0.73 16.39 

2. +LWP, -Wood density, -Leaf thickness, +Leaf area 0.81 0.63 19.12 

3. +P50, +LWP, -Wood density, -Leaf thickness 0.77 0.55 20.89 

4. -Wood density, -Leaf thickness, +Leaf area 0.69 0.50 21.76 

5. +LA:SA 0.45 0.37 22.86 
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6. +P50, +LA:SA 0.53 0.37 23.57 

7. -HSM50, +LA:SA 0.50 0.33 24.03 

8. -HSM50, +LWP, +LA:SA, +Leaf area 0.67 0.35 24.19 

9. +P50, +LA:SA, +Leaf area 0.58 0.33 24.51 

10. -HSM50, +LA:SA, -Wood density, -Leaf thickness 0.65 0.30 24.89 
 

* we included sign of the coefficients in the models to indicate direction of covariation 512 

but for readability we report the values of the coefficients only in the supplementary 513 

materials. 514 

 515 

Table 2. Models of tree height, coefficient of determination and their ranking according 516 

to the Akaike Information Criterion (AIC) 517 

 518 

Tree Height Model Predictors 

Tree height (m) 

R2 
Adjusted 

R2 
∆AIC 

1. -P50, -Wood density, -LWP, +Leaf thickness 0.88 0.75 26.39 

2. -P50, -Wood density, +Leaf area 0.82 0.71 27.78 

3. -P50, -Wood density, -LMA, -LA:SA 0.84 0.69 28.61 

4. -P50, -Wood density, -LA:SA 0.80 0.68 28.65 

5. -P50, -Wood density, -LWP, +Leaf area 0.83 0.66 29.19 

6. -P50, -Wood density, -LMA 0.78 0.65 29.59 

7. +HSM50, -LWP, -Wood density, +Leaf thickness 0.79 0.59 31.03 

8. +HSM50, -Wood density, -LMA, -LA:SA 0.78 0.55 31.81 

9. +HSM50, -LWP, -Wood density, +Leaf area 0.78 0.55 31.82 

10. +HSM50, -Wood density, -LA:SA 0.70 0.51 32.51 

 519 

4. Discussion 520 

 521 

4.1 Inter clonal trait variation and coordination 522 

 523 
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In general, the P50 and P88 values for H. brasiliensis clones investigated here are within 524 

the range of observed values for deciduous angiosperm species (Scoffoni and Sack, 525 

2017; Choat et al., 2012). Deciduous species such as H. brasiliensis tend to operate 526 

closer to the point of hydraulic failure than ever-green species as shown by Choat et al., 527 

2012 and Markesteijn et al., 2011.  528 

 529 

Compared to other studies of H. brasiliensis, P50 values measured at our site are 530 

generally more negative and the variation of P50 across clones is comparably 531 

large. Various possibilities may explain these results but existing data are not sufficient 532 

to decide unambiguously which explanation is correct.  533 

 534 

Firstly, it could reflect true genetically determined variation across clones with clones at 535 

our site characterised by comparably negative P50's.  Secondly, the more negative P50 536 

could be an indication of acclimation as the clones we measured have been grown in 537 

comparably dry conditions. Unfortunately, there are no P50 measurements at other sites 538 

of the clones grown at our site. Nonetheless some studies measured P50's on the same 539 

juvenile clones of RRIM 600 and RRIT 251 but grown in different climates in Bangkok 540 

and Nong Khai, Thailand (Sangsing et al., 2004; Jinagool et al., 2015). Bangkok which 541 

is located in the central of Thailand had a climate of Tropical Monsoon Climate while Nong 542 

Khai location in the north-eastern of Thailand experienced Tropical Savanna Climate. 543 

The P50 at the drier study site (Nong Khai) was more negative compared to the wetter site 544 

(Bangkok) for both RRIM 600 and RRIT 251 (Supplementary Table A.10) consistent 545 

with this explanation.   546 

 547 

Another explanation could be that P50 varies with life stage and that different studies have 548 

measured rubber at different life stages (seedling and sapling stage versus adult trees). 549 

Saplings/ juveniles of the clone PB 260 had indeed a higher P50 (less negative) compared 550 

to adult 260 (Waite, 2020; Jinagool et al., 2015). Across rubber clones measured by the 551 

studies compiled in Supplementary Table A.10 P50 decreases with height which is 552 

closely related to age (Figure 6) consistent with this explanation (R2= 0.28, p< 0.05 with 553 

estimation height values included and R2= 0.18, p< 0.05 without the estimation height 554 
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values included). This association is similar to the results of a study of tropical rainforest 555 

trees in Sulawesi, Indonesia (Zach et al., 2010). However, it differs from the studies on 556 

Amazonian trees, M. oleifera, C. edulis, P. ayacahuite and Norway spruce trees, which 557 

find that P50 increases with height (e.g. Rowland et al. 2015; Olson et al. 2018; Prendin 558 

et al., 2018). Recently, Bittencourt et al., 2020 suggested that changes in embolism 559 

resistance with tree size exist, but are highly dependent on tree taxonomic identity.  560 

 561 

Lastly, the variability of P50 may be influenced by methodological differences across 562 

studies. Ours is the first study to use the pneumatic method to determine embolism 563 

resistance in H. brasiliensis while other studies have used a range of other approaches 564 

(Supplementary Table A.10). The P50 values we report are of a similar magnitude to 565 

those determined using centrifugation methods (e.g. Jinagool et al. 2015, Waite 2020) 566 

and air-injection methods (Jinagool et al. 2015).  The least resistant P50 values reported 567 

for H. brasiliensis are actually for bench dehydration approaches, but these were also for 568 

very young plants (Supplementary Table A.10) . We find no evidence in our compilation 569 

of data from across studies to support the assertion of Sergent et al. (2020) that the 570 

pneumatic method results in P50 values that are less resistant than other methods for 571 

long-vessel species such as H. brasiliensis.  572 

 573 

 574 
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Figure 6 The relationship between P50 and tree height (a) Included other study with 575 

estimation height based on provided tree age information or the range of tree height (b) 576 

Only data from other studies which provide with clear height information were included.  577 

 578 

For most of the clones we studied there was a strong leaf water potential pre-dawn mid-579 

day difference both during the dry and wet season (Supplementary Table A.4). Thus at 580 

our site these clones function anisohydrically. In some studies, rubber has also been 581 

found to be anisohydric (Chandrashekar et al., 1990; Kumagai et al., 2015; Wu and 582 

Chen, 2016) while in other studies, mature rubber trees showed relative stability of 583 

midday leaf water potential on sunny days, i.e. isohydric behaviour (Isarangkool Na 584 

Ayutthaya et al., 2011 and Liu et al., 2014). The observed differences in water regulation 585 

may have several causes. They may arise because climate and soil characteristics differ, 586 

because different rubber clones were studied, or they may be an artefact of different 587 

experimental setup. For example, the Thailand and China study sites experience low 588 

annual rainfall and rubber is exposed to dry spells during the dry and wet season 589 

(Isarangkool Na Ayutthaya et al., 2011 and Liu et al., 2014). Both study sites use the 590 

same rubber clone (RRIM 600) and both find isohydric behaviour. In contrast, the same 591 

rubber clone was found to behave in an anisohydric manner at a tropical savanna climate 592 

study site in Thailand, where water availability was greater (Kumagai et al, 2015; Kunjet 593 

et al., 2013). Kumagai et al., 2015 indicated that the RRIC-100 rubber clone in Cambodia 594 

could alternate between isohydric behaviour in dry conditions and anisohydric behaviour 595 

during a moist period. With regards to inter-clonal variability, Rao et al., 1990 found that 596 

different rubber clones have their own water use requirements and that water-regulation 597 

strategies can vary across clones. 598 

 599 

We observed a significant linear relationship between the minimum measured leaf water 600 

potential (Pmin) and P50 for rubber clones, indicating a link between regulation of leaf water 601 

potential via stomatal control and embolism resistance. This result is consistent with 602 

Choat et al.'s 2012 finding based on angiosperm and gymnosperm species data across 603 

forest biomes that embolism resistance is linked to maximum experienced drought stress. 604 

 605 
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In line with previous studies, (e.g. Markesteijn et al. 2011, Christoffersen et al. 2016), 606 

we found that vulnerability to cavitation (P50) is negatively related to wood density, despite 607 

the range of wood density sampled in our study being much narrower than in other studies 608 

(wood density in our study ranged from 0.50 to 0.57 g cm-3 compared to a range of 0.2 – 609 

1.1 g cm-3 in Christoffersen et al. 2016). Low wood density clones generally have higher 610 

growth rates than more densely-wooded clones (Figure 5) and this is aligned with lower 611 

resistance to embolism. Across tropical forest species, high growth has been shown to 612 

be underpinned by higher hydraulic conductivity at the expense of lower resistance to 613 

embolism (Markesteijn et al. 2011).  Our results suggest that such a trade-off between 614 

xylem safety and efficiency may also operate across genotypes of a species (although 615 

we did not measure xylem conductivity directly.   616 

 617 

Our LMA values for all nine rubber clones fall within the range of 40–120 g m-2 reported 618 

for global deciduous woody species functional groups (Poorter et al., 2009). Rubber 619 

clones with high drought tolerance (low P50) had low LMA and vice versa (Figure 6).  Our 620 

finding is in agreement with interspecies results for the genera Acer and Quercus by 621 

Nardini et al.’s 2012. They suggested that the P50 and LMA correlation might be driven 622 

by vein density, as high vein density implies high carbon investment in venation and 623 

results in high LMA values. This is also supported by the results of Blonder et al. 2011. 624 

 625 

4.2 Growth rate trait relationships 626 

 627 

Even though planted in the same year, experiencing the same environmental condition 628 

and receiving the same plantation management treatment, each of nine rubber clone's 629 

growth pattern differed substantially. Growth rates varied between 1.17 mm month-1 and 630 

4.07 mm month-1 (Supplementary Table A.2). The trees height of the ten-year-old rubber 631 

also varied substantially between 8.4 m and 13.4 m.  632 

 633 

The outcome of our multiple regression analysis aiming to identify the traits which best 634 

describe variation in stem growth is summarised in Table 1 and Supplementary Table 635 

A.11. Most of the high-ranked growth models include tree hydraulic traits such as HSM50, 636 
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P50, LWP (defined as (midday - predawn leaf water potential) measured during the wet 637 

season), leaf area to sapwood area ratio (Table 1). The six best models all include P50 638 

and the next four best models HSM50. Thus tree hydraulics is important in explaining inter-639 

clonal rubber stem growth performance. The best model (Equation 5) specifically 640 

suggests thatLWPwet season, HSM50, wood density and leaf thickness are important 641 

controls on stem growth.  642 

 643 

Firstly LWP (LWP≡ Pmidday - Ppredawn where P is leaf water potential measured during 644 

the wet season) is negatively related to growth and the larger the absolute value ofLWP 645 

the higher stem growth. A large absolute value of LWP is indicative of large water 646 

transport during the day. Within species and across species large water transport is 647 

associated with large CO2 gain (e.g. Oliveira et al., 2021). Large water transport 648 

suggests non-conservative stomatal control permitting leaf water potential to reach large 649 

negative values possibly causing water potential in xylem reaching levels close to 650 

embolism resistance thresholds. Thus overall this first term is an indicator of conservative 651 

versus non-conservative water use during the growing season.  652 

 653 

The second determinant is the hydraulic safety margin (HSM50). The nine clones exhibited 654 

a broad range of hydraulic safety margins (ranging from close to -1.5 MPa to > 0).  This 655 

corresponded to a large range of in natura dry season percentage conductivity loss, 656 

ranging from a 5.6% loss in RRIM 2007 to a 57.7% loss in RRIM 3001.  High overall 657 

growth of stem diameter and tree height are associated with low dry season safety 658 

margins or i.e. operation at comparably high risk of embolism (less negative P50) and vice 659 

versa. Thus this determinant indicates a hydraulic safety-growth trade-off. This is in line 660 

with results found for Poplar Hybrid species, for which fast-growing genotypes are more 661 

vulnerable to xylem embolism (Zhang et al., 2020). The same trade-off has been 662 

observed at the species level (Rowland et al., 2015; Eller et al., 2018; Liu et al., 2019). 663 

Eller et al., 2018 suggested that the growth rate‐HSM trade‐off can be attributed to xylem 664 

vessels of fast‐growing trees being less resistant to cavitation, and is thus in agreement 665 

with the findings of Oliveira et al. (2021).  666 

 667 
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The third determinant identified by the model is wood density. High wood density is 668 

associated with low growth and vice versa. At the species level for tropical trees, a 669 

negative correlation between growth and wood density has been reported in several 670 

studies (Enquist, 1999; Burslem and Whitmore, 2003; Muller‐Landau, 2004; 671 

Martínez‐Vilalta et al., 2010; Francis et al., 2017; Gray et al., 2019). According to King 672 

et al. 2006 and Eller et al. 2018 one factor contributing to this negative correlation is the 673 

costs of high density, structurally strong wood and embolism resistant vessels.  674 

 675 

The final determinant is leaf thickness. Rubber leaves are covered by waxy cuticle and 676 

trichomes on the outer surface which help prevent the loss of water and its thickness 677 

varies among clones (Martins and Zieri, 2003; MRB 2009; Kulshreshtha and Ahmed, 678 

1993). We find that leaf thickness is also a significant control on growth as clones with 679 

thinner leaves have higher growth rates. This result is consistent with the results of 680 

Poorter and Bongers (2006) who analysed growth of 53 tropical rainforest species and 681 

its relation to a wide range of traits.  It also had similar pattern with Bai et al., 2020 results 682 

where they found negative association between relative growth rate and leaf thickness 683 

for the deciduous lianas. In contrast, they found opposite correlation for evergreen lianas 684 

suggesting that deciduous or evergreen lianas may employ some differentiated strategies 685 

to adapt to the cloud forest environment. Across species they found strong anti-686 

correlations between tree growth rate and leaf life-span which tends to be correlated with 687 

leaf thickness (Mediavilla et al., 2008), as well as a strong correlation between tree 688 

growth rate and specific leaf area, which is inversely related to leaf thickness. 689 

Furthermore, thicker leaves are more sturdy and store more water in a cell, contributing 690 

also to drought tolerance but can reduce the transpiration rate (Wright et al., 2004; 691 

Poorter et al., 2009). This may reflect the negative relationship between leaf thickness 692 

and photosynthetic rates that has been observed in previous studies.  However, we note 693 

that the strength of this relationship is weak and this may be an outcome of the poor 694 

coordination between leaf and wood traits (Richardson et al., 2013; Wright et al., 2010). 695 

 696 
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Altogether we find substantial inter-clonal variation of hydraulic and morphological traits 697 

across rubber clones while trade-offs between growth and traits are similar across 698 

species. 699 

 700 

A similar analysis for tree height (Equation 6) reveals that P50 and wood density are 701 

strong predictors of tree height. Clones with comparably greater height are associated 702 

with strongly negative P50 values and low wood density. Strongly negative P50's indicate 703 

high embolism resistance while low density wood is known to be associated with rapid 704 

growth at the species level (pioneers) (Kiorapostolou et al., 2019; Fajardo, 2018; 705 

Trueba et al., 2017; Urli et al., 2013; Iida et al., 2012; King et al., 2005). Clones which 706 

grow taller will be exposed to increased water potential differences from canopy to soil. 707 

Strongly negative P50 values will counteract this risk (Falster and Westoby, 2003) and 708 

this is indeed an attribute of the clones which grow rapidly in height. 709 

 710 

4.3 Implications for future rubber cultivation 711 

 712 

From an economic point of view, rubber clones best suited for planting in agro-climatically 713 

marginal areas are clones with a high stem growth rate and which are also drought 714 

tolerant (a high hydraulic safety margin). A median-quadrant analysis for growth and 715 

hydraulic safety margin thus summarizes suitability (Figure 7a). Consistent with the 716 

results of the growth model analysis - and specifically the growth safety trade-off -most 717 

clones do not fulfil both criteria. The drought-tolerance clones with high vertical growth 718 

are RRIM 2007 and RRIM 2002 in Quadrant I (Supplementary Figure A.5). Indeed, for 719 

the wood production, tree height and stem growth are both important and we found that 720 

only RRIM 2002 had higher than average for both characteristics (Figure 7b). 721 

Nonetheless one clone deviates some from this main axis falling both into the quadrant 722 

with higher than average stem growth rate and higher than average hydraulic safety 723 

margin (RRIM 929).  724 
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 725 

Figure 7 Quadrant panel diagram of (a) stem growth vs HSM50 and (b) tree height vs 726 

stem growth. Both best selected clone located in Quadrant II. 727 

 728 

4.4 Broader implications 729 

 730 

Our results not only have implications for management of H. brasiliensis but also have 731 

broader ecological implications as they provide evidence to support recently proposed 732 

frameworks that link ecological strategies and plant hydraulic function (Oliveira et al. 733 

2021). Our work suggests that a growth-HSM trade-off operates not only at the species 734 

level but also across genetic variants of the same species. This trade-off has yet to be 735 

explicitly included into ecosystem modelling frameworks but could have important 736 

implications for simulations of how forest taxonomic composition may be affected by 737 

climate change.  738 

 739 

5.0 Summary and Conclusions 740 

 741 

We were interested in the vulnerability and growth-vulnerability trade-offs across rubber 742 

clones and how these relate to morphological traits in a climatically marginal area of 743 

Malaysia. To achieve this goal, we took advantage of clones planted in the same year, 744 

experiencing the same environmental condition and receiving the same plantation 745 

management treatment on which we studied growth trait relationships. Our results have 746 
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implications for rubber management and also for broader understanding of the 747 

relationship between hydraulic properties and tree function. From a management 748 

perspective, we find that there is no clone with high growth and high hydraulic safety, 749 

although RRIM 929 appears most suited for planting in climatically marginal areas. More 750 

broadly, we find similar relationships between growth and hydraulic strategies exist 751 

between clones as observed within and across species, further supporting the generality 752 

of a growth-HSM trade-off by demonstrating that plants with higher growth rates take 753 

greater hydraulic risks (i.e. have lower safety margins). 754 

 755 
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Supplementary Materials 1174 

 1175 

Table A.1 List of rubber clones, parents and the total numbers of samples. 1176 

 1177 

Clones Parents 
Number of 

samples (trees) 

RRIM 2007 GT 1 x PB 260 20 

RRIM 2025 IAN 873 x RRIM 803 20 

RRIM 2001 RRIM 600 x PB 260 20 

RRIM 2024 IAN 873 x PB 235 20 

RRIM 929 RRIM 605 x RRIM 725 20 

RRIM 928 RRIM 605 x RRIM 725 20 

RRIM 2002 PB 5/51 x FORD 351 20 

RRIM 2023 IAN 873 x PB 260 20 

RRIM 3001 IAN 873 x PB 235 20 

TOTAL  180 

 1178 

Table A.2 Tree girth, height, bark thickness and growth rate variability of nine rubber 1179 

clones. The different letter indicates a statistically significant difference (p≤ 0.05) among 1180 

rubber clones by Tukey's test. 1181 

 1182 

Rubber clone 

Tree girth in 

Aug 2019 

(cm) 

Mean±SD 

Tree height 

(m) Mean±SD 

Bark thickness 

(mm) Mean±SD 

Growth rate  

Sep 2019 - Aug 2020  

(mm month-1) 

RRIM 2001 52.7±5.7a 8.4±1.4a 8.95±1.8abc 1.68±0.74bc 

RRIM 2002 60.6±6.5b 12.7±1.3cd 10.1±0.88bc 2.54±0.98bcd 

RRIM 2007 55.3±7ab 13.4±1.7d 8.85±0.82ab 1.17±0.45a 

RRIM 2023 60.4±6b 10.5±1.5b 10.2±0.92bc 3.26±1.53de 

RRIM 2024 69.5±11.7c 11.8±1.5bc 9.75±1.06abc 2.48±1bcd 
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RRIM 2025 61.1±6.1b 13.4±1.7d 8.35±0.53a 2.16±0.9abc 

RRIM 3001 59.4±8.6ab 12.7±1.5cd 9.7±1.64abc 2.47±0.99bcd 

RRIM 928 62.3±6.8bc  11.3±1.2bc 9.45±0.86abc 4.07±1.39e 

RRIM 929 62±6.2b 10.7±0.7b 10.45±0.76c 3.35±1.06cde 

 1183 

Table A.3 Result of linear mixed-effect model between rainfall and growth rate. Rubber 1184 

clones was added as random effect. 1185 

 Growth Rate (mm month-1) 

Predictors Estimates std. Beta CI standardised CI p 

(Intercept) -0.49 0 -1.34 – 0.36 -0.25 – 0.25 0.26 

Rainfall 0.01 0.82 0.01 – 0.01 0.65 – 0.99 <0.001 

Random Effects      

σ2 1.32     

Ʈ00 Rubber clone 0.45     

ICC 0.25     

NRubber clone 9         

Observations 36     

Marginal R2 / Conditional R2 0.661 / 0.747     

1186 
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Table A.4 Hydraulic traits variability of nine rubber clones. The different letter indicates a statistically significant difference 1187 

(p≤0.05) among rubber clones by Tukey's test 1188 

 1189 

Rubber 

clone 

Predawn 

LWP (MPa) 

(Dry 

Season) 

Mean±SD 

Midday LWP 

(MPa) (Dry 

Season) 

Mean±SD 

Predawn 

LWP (MPa) 

(Wet Season) 

Mean±SD 

Midday LWP 

(MPa) (Wet 

Season) 

Mean±SD 

P12 (MPa) 

Mean±SD 

P50 (MPa) 

Mean±SD 

P88 (MPa) 

Mean±SD 

RRIM 2001 -0.51±0.07f -1.28±0.13def -0.43±0.03bc -0.97±0.05b -1.21±0.14a -2.06±0.25ab -2.91±0.64a 

RRIM 2002 -0.58±0.07ef -1.87±0.18a -0.32±0.07cd -1.24±0.03a -1.24±0.19a -2.21±0.37ab -3.50±0.23a 

RRIM 2007 -1.27±0.05a -1.68±0.10ab -0.74±0.05a -1.27±0.04a -1.58±1.05a -3.05±0.83a -4.16±0.85a 

RRIM 2023 -0.79±0.06bc -1.13±0.06ef -0.51±0.21b -0.84±0.08c -0.75±0.07a -1.75±0.1ab -2.94±0.15a 

RRIM 2024 -0.70±0.08cd -1.33±0.18ef -0.32±0.04cd -0.72±0.02de -1.33±0.15a -2.13±0.12ab -2.93±0.15a 

RRIM 2025 -0.49±0.05f -0.94±0.08g -0.29±0.05d -0.64±0.02f -0.64±0.23a -1.54±0.29b -2.40±0.43a 

RRIM 3001 -0.82±0.06b -1.6±0.15bc -0.45±0.09b -1.00±0.04b -0.66±0.18a -1.48±0.22b -2.29±0.4a 

RRIM 928 -0.51±0.07f -1.11±0.02fg -0.30±0.1d -0.66±0.03ef -0.54±0.02a -1.37±0.23b -2.30±0.62a 

RRIM 929 -0.64±0.07de -1.40±0.10cd -0.45±0.09b -0.79±0.02cd -1.11±0.3a -2.42±0.87ab -3.78±1.71a 

Rubber 

clone 

HSM50 Dry 

Season 

HSM88 Dry 

Season 

HSM50 

Wet Season 

HSM88 

Wet Season 

LWP Deficit 

Wet Season 

LWP Deficit 

Dry Season  

RRIM 2001 0.82±0.25ab 1.67±0.64a 1.09±0.25a 1.94±0.64a -0.54 -0.77  

RRIM 2002 0.33±0.37ab 1.62±0.23a 0.96±0.37a 2.25±0.23a -0.92 -1.30  

RRIM 2007 1.37±0.83b 2.48±0.85a 1.78±0.83a 2.89±0.85a -0.53 -0.41  
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RRIM 2023 0.86±0.10ab 2.06±0.15a 0.91±0.10a 2.10±0.15a -0.33 -0.34  

RRIM 2024 0.81±0.12ab 1.60±0.15a 1.41±0.12a 2.21±0.15a -0.40 -0.62  

RRIM 2025 0.61±0.29ab 1.46±0.43a 0.90±0.29a 1.76±0.43a -0.35 -0.44  

RRIM 3001 -0.12±0.22a 0.69±0.40a 0.48±0.22a 1.29±0.40a -0.55 -0.78  

RRIM 928 0.27±0.23ab 1.19±0.62a 0.72±0.23a 1.64±0.62a -0.36 -0.60  

RRIM 929 1.02±0.87ab 2.38±1.71a 1.64±0.87a 2.99±1.71a -0.33 -0.76  

 

 1190 
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Table A.5 Pearson correlation coefficients for linear relationships among hydraulic traits 1191 

of nine studied rubber clones 1192 

 1193 

  
HSM₅₀ 
(MPa) 

HSM₈₈ 
(MPa) 

P₅₀ 
(MPa) 

P₈₈ 
(MPa) 

HSM₈₈ (MPa) 0.926**    

P₅₀ (MPa) -0.826** -0.851**   

P₈₈ (MPa) -0.765* -0.896** 0.957**  

Midday LWP in the dry season (MPa) -0.007 -0.160 0.569 0.582 

Midday LWP in the wet season (MPa) -0.156 -0.269 0.621 0.616 

Predawn LWP in the dry season (MPa) -0.460 -0.435 0.637* 0.565 

Predawn LWP in the wet season (MPa) -0.580 -0.580 0.680* 0.640 

**. Correlation is significant at the 0.01 level (2-tailed). 

*. Correlation is significant at the 0.05 level (2-tailed). 

 1194 

 1195 

 1196 

 1197 

 1198 

 1199 

 1200 

 1201 

 1202 

 1203 

 1204 

 1205 

 1206 

 1207 

 1208 

 1209 

 1210 
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Table A.6 Tree traits variability of nine studied rubber clones. The different letter indicates a statistically significant 1211 

difference (p≤ 0.05) among rubber clones by Tukey’s test. 1212 

 1213 

Rubber 

clone 

Total number 

of leaves 

Leaf area 

(cm2) 

Mean±SD 

Leaf 

thickness 

(mm) 

Mean±SD 

LMA (g m-2) 

Mean±SD 

LDMC (mg g-1) 

Mean±SD 

Leaf 

density (g 

cm-3) 

Mean±SD 

LA (cm2): SA 

(cm2) (Hv) 

RRIM 2001 53 26.1±5.1a 0.19±0.03b 105.11±11.74d 489.27±20.61g 0.56±0.1c 44.74 

RRIM 2002 62 42.8±10.6bc 0.23±0.04c 91.29±9.37c 446.8±10.28e 0.41±1.3b 71.51 

RRIM 2007 54 43.7±11.3bc 0.25±0.04e 71.73±8.64a 414.05±24.71c 0.29±1.7a 101.37 

RRIM 2023 44 37.1±12.9b 0.24±0.06d 69.82±7.65a 401.81±25.36b 0.3±1.5a 62.44 

RRIM 2024 61 69.4±20.3e 0.27±0.04f 74.20±4.51ab 383±15.25a 0.28±1.5a 121.38 

RRIM 2025 54 52.1±13.9cd 0.3±0.04h 93.68±14.65c 449.33±20.59e 0.32±1.7a 104.91 

RRIM 3001 60 70.5±26.7e 0.28±0.04g 83.38±15.5b 415.24±19.08c 0.3±1.5a 126.86 

RRIM 928 54 61.6±21.2de 0.24±0.04d 93.09±4.91c 469.29±9.84f 0.41±1.2b 294.21 

RRIM 929 52 41.1±12.6b 0.17±0.03a 86.33±16.62b 434.17±10.68d 0.5±0.7c 129.91 

Rubber 

clone 

Total number 

of wood cores 

Wood density 

(g cm-3) 

Mean±SD 

     

RRIM 2001 10 0.57±0.02d      

RRIM 2002 10 0.52±0.03ab      

RRIM 2007 10 0.53±0.02bc      
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RRIM 2023 10 0.54±0.02bc      

RRIM 2024 10 0.53±0.04abc      

RRIM 2025 10 0.50±0.02a      

RRIM 3001 10 0.53±0.02abc      

RRIM 928 10 0.50±0.02a      

RRIM 929 10 0.55±0.01cd      

 1214 

Table A.7 Comparison traits relationship results using all nine clones, removed RRIM 2024, removed RRIM 2002 or both 1215 

using York’s regression. 1216 

Traits Relationship, R2 

x y 
Original with all 9 

clones 
Removed RRIM 2024 and 

RRIM 2002 
Removed only 

RRIM 2024  
Removed only 

RRIM 2002 

P50 
Growth 

rate 
0.30 0.31 0.30 0.31 

Pmin 
Growth 

rate 
0.12 0.18 0.12 0.19 

HSM50 
Growth 

rate 
0.19 0.20 0.19 0.20 

La:Sa Growth 
rate 

0.41 0.43 0.41 0.43 

Wood 
density 

Growth 
rate 

0.08 0.09 0.08 0.09 

Leaf 
density 

Growth 
rate 

0.02 0.02 0.01 0.02 

Wood 
density 

Tree 
height 

0.52 0.51 0.52 0.51 

Leaf 
density 

Tree 
height 

0.50 0.63 0.55 0.59 
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Wood 
density 

P50 0.20 0.25 0.21 0.24 

LMA P50 0.10 0.13 0.10 0.14 
 1217 

Table A.8: Pearson’s correlation between growth rate and tree traits 1218 

 1219 

  
Wood density 

(g cm-3) 

Leaf density 

(g cm-3) 

Leaf thickness 

(mm) 

Leaf Area 

(cm2) 
LMA (g cm-2) 

LDMC 

(mg g-1) 

Growth rate (mm month-1) -0.288 0.129 -0.213 0.279 -0.021 0.043 

Tree height (m) -0.723* -0.712* 0.726* 0.404 -0.377 -0.403 

**. Correlation is significant at the 0.01 level (2-tailed). 

*. Correlation is significant at the 0.05 level (2-tailed). 

 1220 

Table A.9 Pearson correlation coefficients for linear relationships between hydraulic traits and tree traits of nine studied 1221 

rubber clones 1222 

 1223 

  
Leaf thickness 

(mm) 

Leaf Area 

(cm2) 

LMA  

(g cm-2) 

LDMC  

(mg g-1) 

Leaf density  

(g cm-3) 

Wood density 

(g cm-3) 

HSM₅₀ (Mpa) -0.325 -0.692* -0.238 -0.151 0.090 0.415 

HSM₈₈ (Mpa) -0.491 -0.811** -0.285 -0.145 0.166 0.414 

P₅₀ (Mpa) 0.370 0.653* 0.323 0.229 -0.070 -0.450 

P₈₈ (Mpa) 0.487 0.735* 0.337 0.203 -0.134 -0.428 
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Midday LWP in the dry 

season 
0.184 0.149 0.227 0.186 0.007 -0.194 

Midday wet season 0.162 0.392 0.139 0.036 0.002 -0.265 

Predawn LWP in the dry 

season 
-0.191 0.113 0.760* 0.589 0.537 -0.123 

Predawn LWP in the wet 

season 
0.132 0.424 0.552 0.304 0.185 -0.417 

La:Sa 0.076 0.467 0.119 0.245 0.024 -0.551 

**. Correlation is significant at the 0.01 level (2-tailed). 

*. Correlation is significant at the 0.05 level (2-tailed). 

 

Table A.10 H. Brasiliensis inter-clonal variation of P50  1224 

 1225 

Study site 
Climate 

information  

Methods to 

assess 

embolism 

resistance 

Rubber Clone 
Tree height/ 

DBH/ Age 
N P50 (SE) Reference 

1. 

Nursery, 

Kasetsart 

University, 

Bangkok, 

Using pot for 

drought 

treatment 

Air pressure 

dehydration 

technique 

RRIM 600 

 

1.5 years, 2 

m 

 

- -1.22 

Sangsing 

et al., 

2004 



 

56 
 

Thailand 

 

2. 

Nursery, 

Kasetsart 

University, 

Bangkok, 

Thailand 

 

Using pot for 

drought 

treatment 

Air pressure 

dehydration 

technique 

RRIT 251 
1.5 years, 3 

m 
- -1.42 

Sangsing 

et al., 

2004 

3. 

Xishuangbanna 

Tropical 

Botanical 

Garden, south-

western 

Yunnan, China 

 

1,560 mm yr-1 

and dry season 

of five to six 

months 

Bench 

drying 

method 

Unknown 
5–7 m, DBH 

15–20 cm 
3-5 -1.27 

Chen et 

al., 2009a 

4. 

Xishuangbanna 

Tropical 

Botanical 

Garden, south-

1,560 mm yr-1 

and dry season 

of five to six 

months 

Bench 

drying 

method 

Unknown 

5–7 m 

height, DBH 

15–20 cm 

3-5 -1.06 
Chen et 

al., 2009b 
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western 

Yunnan, China 

 

5. 

Rubber 

Research 

Institute of the 

Chinese 

Academy of 

Tropical 

Agricultural 

Sciences. 

Danzhou, 

Hai8.nan, 

China 

 

1,566 mm yr-1, 

dry season of 

four to five 

months 

Air pressure 

dehydration 

technique 

GT1  

Reyan 7-33-97 

PR107  

Renken 525  

Reken 523 

1-year-old 

1-year-old 

1-year-old 

1-year-old 

1-year-old 

- 

-0.58 

-1.98 

-0.99 

-1.32 

-0.16 

Weifu & 

Qiubo, 

2011 

6. 

Nong Khai, 

northeastern 

region of 

Thailand 

1,600 mm yr-1, 

dry season of 

five to six 

months 

Cavitron 

BPM 24 

PB 217  

PB 235  

PB 260  

3.86 m 

3.07 m 

3.87 m 

3.26 m 

3 

3 

3 

3 

-1.85 (0.04) 

-1.91 (0.04) 

-1.88 (0.07) 

-1.96 (0.08) 

Jinagool et 

al., 2015 
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PB 5/51  

RRII 105  

RRII 118  

RRIM 600  

RRIT 251  

RRIT 408 

 

3.39 m 

4.08 m 

3.49 m 

4.24 m 

4.16 m 

3.63 m 

3 

3 

3 

3 

3 

3 

-1.87 (0.05) 

-2.02 (0.11) 

-1.89 (0.15) 

-1.86 (0.06) 

-1.80 (0.12) 

-1.73 (0.14) 

7. 

Xishuangbanna 

Tropical 

Botanical 

Garden, south-

western 

Yunnan, China 

 

1,560 mm yr-1 

and dry season 

of five to six 

months 

Bench 

drying 

method 

Unknown 
5–7 m, 15–

20 cm DBH 
3-5 -1.06 

Chen & 

Cao, 2015 

8. 

Surat Thani, 

southern region 

of Thailand 

1,800 mm yr-1 

rainfall and dry 

conditions of 

Cavitron 

Mix of PB 235,  

RRIM 600 and 

RRIT 251 

7-10 years 5 -1.86 (0.05) 
Jinagool et 

al., 2015 
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only one to two 

months per year 

9. 

Surat Thani, 

southern region 

of Thailand 

1,800 mm yr-1 

rainfall and dry 

conditions of 

only one to two 

months per year 

 

Air-injection 

Mix of PB 235,  

RRIM 600 and 

RRIT 251 

7-10 years 4 -1.89 (0.15) 
Jinagool et 

al., 2015 

10. 

Jambi province 

in Sumatra, 

Indonesia 

2,235 mm yr-1, 

dry conditions of 

only one to two 

months per year 

(Well drained) 

 

Modified 

centrifuge 

flow 

technique 

PB260 

 

 

14.56 m, 

23.24 cm 

DBH 

 

 

17 

 

 

-2.32 

 

 

Waite, 

2020 

11. 

Jambi province 

in Sumatra, 

Indonesia 

2,235 mm yr-1, 

dry conditions of 

only one to two 

months per year 

(Riparian) 

Modified 

centrifuge 

flow 

technique 

PB260 

14.41 m, 

16.07 cm 

DBH 

 

 

18 -2.38 
Waite, 

2020 
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12. 

Rubber 

Research 

Institute of 

Malaysia, 

northwestern 

region of 

Malaysia 

1,427 mm yr-1, 

dry spell of 

three to four 

months 

Recently-

developed 

pneumatic 

method 

RRIM 2001 

RRIM 2002 

RRIM 2007 

RRIM 2023 

RRIM 2024 

RRIM 2025 

RRIM 3001 

RRIM 928 

RRIM 929 

8.4 m  

12.7 m 

13.4 m 

10.5 m 

11.8 m 

13.4 m 

12.7 m 

11.3 m 

10.7 m 

3 

3 

4 

3 

3 

4 

4 

3 

3 

-2.06(0.18) 

-2.21(0.21) 

-3.05(0.41) 

-1.75(0.06) 

-2.13(0.07) 

-1.54(0.14) 

-1.48(0.11) 

-1.37(0.13) 

-2.42(0.50) 

Our study 

 1226 

 1227 

 1228 

 1229 

 1230 

Table A.11 Growth Model Summary 1231 
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Growth Model 

Stem growth (mm month-

1) 

Tree height (m) 

R2 
Adjusted 

R2 
∆AIC R2 

Adjusted 

R2 
∆AIC 

1. HSM50, LWP deficit, Wood density, Leaf thickness 0.86 0.73 16.39 0.79 0.59 31.03 

2. P50, LWP deficit, Wood density, Leaf thickness 0.77 0.55 20.89 0.88 0.75 26.39 

3. HSM50, LA:SA, Wood density, Leaf thickness 0.65 0.30 24.89 0.72 0.45 33.69 

4. LWP deficit, Wood density, Leaf thickness, Leaf area 0.81 0.63 19.12 0.71 0.43 34.00 

5. Wood density, Leaf thickness, Leaf area 0.69 0.50 21.76 0.66 0.45 33.56 

6. HSM50, LWP deficit, LA:SA, Leaf area 0.67 0.35 24.19 0.45 -0.09 39.81 

7. HSM50, LA:SA, Leaf area 0.56 0.29 24.97 0.24 -0.21 40.75 

8. HSM50, LA:SA 0.50 0.33 24.03 0.01 -0.32 41.13 

9. LA:SA 0.45 0.37 22.86 0.01 -0.14 39.18 

10. P50, LWP deficit, LA:SA, Leaf area 0.58 0.17 26.40 0.42 -0.17 40.42 

11. P50, LA:SA, Leaf area 0.58 0.33 24.51 0.38 0.00 38.98 

12. P50, LA:SA 0.53 0.37 23.57 0.03 -0.30 41.00 

13. HSM50, LWP deficit, Wood density, Leaf area 0.53 0.07 27.40 0.78 0.55 31.82 

14. P50, LWP deficit, Wood density, Leaf area 0.38 -0.24 29.99 0.83 0.66 29.19 

15. HSM50, Wood density, Leaf area 0.21 -0.27 30.17 0.60 0.36 34.98 

16. P50, Wood density, Leaf area 0.32 -0.08 28.77 0.82 0.71 27.78 

17. HSM50, Wood density, LA:SA 0.53 0.25 25.48 0.70 0.51 32.51 
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1232 

 1233 

 1234 

18. P50, Wood density, LA:SA 0.56 0.29 24.93 0.80 0.68 28.65 

19. P50, Wood density, LMA 0.35 -0.04 28.43 0.78 0.65 29.59 

20. HSM50, Wood density, LMA 0.21 -0.26 30.11 0.68 0.48 33.12 

21. P50, Wood density, LMA, LA:SA 0.61 0.22 25.76 0.84 0.69 28.61 

22. HSM50, Wood density, LMA, LA:SA 0.56 0.13 26.81 0.78 0.55 31.81 
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 1235 

 1236 

Figure A.1 Variability of rubber clone’s growth rate coupled with climate data based on 3-months interval 1237 

Sep 2019 - Nov 2019 
(Wet season with low 

rainfall)

Dec 2019 - Feb 2020 
(Dry season)

Mac 2020 - May 2020 
(Wet season with new 

leaf flushing)

Jun 2020 - Aug 2020 
(Wet season)
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 1238 

1239 

1240 

  1241 

 1242 

Figure A.2 Xylem vulnerability curves for nine rubber clones. Different colours 1243 

represent different individuals while different symbol with the same colour indicates 1244 

replicate from the same individual. Black open circles show the xylem water potential on 1245 

which 50% and 88% of the conductance is lost (P50 and P88). 1246 

 1247 
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 1248 

Figure A.3 No relationship between rubber growth and midday leaf water potential 1249 

(mean±se): a) Tree height vs wet season midday leaf water potential b) Tree height vs 1250 

dry season midday leaf water potential. 1251 

 1252 

 1253 

 1254 

Figure A.4 Relationship between rubber growth and other traits (mean±se): a) Tree 1255 

height vs wood density b) Tree height vs leaf density. Solid black lines depict the best-fit 1256 

slopes from York’s regression. 1257 

 1258 

 1259 

 1260 
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 1261 

 1262 

 1263 

Figure A.5 Quadrant panel diagram between tree height and P50. The drought- 1264 

tolerance clones with high vertical growth located in Quadrant I 1265 

 1266 
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