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Simulating Study Data to Support Expected

Value of Sample Information Calculations: A
Tutorial
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Jeremy D. Goldhaber-Fiebert

The expected value of sample information (EVSI) can be used to prioritize avenues for future research and design
studies that support medical decision making and offer value for money spent. EVSI is calculated based on 3 key ele-
ments. Two of these, a probabilistic model-based economic evaluation and updating model uncertainty based on
simulated data, have been frequently discussed in the literature. By contrast, the third element, simulating data from
the proposed studies, has received little attention. This tutorial contributes to bridging this gap by providing a step-
by-step guide to simulating study data for EVSI calculations. We discuss a general-purpose algorithm for simulating
data and demonstrate its use to simulate 3 different outcome types. We then discuss how to induce correlations in the
generated data, how to adjust for common issues in study implementation such as missingness and censoring, and
how individual patient data from previous studies can be leveraged to undertake EVSI calculations. For all examples,
we provide comprehensive code written in the R language and, where possible, Excel spreadsheets in the supplemen-
tary materials. This tutorial facilitates practical EVSI calculations and allows EVSI to be used to prioritize research
and design studies.
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Introduction

What Is EVSI and Why Is It Not Used More Frequently?

The expected value of sample information (EVSI) mea-
sures the value of reducing decision uncertainty by
undertaking a proposed study with a given design.1 Spe-
cifically, EVSI is the expected economic benefit of a
study that collects additional information that aims to
reduce uncertainty before making a decision.2 In medical
decision making, EVSI can be applied to a wide range of
study designs, including clinical trials, to inform the rela-
tive effectiveness of treatments or observational studies
to estimate baseline event rates. The expected net benefit
of sampling (ENBS) is defined as the costs of a study
subtracted from its (population-level) EVSI. Studies with
high ENBS efficiently trade off information value and
data collection cost. ENBS can then be used to optimize

study design and prioritize research investments that
offer value for money.3,4 EVSI and ENBS can also sup-
port reimbursement decision makers as small values for
EVSI and ENBS indicate that treatment recommenda-
tions should be made using existing evidence, rather than
recommending the collection of further evidence before
making a treatment recommendation. Despite these ben-
efits of EVSI and ENBS, their practical application has
been restricted by the difficulty of the computations
required and by the small number of analysts who are
familiar with its use.5
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How Is EVSI Computed?

In model-based health economic evaluations, EVSI is
usually calculated using a simulation-based approach
based on 3 main elements, each of which can increase the
barrier to its implementation.6 First, the model-based
economic evaluation must be fully probabilistic (i.e., all
relevant quantities must be parameterized and their
uncertainty accurately characterized and encoded in
probability distributions). In this setting, the optimum
decision option is the one that maximizes expected net
benefit, where expectation is taken over the parameter
uncertainty.1 Second, we must simulate plausible values
for the data that would be collected in the proposed
future study.6 Third, we must update our parameter
uncertainty using the simulated plausible study data from
the previous step, potentially changing the optimum deci-
sion option.7 This final step has traditionally been highly
computationally demanding because it requires a large
number of simulations.

The first and third elements of the process have been
widely discussed. First, methods for developing probabil-
istic decision-analytic models are well established, since
probabilistic analyses (PAs), also known as probabilistic
sensitivity analyses, are required as part of health tech-
nology assessment (HTA) processes in many health sys-
tems.8–12 Good practice guidelines and textbooks also

guide the development of probabilistic decision-analytic
models using evidence from the literature.1,13–15 The third
element has been facilitated by recently developed effi-
cient approximation methods that have overcome the
computational challenge of calculating EVSI using the
simulated study data.16–19 These approximation methods
have recently been compared and evaluated.20,21

What Does This Tutorial Discuss?

This tutorial addresses the crucial second element, simu-
lating plausible study data, which has not received suffi-
cient attention in the literature to allow analysts to easily
compute EVSI. Fortunately, simulating study data is a
common task outside of HTA.22,23 This tutorial high-
lights how these approaches23–29 can be used to compute
EVSI. We will present methods to simulate data using
correlated and uncorrelated parametric distributions that
incorporate real-world study challenges, such as loss to
follow-up, and using a nonparametric approach with
individual patient data (IPD) from previous studies. We
aim to support the generation of realistic study data to
improve the accuracy of EVSI calculations.6 Coupled
with the recent advancements in EVSI computation, this
tutorial will facilitate the use of EVSI in practice to guide
research prioritization and study design.

Background and Notation

This section provides a brief introduction to EVSI and
the notation used throughout this tutorial. A more com-
plete introduction to EVSI is included in other
sources.1,7,21

Model-Based Decision Analysis

We are aiming to decide between a set of d = 1, . . . ,D
interventions. We have a decision-analytic model that
estimates the net benefit for each option d, given a vector
of P input parameters u=(u1, . . . , uP). We consider that
the model is a function that maps inputs u to strategy-
specific net benefits NBd, denoted NBd(u). The inputs u
represent real-world quantities (e.g., costs, relative treat-
ment effects, disease progression on standard care, utili-
ties, and disease prevalence), which are not known with
certainty. Through a PA, we represent knowledge about
these quantities via the joint probability distribution
p(u), which can be considered as describing the joint
prior distribution for u. The expected net benefit of the
optimum decision given current knowledge is
maxd EufNBd(u)g. This expectation is usually estimated
using Monte Carlo simulation (i.e., values of u are
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sampled from p(u) and used to compute the average net
benefit for each d) because it is usually not available
analytically.

The Expected Value of Sample Information

Data to update information in u have value if they might
change the optimum treatment. If we were to collect new
data x and update our knowledge about u and the net
benefits, the optimal decision would be the option that
maximizes the expected net benefit, maxd EujxfNBd(u)g,
conditional on the new data. However, before conduct-
ing a study, the data have not been collected, and so we
compute the expected value of collecting additional data,
where the expectation is taken with respect to the distri-
bution of all plausible realizations of the data that the
proposed study may generate. Thus, the data from the
proposed study are a random variable, denoted X, and
are not yet observed. The expected value of the net bene-
fit for the optimal decision given new information, aver-
aged over the distribution of all possible datasets, p(X),
is EX½maxd EujXfNBd(u)g�, and EVSI is the difference
between this quantity and the expected net benefit under
current information,

EVSI =EX½max
d

EujXfNBd(u)g� �max
d

EufNB d(u)g:

ð1Þ

The first and second terms in this equation are usually
not available in closed form and must be estimated using
simulation methods.

X is the complete set of quantities that would be col-
lected during the study. In reality, this dataset may
include mismeasured quantities, missing values, and
measurements taken at times that deviate from the study
design, which should be reflected in our distribution for
X.6 Furthermore, a model parameter could be informed
by different study designs (e.g., relative effectiveness can
be estimated through a randomized controlled trial or
through an observational study using suitable methods,
which would result in different X).

Efficient Methods for Computing EVSI

The ‘‘standard’’ approach to EVSI estimation uses a
nested Monte Carlo scheme that requires a large number
of samples from the posterior distribution of the model
parameters given sampled data, p(ujx), (an ‘‘inner loop’’)
nested within an ‘‘outer loop’’ that samples a large num-
ber of simulated datasets x; p(X). If the numbers of
inner-loop and outer-loop samples are N i and N o,

respectively, the decision-analytic model must be evalu-
ated N i 3N o, requiring days or even months to com-
plete the required computation.17 However, recent
methods for computing EVSI decrease this time to sec-
onds via approximations that either reduce N o, the num-
ber of simulated datasets required, or avoid the inner
loop altogether.16–20

Approaches to Simulating Study Datasets

We now discuss how to simulate plausible study datasets.
For some EVSI computation methods, only a summary
statistic (e.g., mean, sum), denoted W (X), is required.21

As simulating W (X) directly can decrease the computa-
tional burden of the study data simulation, in some sim-
ple settings, we discuss methods for generating W (X)
directly. However, for many studies (e.g., those collecting
censored survival data), it will not be possible to simulate
W (X) directly, and we will only discuss the individual-
level simulation method.

Simulating Study Outcomes Using Parametric
Distributions

Plausible study data can be generated by specifying a
parametric data-generating process p(Xju). The exact
parametric data-generating process will change depend-
ing on the proposed study design as it must reflect which
model parameters the study will inform and what data
should be collected to update these parameters. For
example, a randomized controlled trial can be proposed
to inform the log odds ratio of a given health event
between the current standard and novel treatment while
a cohort study would inform the baseline event rate, and
a study analyzing administrative claims data would
inform costs. Studies can also be proposed to updated
multiple model parameters, and the parametric data-
generating process can be specified in an arbitrarily com-
plex manner to design increasingly realistic studies.

Irrespective of the complexity of p(Xju), plausible
datasets can be generated from p(X) by first simulating
from the marginal distribution of the parameters
u�; p(u) and then simulating from the sampling distri-
bution of the data based on the sampled parameter val-
ues x; p(Xju�). This generates samples from the joint
distribution of X and u as p(X, u)= p(Xju)p(u). By gen-
erating samples from the joint distribution of p(X, u) and
‘‘ignoring’’ the samples of u, we generate datasets from
the distribution of the data, x; p(X), that include both
first-order (i.e., individual-level) uncertainty and second-
order (i.e., parametric) uncertainty.

Heath et al. 3



In practice, S samples of u from p(u) are required in
PA and are thus available as part of standard cost-
effectiveness analyses that compute the net benefit for
each decision option d = 1, . . . ,D.8 To present the data-
generating algorithm, the first 2 columns of Table 1 rep-
resent this standard PA, where the parameter samples
and net benefits are indexed with a bracketed superscript.

We assume that our study aims to record O quantities
(study outcomes) onM participants, resulting in O3M
measurements in the study. For example, a study could
recruit 100 people (M = 100) to measure their blood
pressure and quality of life (O= 2). Thus, a single study
dataset is denoted as the vector x=(x1, 1, . . . , xO3M).
The third column of Table 1 demonstrates that each PA
parameter sample u(s) is used to sample from the condi-
tional distribution of the data, x(s) ; p(Xju(s)), to gener-
ate the samples x(1), . . . , x(S) that follow the marginal
distribution of the data p(X). We can also consider stud-
ies (e.g., cohort or registry studies) that propose collect-
ing the O individual-level quantities at T different time
points. Again, these studies can be generated using the
same algorithm, but each simulated dataset will contain
O3M3 T measurements.

Univariate Data Simulation for Complete Datasets

Initially, we consider studies that collect a single outcome
at a single time point for each participant (i.e., O= 1).

Generating binary outcome data. Assume that our
decision-analytic model has a parameter, u1, that is the
proportion of individuals in a population who experience
an event (e.g., a stroke) under the current standard treat-
ment. Our current knowledge about this proportion is
represented by a prior distribution p(u1), informed from
a previous study or a literature search.30 In our PA, we
have S samples fu(1)1 , . . . , u(S)1 g drawn from p(u1). Infor-
mation about u1 could be updated by extracting M

individuals from a patient registry and determining
whether each individual has experienced the event,
resulting in a binary outcome (event v. no event) that
can be simulated from a Bernoulli distribution with para-
meter p equal to the probability of an adverse event. To
generate S datasets from p(X), we take each value of u

(s)
1

for s= 1, . . . ,S, and sample M binary outcomes with
parameter p= u

(s)
1 . Assuming S= 1000 and M= 100,

we can generate this dataset in R as follows:

Alternatively, the number of events in each simulated
study (i.e., a summary of the study data) can be sampled
from a binomial distribution with parameter p and the
number of ‘‘trials’’ (size) equal to M. This highlights
the distinction between simulating individual-level data,
x, and simulating a summary statistic of the individual-
level data, W (x). This summary statistic is generated in R
as follows:

Table 1 Representation of a Probabilistic Analysis (PA) Sample with S Samples for a Set of P Parameters and D Decision
Optionsa

Probabilistic Analysis Sample

Parameters Net Benefits Simulated Datasets

u
(1)
1

. . . u
(1)
P NB

(1)
1

. . . NB
(1)
D x

(1)
1

. . . x
(1)
O3M

u
(2)
1

. . . u
(2)
P NB

(2)
1

. . . NB
(2)
D x

(2)
1

. . . x
(2)
O3M

..

. . .
. ..

. ..
. . .

. ..
. ..

. . .
. ..

.

u
(S)
1

. . . u
(S)
P NB

(S)
1

. . . NB
(S)
D x

(S)
1

. . . x
(S)
O3M

aThe bracketed superscript indexes the parameter samples, corresponding net benefits, and simulated datasets.

S \- 1000 # Number of simulated datasets

M \- 100 # Number of individuals extracted from the registry

x \- matrix(NA, nrow = S, ncol = M) # Set up empty matrix

theta_1 \- runif(S, 0.1, 0.2) # Distribution for theta_1

for (s in 1:S) # Simulate s = 1,...,S studies

p \- theta_1[s] # Set the Bernoulli parameter to the s-th

# value of theta_1

x[s, ] \- rbinom(n = M, size = 1, prob = p) # Sample M binary

# event outcomes

}

M \- 100

Wx \- numeric(length = S) # Set up empty vector

for (s in 1:S) { # Simulate s = 1,...,S studies

p \- theta_1[s] # Set the Binomial parameter to the s-th

# value of theta_1

Wx[s] \- rbinom(n = 1, size = M, prob = p) # Sample count of

# the event outcomes

}
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In this example, simulating the data summary is
relatively simple and therefore recommended. However,
if multiple outcomes will be simulated for each individual
(see the multivariate data simulation section), then the
individual-level binary outcomes will likely be required.

Generating normally distributed continuous data. Assume
that the decision-analytic model has a parameter, u2, that
represents the mean systolic blood pressure in the popu-
lation. The current prior uncertainty about u2, obtained
through a previous study on u2, is modeled in p(u2).
Additional information could be gathered in a cross-
sectional study that measures the blood pressure in M
individuals. We assume that the individual-level systolic
blood pressure follows a normal distribution from which
we can simulate a dataset forM study participants. To
generate S datasets from the marginal distribution of the
data, we take each value of u

(s)
2 for s= 1, . . . ,S and sam-

ple from a normal distribution with mean m= u
(s)
2 . The

variance for the normal distribution represents the indi-
vidual-level variance in blood pressure and can either be
assumed known or assigned a probability distribution
that represents our uncertainty in the individual-level
variance of the systolic blood pressure. Crucially, this
individual-level variance, which can be extracted from
the literature or estimated from available individual-level
data, is unlikely to be equal to the variance of u2, which
represents the uncertainty in our knowledge about the
parameter. Note that an estimate of the individual-level
variance is required for standard sample size calcula-
tions, used to ensure that a hypothesis test undertaken
with the trial data has sufficient power.31 Assuming
S= 1000,M= 100, and an individual-level variance (v)
of 80, these data are simulated in R as follows:

Alternatively, if the study is aiming to estimate the
mean systolic blood pressure, then the summary statistic
W (x) (i.e., the study mean systolic blood pressure) can be

simulated directly from the sampling distribution of the
mean. In this case, the study-level mean blood pressure
would be simulated from a normal distribution with
mean m= u

(s)
2 and standard deviation equal to the square

root of the individual-level variance divided by the sam-
ple sizeM (i.e., the standard error of the mean). R code
for this simulation is given as follows:

Many summary statistics are approximately normal
(e.g., the log odds ratio or log hazard ratio), allowing us

to potentially adapt this simulation method for other

summary statistics. However, the standard error for these

alternative summary statistics must be specified correctly,

which can be challenging especially when considering

variable sample sizes for the study. Thus, it may be more

appropriate to generate individual-level data and then

calculate the summary statistic from the simulated data-

set by analyzing the simulated data as if it were collected

during a study (see the data on relative effectiveness sec-

tion below).

Generating time-to-event data. Assume that our decision-
analytic model has a parameter, u3, that represents the

probability that a patient’s cancer progresses within a 1-

month period on the current standard treatment. The

prior distribution of this transition probability, poten-

tially estimated from the control arm in a clinical trial or

from administrative data, is represented by p(u3) and will

be updated by measuring the time to cancer progression

inM individuals from a cancer registry. Assuming that

the rate of progression is constant over time, we can

simulate time-to-progression data from an exponential

distribution with rate, r = � log (1� u3). Thus, generat-

ing S datasets takes each value of u
(s)
3 for s= 1, . . . ,S

and samplesM time-to-progression data from an expo-

nential distribution with parameter r = � log (1� u
(s)
3 ).

Assuming S= 1000 andM= 100, the following R code

generates the following data:

S \- 1000

M \- 100;

x \- matrix(nrow = S, ncol = M) # Set up empty matrix

theta_2 \- runif(S, 120, 130) # Hypothetical distribution

# for theta_2

v \- 80

for (s in 1:S) { # Simulate s = 1,...,S studies

mu \- theta_2[s] # Set the Normal mean parameter to the

# s-th value of theta_2

x[s, ] \- rnorm(n = M, mean = mu, sd = sqrt(v)) # Sample M

# blood pressure measures

}

M \- 100

v \- 80

Wx \- numeric(length = S) # Set up empty vector

for (s in 1:S) { # Simulate s = 1,...,S studies

mu \- theta_2[s] # Set the Normal mean parameter to the s-th

# value of theta_2

Wx[s] \- rnorm(n = 1, mean = mu, sd = sqrt(v / M)) # Sample

# study mean BP

}
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Alternative time-to-event distributions are also avail-
able (e.g., Weibull, Gamma) but have different parame-
terizations of the data-generating process. These
distributions are more complex because they also have
more than 1 parameter. Assume that our decision-
analytic model is a partitioned survival model with a
Weibull distribution estimating progression-free sur-
vival times for the current standard treatment and
parameterized in terms of u4 and u5. Uncertainty in
(u4, u5) is represented by the joint distribution p(u4, u5)
and will be updated by a study that collects time-to-
progression data for M individuals. To generate S
datasets, we take each pair of values u

(s)
4 , u(s)5 for

s= 1, . . . ,S and sample M time-to-progression data
from a Weibull distribution with correlated parameters
u
(s)
4 , u(s)5 .32 Assuming S= 1000 and M= 100, R code
for this is as follows:

Note that choosing the appropriate individual-level
distribution for this data simulation can be challenging,
and methods are currently being developed to adapt the
EVSI calculation method itself when the survival distri-
bution is unknown.33 However, these methods still need

to simulate from a range of survival distributions and will
thus require the methods presented here.

Generating utility data. Next, assume that our health
economic model has a parameter, u6, that represents the
mean utility for a specific health state (e.g., the prepro-
gression state). Information about u6 could arise from a
previous utility elicitation exercise and is encoded in a
beta prior distribution p(u6). Additional information on
the utility could be gathered through a utility elicitation
study among individuals in the given health state (e.g.,
through the use of a standard gamble method). We can
assume that this utility score follows a beta distribution
with a mean of u6 and an individual-level variance v

obtained from a previous study. To simulate these data,
the mean and variance must be translated into the para-
meters of the beta distribution, which we achieve using
the function calculate_beta_parameters below.
The following code generates S= 1000 datasets for a
study collecting utility scores fromM= 100 individuals:

There are a large range of study types (e.g., those that
collect data on costs or resource use) that we are not able
to address directly in this tutorial. However, the general-
purpose algorithm can be adapted to simulate from the rel-
evant distributions (e.g., log-normal distribution for costs).1

Multivariate Data Simulation for Complete Datasets

If the proposed study collects more than 1 outcome for
each study participant, O.1, and/or outcomes at more

S \- 1000

# Correlated joint distribution for theta_4 and theta_5

# (Column 1: theta_4, Column 2: theta_5)

theta_4_5 \- MASS::mvrnorm(S,

c(5,6),

matrix(c(0.3, 0.1, 0.1, 0.5), nrow = 2))

M \- 100

x \- matrix(nrow = S, ncol = M) # Set up empty matrix

for (s in 1:S) { # Simulate s = 1,...,S studies

shape \- theta_4_5[s, 1] # Weibull shape parameter from

# s-th value of theta_4

scale \- theta_4_5[s, 2] # Weibull scale parameter from

# s-th value of theta_5

x[s, ] \- rweibull(n = M, shape = shape, scale = scale)

# Sample M times-to-progression

}

S \- 1000; theta_3 \- runif(S, 0.2, 0.3) # Hypothetical

# distribution for theta_3

M \- 100

x \- matrix(nrow = S, ncol = M) # Set up empty matrix

for (s in 1:S) { # Simulate s = 1,...,S studies

r \- -log(1 - theta_3[s]) # Derive rate from s-th value of

# the transition probability

x[s, ] \- rexp(n = M, rate = r) # Sample M times-to-

# progression

}

S \- 1000;theta_6 \- rbeta(S, 70, 15) # Hypothetical

# distribution for theta_6

M \- 100

v \- 0.04

x \- matrix(nrow = S, ncol = M) # Set up empty matrix

calculate_beta_parameters \- function(mean, sd){

# Function to estimate beta parameters from mean and

# standard deviation

shape1 \- ((1 - mean) / sd ˆ 2 - 1 / mean) * mean ˆ 2

shape2 \- shape1 * (1 / mean - 1)

# Return the calculated parameters.

return(list(shape1 = shape1,

shape2 = shape2))

}

for (s in 1:S) { # Simulate s = 1,...,S studies

# Derive beta parameters with iteration specific mean

params \- calculate_beta_parameters(theta_6[s], sqrt(v))

x[s, ] \- rbeta(n = M, shape1 = params$shape1,

shape2 = params$shape2) # Sample M times-to-progression

}
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than 1 time point, alternative methods will be required.
In this framework, any study where the individuals
receive different interventions (e.g., randomized con-
trolled trials) are defined as multivariate data collection
exercises. This is because we specify the treatment that
the individual receives as one of the O quantities of inter-
est. Thus, O.1 as we record the treatment and at least 1
outcome, demonstrated in the data on relative effective-
ness section below.

Independent multivariate data simulation. If the quanti-
ties generated for each participant are assumed to be
independent, conditional on u, a separate univariate
data-generating process can be specified for each of the
O quantities of interest and then combined into a single
dataset. Assuming the data are independent conditional
on the parameters does not mean that the data are uncor-
related as any correlations in the model parameters,
embodied in u, would generate correlated patient-level
study data. A combined study that investigatesM= 100

participants and records whether they experience an
adverse event and their times to progression can be gen-
erated in R as follows:

This code does not store the data using the spread-
sheet structure demonstrated in Table 1, but it uses a 3-
dimensional array with M rows for each study partici-
pant, O columns for each recorded quantity, and S
matrix slices (the third dimension) for each simulation.
This structure makes it easier to analyze data separately
for each simulation if this is required to estimate the
summary statistics.

Dependent multivariate data simulation. Multivariate
data simulation is more complex when the simulated

quantities are correlated for each participant (e.g., if par-
ticipants with shorter survival times are more likely to
experience adverse events). This correlation must be spec-
ified when we generate multivariate data and can either
be assumed fixed or assigned a probability distribution
that represents our uncertainty about the correlation. If
we ignore the correlation, we are implicitly assuming that
it is zero, with certainty. Thus, even if evidence about the
correlation structure is lacking, it is important to assess
whether this assumption of zero correlation is valid. In
general, the correlation can be informed 1) by the litera-
ture, although reporting on correlation is often lacking,
and you may need to request this information from the
authors; 2) by calculating the correlation in available
data; or 3) through expert elicitation.34

One method to generate correlated data initially gen-
erates uncorrelated data and then reorders the simulated
dataset to achieve the required correlation.35,36 These
reordering methods are implemented in the R function
postSimOpt, which generates correlated data with a
given correlation matrix.37 If we are generating corre-
lated data similar to the previous example recording
adverse events and time-to-progression data from
M= 100 participants, then we can reorder the data
from the previous example to have a correlation of –0.2
using R as follows:

Correlated data can also be generated using regression
to specify the dependencies between the quantities of
interest. The regression method decomposes the joint dis-
tribution of these quantities into conditional and

S \- 1000

O \- 2

M \- 100

x \- array(dim = c(M, O, S)) # Set up empty array

for (s in 1:S) { # Simulate s = 1,...,S studies

p \- theta_1[s] # Set the Bernoulli parameter to the

# s-th value of theta_1

r \- -log(1 - theta_3[s]) # Derive rate from s-th value of

# the transition probability

x[ , 1, s] \- rbinom(n = M, size = 1, prob = p) # Sample M

# binary adverse outcomes

x[ , 2, s] \- rexp(n = M, rate = r) # Sample M times-to-

# progression

}

library(SimJoint) # Package containing function to reorder

# data

S \- 1000

O \- 2

M \- 100

correlation \- matrix(c(1, -0.2, -0.2, 1), nrow = 2)

# Specify the correlation matrix

x \- array(dim = c(M, O, S)) # Set up empty array

for (s in 1:S) { # Simulate s = 1,...,S studies

p \- theta_1[s] # Set the Bernoulli parameter to the s-th

# value of theta_1

r \- -log(1 - theta_3[s]) # Derive rate from s-th value of

# the transition probability

x[ , 1, s] \- rbinom(n = M, size = 1, prob = p) # Sample M

# binary adverse outcomes

x[ , 2, s] \- rexp(n = M, rate = r) # Sample M times-to-

# progression

# Reorder the columns so they are correlated

x[ , , s] \- postSimOpt(x[, , s], correlation) $X

}
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marginal distributions, where the conditional distribu-
tions are defined using regression models. This method
can generate data for O correlated quantities of interest,
Xo, o= 1, :::O by initially generating a value of X 1 from
its marginal distribution, before proceeding to generate
X 2 conditional on X 1, with the relationship specified
using regression. Following this, X 3 can be generated
based on X 1 and X2 and so on. If O is small, then the
required regression models may have been published,
but as the number of outcomes increases, IPD will be
required to fit these models. The data generation should
consider uncertainty in the parameters of the regression
model, specified either by fitting the regression models
using Bayesian methods or sampling the regression coef-
ficients from their sampling distribution. This sampling
distribution is approximately multivariate normal with
the variance-covariance matrix estimated when the
regression models are fit in standard software. Thus, if
published regression models are used, the variance of the
regression parameters must also be extracted. Using the
previous example and assuming that its first simulated
dataset is actually IPD recording adverse events and
time-to-progression data that are saved in a data frame
called dat, the following code generates correlated data
using the regression method:

These methods can be combined with the uncorrelated
data generation processes to generate both dependent
and independent data for the proposed study.

Data on relative effectiveness. Data from a proposed
randomized control trial, which updates uncertainty in
the log odds ratio of an event on a novel intervention
compared to the current standard treatment (u7), also
require correlated multivariate data generation. The first
quantity of interest is an indicator I, highlighting which
treatment each participant receives. In an equally rando-
mized 2-arm trial, this is generated from a Bernoulli dis-
tribution with probability 0.5, with a 1 representing that
the participant has been randomized to receive the novel
intervention. To calculate the patient-level probability of
experiencing the outcome event of interest from this indi-
cator, we must combine the s th simulated values of u

(s)
7

with the simulated values of the baseline probability of
experiencing the event under the standard treatment,
denoted u

(s)
8 . (Note that information on the baseline

probability of the event can, and often should, come
from a different source than the information to inform
u8, i.e., the baseline event rate comes from administrative
data, while a previous clinical trial would inform the
relative effectiveness.) The individual-level log odds of
experiencing the event can then be computed by adding
u
(s)
7 3 I to logit(u

(s)
8 ). The individual-level probability of

the event is then calculated from logit�1flogit(u(s)
7 )+

u
(s)
8 3 Ig, and the individual-level response can be gener-
ated from a Bernoulli distribution with these probabil-
ities. The summary statistic (e.g., the observed log odds
ratio) can then be estimated by fitting a generalized lin-
ear model to the s th dataset as though the simulated
data were observed. The following R code implements
this method for a study collecting data on M= 100

participants:

library(MASS) # Package to simulate from multivariate normal

# distribution

S \- 1000

M \- 100; O \- 2

dat \- as.data.frame(x[ , , 1])

# Generalised Linear Model to predict adverse event

# probability from times-to-progression

mod \- glm(AE Time_Prog, data = dat, family = ‘‘binomial’’)

theta_reg \- mvrnorm(S, coef(mod), vcov(mod)) # Sampling

# distribution of coefficients

x \- array(dim = c(M, O, S)) # Set up empty array

for (s in 1:S) { # Simulate s = 1,...,S studies

r \- -log(1 - theta_3[s]) # Derive rate from s-th value of

# the transition probability

x[ , 2, s] \- rexp(n = M, rate = r) # Sample M times-to-

# progression

mod$coefficients \- theta_reg[s, ] # Set the coefficients

# to their s-th value

# Predict probability of an adverse event from the simulated

# times-to-progression

p.ind \- predict(mod, data.frame(Time_Prog = x[, 2, s]),

type = ‘‘response’’)

x[ , 1, s] \- rbinom(n = M, size = 1, prob = p.ind) # Sample M

# binary adverse outcomes

}

library(boot) # Package for logit and inv.logit

S \- 1000

M \- 100; O \- 2

theta_7 \- rnorm(S, 1.2, 0.1) # Hypothetical distribution

# for log odds ratio

theta_8 \- runif(S, 0.2, 0.3) # Hypothetical distribution

# for baseline risk

x \- array(dim = c(M, O, S)) # Set up empty array

Wx \- numeric(length = S) # Set up empty vector for simulated

# summary statistic

for (s in 1:S) { # Simulate s = 1,...,S studies

# Sample M treatment indicators

x[ , 1, s] \- rbinom(n = M, size = 1, p = 0.5)

(continued)
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This example uses binary outcomes and log odds
ratios as a measure of relative effect. If an alternative
outcome type and/or measure of relative effect is used,
then this method must be adapted to translate the para-
meters to the additive scale and back to generate the
data. We provide code to implement this method for sur-
vival outcomes and log hazard ratios in the supplemen-
tary material.

Finally, there are many methods for generating corre-
lated data that are not discussed in this tutorial. Copulas
are a class of statistical models that combine univariate
marginal distributions and a multivariate correlation
structure and can generate correlated data.38 Elsewhere,
methods can ensure that simulated data preserve their
rank (i.e., in situations where 1 outcome must be larger
than another).39 Microsimulation models or discrete-
event simulations can also generate interrelated individ-
ual event data in a highly flexible but more computation-
ally intensive manner.40,41

Realistic Study Designs

Realistic studies can encounter issues with missing val-
ues, loss to follow-up, and censoring, which should be
included in our data simulation procedure.6

Missingness. Data that are not recorded during a study
(i.e., missing data) are commonly accounted for in study
design and analysis.42 Thus, simulating missing values
based on knowledge about the potential rate of missing-
ness will often be required. A ‘‘missingness indicator’’
equals 1 if the participant’s data are missing and 0 other-
wise. This can be used to simulate missingness using a

Bernoulli distribution with the probability equal to the
expected level of missingness, obtained from the litera-
ture or expert opinion. Once the missingness indicator
has been generated, participants with a missingness indi-
cator of 1 are then ‘‘deleted’’ from the simulated dataset.
If the study collects multivariate outcomes, then missing-
ness can be considered separately for each outcome. The
simplest type of missingness (i.e., missing completely at
random) generates the missingness indicator independent
of the quantities of interest43 with an example assuming
10% missing data given as follows:

A correlation between the data and the missingness
indicator (i.e., where participant outcomes or traits lead
to higher levels of missingness) can also be assumed and
would induce bias in estimates from the data and EVSI
if it is not accounted for properly. If this type of missing-
ness is used, then the method for updating the distribu-
tion of the model parameters, based on the data, would
also need to be adjusted using common methods for
addressing missing data.42

Censoring in time-to-event data. Censoring is commonly
encountered when working with time-to-event data; for
example, right-censored data include the information
that a participant did not experience an event during the
study but do not record when (or if) the event is experi-
enced after the study’s observation period ended. Cen-
soring is modeled by adding a ‘‘censoring indicator’’ to
the dataset, which equals 0 if the data point is censored
and 1 if it is not. To generate censored survival data, we
first generate the event time for each participant from a
suitable uncensored model (cf. generating time-to-event
data). We then generate a potential ‘‘censoring time’’ for
each participant; this can either be a fixed number (i.e.,

# Calculate s-th baseline log odds

baseline.logodds \- logit(theta_8[s])

# Calculate odds for treated group from baseline log odds

# and the s-th log odds ratio

individual.logodds \- baseline.logodds + theta_7[s] *

x[ , 1, s]

# Calculate probability from log odds

individual.prob \- inv.logit(individual.logodds)

# Sample M binary outcomes

x[ , 2, s] \- rbinom(n = M, size = 1, prob =

individual.prob)

# Create a dataframe with the data

data.complete \- data.frame(x[, , s])

names(data.complete) \- c(‘‘Treatment,’’ ‘‘Outcome’’)

# Generalised linear model to compute odds ratio for the

s-th dataset

Wx[s] \- glm(Outcome Treatment, data = data.complete,

family = ‘‘binomial’’)$coef[2]

}

S \-1000; theta_2 \-runif(S, 120, 130) # Hypothetical

# distribution for theta_2

M \-100; v \-80

x \-matrix(nrow = S, ncol = M) # Set up empty matrices

for (s in 1:S) { # Simulate s = 1,...,S studies

mu \-theta_2[s] # Set the Normal mean parameter to the s-th

# value of theta_2

x[s, ] \-rnorm(n = M, mean = mu, sd = sqrt(v)) # Sample M

# blood pressure measures

missing \-rbinom(n = M, size = 1, prob = 0.1) # Sample

# missingness indicator

x[s, which(missing == 1)] \-NA # Knock out the missing

# observations

}
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all patients are censored at the end of the study follow-
up) or simulated from a different time-to-event distribu-
tion with parameters estimated to reflect patterns of
dropout or loss to follow-up seen in similar studies.44 If
the censoring event occurs before the event, we change
the event time to the censoring time and the censoring
indicator to 0. An example where time-to-progression
data are censored at 6 months is given as follows:

This code implements right-censoring, commonly seen in
randomized control trials, but a similar method could simu-
late left-censored data, where the event time is not observed
if it occurs before the censoring time. Finally, interval cen-
soring, where only the time interval in which the event
occurs is known, requires a more complex specification.

Simulating Study Outcomes Using Nonparametric
Resampling

If the decision-analytic model is based on IPD, we could
investigate whether there is value in collecting additional
data with the same (or a similar) study design. Given
IPD are available, we could generate data in this setting
by resampling the IPD and avoid specifying parametric

distributions for the data. Resampling from IPD, denoted
y, can characterize parameter uncertainty using bootstrap
methods,45 but these methods must be extended to gener-
ate the range of plausible datasets from p(X). Assume that
a parameter for a decision-analytic model, u8, can be esti-
mated as a function of the IPD, u8 =H yð Þ. The uncer-
tainty in u8 can be estimated by resampling S times from
y with replacement to create multiple pseudo-datasets y(s),
s= 1, :::,S before estimating the model parameter
u
(s)
8 =H y(s)

� �
(Table 2).

To simulate a dataset from p(X) withM participants
for each row of the PA dataset, we should resampleM
values with replacement from each dataset y(s),
s= 1, :::, S (i.e., resample from each row of Table 2).
This is equivalent to generating the data from p(Xju(s)8 ).
The following displays the R code for this resampling
algorithm:

This resampling method can also generate datasets
that are similar to the IPD. For example, if the proposed
study targets younger participants than the previous
study, we could perform a weighted resampling to sam-
ple the younger patients more frequently. We could also
sample a subset of the quantities from the previous study
to evaluate the value of a more targeted study or plan a
study with a shorter follow-up.

Once we have generated our resampled datasets, the
efficient EVSI estimation procedures require different
adaptions to estimate EVSI. Methods that require

S \-1000; theta_3 \-runif(S, 0.2, 0.3) # Hypothetical

# distribution for theta_3

M \-100

x \-matrix(nrow = S, ncol = M) # Set up empty matrix

censoring_time \-6

for (s in 1:S) { # Simulate s = 1,...,S studies

r \- -log(1 - theta_3[s]) # Derive rate from s-th value of

# the transition probability

x[s, ] \- rexp(n = M, rate = r) # Sample M times-to-

# progression

}

censoring_indicator \- (x . censoring_time) # Set indicator

# for times . 6 months

x[censoring_indicator] \- censoring_time # Set censored

# times to 6 months

Table 2 Representation of the Bootstrap Estimation Method for the Parameter u8 Based on an Initial Sample of Size N

Simulation y1 y2 y3 . . . yN u8

1 y(1)
1

y(1)
2

y(1)
3

. . . y
(1)
N u

(1)
8

2 y(2)
1

y(2)
2

y
(2)
3

. . . y(2)
N

u
(2)
8

..

. ..
. ..

. ..
. . .

. ..
. ..

.

S y(S)
1

y(S)
2

y
(S)
3

. . . y
(S)
N u

(S)
8

S \- 1000

N \- 150; M \- 100

y \- runif(N, 10, 30) # Hypothetical IPD

x \- matrix(nrow = S, ncol = M) # Set up empty matrix

for (s in 1:S) { # Simulate s = 1,...,S studies

y_s \- sample(y, N, replace = TRUE) # Bootstrap sample from y

x[s, ] \- sample(y_s, M, replace = TRUE) # Sample M IPD values

# from y_s

}
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Bayesian updating (e.g., the standard Monte Carlo
method and the moment matching method)46 must use
an adapted bootstrap algorithm, which we are currently
developing, to approximate the Bayesian updating with-
out specifying p(u) and p(Xju) analytically. Methods that
require a summary statistic (e.g., the regression-based
method)16 can be used by calculating the parameter
using the function H( � ) for each simulated dataset. Note
that one of the EVSI calculation methods is based on
evaluating the likelihood function of the data and so
cannot be used with this resampling method.19

Discussion

EVSI can be used to optimize study designs to generate
data to support decision making in HTA processes,
which are often based on decision-analytic models.47

EVSI can formalize the decision to collect additional
information before making policy decisions in health,
thereby ensuring that effective and efficient treatments
are available to patients.48–50 This tutorial supports the
increased use of EVSI by researchers, decision makers,
and industry partners by presenting a range of methods
to generate simulated datasets for EVSI calculation.

Recent research has allowed practical EVSI calcula-
tions through the development of efficient estimation
methods,21 which generally require simulated datasets from
a proposed future study. The methods presented in this
tutorial can be used to simulate datasets from randomized
trials and observational studies with a range of outcome
types, including uni- and multivariate datasets. Further-
more, they support the modeling of imperfect study conduct
and incomplete data collection. Finally, they are applicable
with and without individual patient-level data. We demon-
strate these methods using R code and, where appropriate,
with Excel spreadsheets included in the supplementary
material. Once we have simulated the datasets from the pro-
posed study, the final computation of EVSI depends on the
selected algorithm, as detailed in Kunst et al.21

Accurate EVSI estimation requires realistic data simu-
lation.6 These datasets should reflect our judgments
about the data, encoded in our chosen parameter distri-
butions p(u) and data-generating process. Thus, they do
not need to reflect a dataset that has previously been col-
lected, making it challenging to determine if the simu-
lated datasets are ‘‘correct.’’ However, when developing
the simulation method, biological plausibility can and
should be checked (e.g., determine that all simulated sur-
vival times are within the life span of a human). It may
also be worthwhile to check whether the simulated data
reflect the specified inputs (e.g., calculate the individual-

level variance for each simulation and check if it is
approximately equal to the specified variance). As the
number of simulated datasets is large, these checks may
only be possible for a small number of the datasets and
can be used for validation.

As studies can be designed with almost infinite com-
plexities, many study designs that are relevant to health
economic decision making could not be included in this
tutorial. For example, simulating data on utilities is
potentially more complex than the method presented in
this tutorial as health states are often ranked, and the
data simulation should take this into account, potentially
through previously developed methods.39 Recent
research has also proposed methods for EVSI calculation
when the survival distribution is unknown and may
change based on the future data.33 Furthermore, studies
based on long-term longitudinal cohorts will require
complex multivariate data generation and missing data
patterns. Finally, the estimation of study costs to com-
pute ENBS and optimize study design has received lim-
ited discussion in the literature3 despite its importance to
ensure accurate research prioritization.

Conclusion

This tutorial presents a general-purpose algorithm for
generating simulated datasets from a probabilistic analy-
sis and explored common correlated and uncorrelated
data types. This method is demonstrated in several exam-
ples but can be extended to more complex study designs,
as required. Hence, this tutorial facilitates practical EVSI
calculations and allows research design and prioritization
based on ENBS.
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