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Abstract

This paper investigates the stability of meshed DC micro-grids with constant power loads (CPLs), under decentralised primary
and distributed secondary control scheme to achieve accurate power sharing and voltage restoration, with the latter being
more significant to the case of parallel converters in a micro-grid architecture. The DC micro-grid consists of multiple DC/DC
boost converters, which have nonlinear dynamics, feeding local CPLs, which also exhibit a nonlinear behaviour and introduce
negative impedance characteristics that are well-known to yield instability. At the primary control layer, the droop control
concept is suitably formulated and implemented using the recently proposed state-limiting PI controller to accomplish an
inherent current limitation for each converter and simultaneously facilitate the stability analysis. Using limited information of
the injected power from neighbouring converters and, depending on the micro-grid configuration, the load voltage, a distributed
secondary controller is formulated to enhance the power sharing and accurately regulate the voltage to the rated value. By
analysing for the first time both the dynamics of the converters with the CPLs and the two-layer control, singular perturbation
theory is applied to analytically prove the stability of the entire DC micro-grid. The scalability of the system is also ensured
through relevant passivity analysis. Simulation and experimental testings are performed to confirm the effectiveness and
validity of the proposed method.
Key words: DC micro-grids, constant power loads (CPLs), droop control, distributed control, stability analysis.

1 Introduction

Environmental aspects have urged the conventional
power grid to undergo a period of unprecedented
change. The replacement of the bulk generation
based on synchronous machines, with renewable
energy generation units interconnected to the grid via
power electronic devices, represents one of the major
transitions. Since the majority of renewable generation
and storage units run on DC power, DC micro-grids
have emerged as a successful solution for integrating
them within the future grid. The effects quickly followed
with DC micro-grids being implemented in more-
electric aircrafts, shipboard systems, data centres, smart
communities (Cairoli & Dougal 2013, Buticchi et al.
2017, Salomonsson et al. 2008, Setthapun et al. 2015).

The main challenges in these multiple-source based
networks deal with issues related to: i) DC bus voltage
maintenance; ii) load power distribution among parallel
sources; iii) fault protection; iv) power quality; v)
system instability (Jin et al. 2014). Stability of the DC
micro-grid continues to remain a challenge due to the
nonlinear dynamics that the power electronic converters
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and their loads introduce. In particular, DC micro-
grids with CPLs tend to be unstable when traditional
decentralized control or distributed control strategies
are implemented independently. Droop-based methods,
formulated in different structures (Shuai et al. 2016,
Cingoz et al. 2017, Simpson-Porco et al. 2017, Xu et al.
2015, Jung-Won Kim et al. 2002, Lu et al. 2014, Huang
et al. 2015), are most commonly employed to guarantee
DC bus voltage regulation, and achieve power sharing.
Stability of reduced-order models in droop mode has
been investigated in Anand & Fernandes (2013), Tahim
et al. (2015) obtaining safe operating ranges for the
droop coefficients. Nevertheless, in the majority of these
cases, the dynamics of the converters are ignored.
Other stability strategies have been developed using
the already proposed Brayton and Moser’s nonlinear
circuit theory (Liu et al. 2011). However, in droop
control mode the system suffers from poor voltage
regulation, inaccurate load power sharing, slow dynamic
response, line impedance dependency, and reduced
stability margin (Mohamed & El-Saadany 2008).

To address the load voltage permanent offset
and the other shortcomings (e.g. inaccurate power
sharing), multi-level or hierarchical control strategies
are often adopted as they introduce a certain degree
of independence between different control levels and
increase the reliability of the system, by continuing to be
operational even in case of failures in one of the upper
control layers (Gao et al. 2019). In the same framework,
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distributed control methods have been proposed in
Liu et al. (2018), Zhao & Dörfler (2015), employing
a diffusive or nearest-neighbour coupling, where the
system and/or the lower control levels dynamics are
ignored. The main advantage of these approaches is that
the system maintains full functionality, even in case of
communication failure of some of the links, given the
network remains connected. This is due to the fact that
distributed control is immune to single point of failure
(SPOF), as shown in Bidram et al. (2013), Shafiee et al.
(2014), Loh et al. (2016). Nevertheless, the stability of
the micro-grid system, particularly with constant power
loads (CPLs), under multi-level distributed control has
not been adequately studied, mainly because of the
complex dynamics that the hierarchical control, the
system and the loads introduce. Hence, the detailed
stability of the DC micro-grid system under multi-level
distributed control still remains an open problem.

In this paper, the stability analysis of n bidirectional
boost converters, which introduce nonlinear dynamics,
feeding local CPLs under hierarchical control that
guarantees voltage regulation, accurate power sharing
and current limitation, is investigated. First, a novel
decentralised primary droop control with current
limitation is presented motivated by the recently
proposed state-limiting PI controller (Konstantopoulos
& Baldivieso-Monasterios 2019) and by suitably
formulating the droop expression. Then, a secondary
distributed controller is proposed that ensures accurate
power sharing and load voltage restoration. By using
a two time-scale analysis approach, stability analysis
of the overall system is performed, that includes the
dynamics of the DC-DC converters, the CPL and the
nonlinear hierarchical control strategy. Simulation and
experimental testing are included to verify the proposed
control strategy and the theoretical analysis. The key
contributions of this paper can be summarized as follows:

(1) A meshed DC micro-grid architecture with local
CPLs is proposed and investigated using graph
theory and linear algebra tools. Moreover, the
particular case of meshed networks with converters
sharing common loads, namely the parallel
configuration, is also investigated, as it adds
additional challenges into the small-signal analysis
due to the singularities introduced by the common
CPL into the overall system.

(2) Compared to Su et al. (2018) in which linear buck
converter dynamics are investigated in a parallel
micro-grid configuration, in this paper the boost
converter dynamics in both meshed and parallel
micro-grid architectures are considered, which are
inherently nonlinear. Moreover, a new hierarchical
control framework is proposed to ensure load
voltage restoration and accurate power sharing
across the multiple sources, with an inherent input
current limitation capability in contrast to Nahata
et al. (2020), Han et al. (2019);

(3) Opposed to Liu et al. (2018) that only investigates

the stability of the secondary controller, and
Nahata et al. (2020), Han et al. (2019) that ignore
the converter dynamics, in this paper, closed-loop
stability is guaranteed, pending straightforward
conditions for the entire system, which incorporates
the boost converter dynamics, the CPLs and the
hierarchical control;

(4) The DC micro-grid scalability has been
demonstrated by investigating the system passivity
when plugging in/out an additional converter
equipped with the proposed controller.

The paper is organized in the following way. In Section
2, the micro-grid system and the CPL models are put
forward. Section 3 describes the novel primary and
secondary controllers to achieve tight voltage regulation,
accurate load power distribution with the current-
limiting capability. Stability of the entire system in
both meshed and parallel micro-grid configurations is
investigated in Section 4, followed by simulation and
experimental testing in Sections 5 and 6, respectively.
Finally, conclusions are drawn in Section 7.

The remainder of this section introduces the necessary
notations and revisits some key preliminaries.

1.1 Notation and preliminaries

1.1.1 Vectors, matrices and functions

Consider 1n, 1n×n and 0n, 0n×n denoting the n-
dimensional vector and matrix, of unit and zero entries,
respectively, and let 1⊥

n be the orthogonal complement of

1n in R
n, that is, 1⊥

n ≜ {x ∈ R
n : x⊥ 1n}. Let In be the

identity matrix of size n. Given an n-tuple (x1, . . . , xn),
let x ∈ R

n be the associated vector. For an ordered
index set I of cardinality | I | and an one-dimensional
array {xi}i∈I , we define [xi] = diag

(
{xi}i∈I

)
∈

R
|I|×|I| to be the associated diagonal matrix. For

x ∈ R
n, define the vector-valued and matrix-valued,

respectively, functions sin (x) = (sin(x1), . . . , sin (xn)),
cos (x) = (cos(x1), . . . , cos (xn)) and [sin (x)] =
diag

(
{sin(xi)}i∈I

)
, [cos (x)] = diag

(
{cos(xi)}i∈I

)
.

1.1.2 Graph theory

Consider an undirected, connected, and weighted
graph G (ν ,ε, A), represented as a set of vertices ν =
[ν1 ν2 . . . νn] connected by a set of edges ε ⊂ ν × ν ,
and induced by the symmetric, irreducible, and non-
negative adjacency matrix A ∈ R

n×n, with n being the
number of vertices. The elements of A represent the
weights, where aij > 0 if the edge (νj , νi) ∈ ε, otherwise,
aij = 0. The Laplacian matrix L ∈ R

n×n is defined
as L = [A1n] − A, and its eigenvalues determine the
global dynamics. For a connected graph, there is one
spanning tree, with ker (L) = span (1n), having all n−1
remaining eigenvalues of L real and strictly positive,
with the second-smallest eigenvalue λ2 (L) called the
algebraic connectivity.

1.1.3 Linear matrix analysis

Lemma 1 With λ1 ≤ λ2 ≤ · · · ≤ λn representing the
eigenvalues of a Hermitian matrix A, and β1 ≤ β2 ≤
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· · · ≤ βn the eigenvalues of a Hermitian matrix B, it
holds true that

λi + β1 ≤ ηi ≤ λi + βn

where η1 ≤ η2 ≤ · · · ≤ ηn are the eigenvalues of the
Hermitian matrix A+B.

Proof. Presented in Meyer (2000, Ch.7). ✷

Lemma 2 Let Q,R ∈ C
n×n be two unitary matrices,

i.e. Q∗Q = In and R∗R = In, with ∗ denoting the
conjugate transpose. Then P = QR is also an unitary
matrix.

Proof. By calculating the product P ∗P , it is shown that

P ∗P = (QR)
∗
QR = R∗ (Q∗Q)R = R∗R = In

which completes the proof. ✷

Lemma 3 Let S be a positive-semidefinite Hermitian
matrix andD a positive-definite Hermitian matrix. Then

1) Matrix product SD (or DS) is diagonalizable.

2) If S,D ∈ Rn×n, the eigenvalues of SD (or DS)
have only real part, and the product SD (or DS) has the
same number of negative (zero, or positive) eigenvalues
as matrix A.

Lemma 4 Let L be the Laplacian matrix of a connected
and undirected graph G with n vertices, and a vector
y ∈ R

n
≥0, with y ̸= 0n, such that ∆ = diag{y}. By

considering the Laplacian matrix

L† =

[

yT y −yT

−y L+∆

]

corresponding to a graph G†, one can conclude that matrix
L+∆ is positive-definite.

2 Dynamic modelling of a DC Micro-grid

A typical islanded DC micro-grid is depicted in
Fig. 1a, consisting of n nodes, representing bidirectional
DC/DC boost converters (Fig. 1b), connected in a
meshed configuration, feeding local loads (CPLs). Every
converter includes a boosting inductor Li, a smoothing
capacitor Ci, while Ui is the DC input voltage, where i ∈
I. One can also see, the mapping of the cyber network,
which can be different to the physical network, onto the
physical DCmicro-grid. The vertices represent converter
nodes, and the edges represent the communication
links for information exchange. In achieving global
synchronization, the communication graph must have
at least one spanning tree. Hence the communication
network is represented by an undirected, connected
and unweighted graph, and the inertia of its Laplacian
matrixLcyb, is i (Lcyb) = [n− 1 0 1]. Diffusive coupling
(nearest-neighbour coupling) is the most common type
of coupling in distributed communication networks.

The system’s nonlinear dynamic model can be
described by employing Kirchhoff laws and average
analysis (Ortega et al. 1998), leading to the following
differential equations:

ν 

ε  

Physical network

Communication network

(a) Typical framework of a meshed DC micro-grid

Ci

Li

iLi
ii

Vi
ui

ui

Ui

Node 

i

Pi

Vi

(b) Power converter integration into the network

Fig. 1. The structure of the DC micro-grid system

Lii̇Li =Ui − (1− ui)Vi (1)

CiV̇i = (1− ui)iLi − ii (2)

where ui is the duty-ratio (control) input, bounded in
the range [0, 1], iLi is the inductor current and Vi, ii are
the converter output voltage and current, respectively.

Rewriting (1)-(2) in a matrix form, the DC micro-grid
system takes the following form

i̇L =L−1 (U − (In − u)V ) (3)

V̇ =C−1 ((In − u)iL − i) (4)

where U = [U1...Un]
T , u = diag{ui}, V = [V1...Vn]

T ,
iL = [iL1...iLn]

T , i = [i1...in]
T , L = diag{Li} and C =

diag{Ci}. It is clear that system (3)-(4) is nonlinear,
since the control input u is multiplied with the system

states
[

iTL V T

]T

.

One can write the output current of each converter as

ii =
Pi

Vi

+
∑

k∈Ni

iik, (5)

where Pi is constant and represents the local
power demand in node i, while Ni represents the
neighbourhood of node i, in the induced graph described
by the meshed DC network, i.e. Ni ∈ V : εik ∈ E .

Considering a steady-state voltage value for the i-th
node denoted by Vie, by taking the partial derivative of
output current ii from (5) with respect to the output
voltage Vi, one obtains the conductance matrix
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Y = L −D, (6)

where L is a positive semi-definite and D = diag{ Pi

V 2
i

} a

positive-definitematrix. Note that the symmetric matrix
L represents the Laplacian matrix induced by the DC
network, while the diagonal matrix D incorporates the
self-loops of the nodes.

2.1 Common load micro-grid topology

A special case of the meshed architecture, that
introduces the challenges of load voltage regulation and
power sharing, is the parallel configuration. Therein,
the power balance equation for the CPL becomes P =
Vo

∑n
i=1

ii, with constant P representing the common
load power demand, and Vo being the load voltage.
The output currents expression would then be given
as ii = Vi−Vo

Ri

. Similar to Simpson-Porco et al. (2017),

Su et al. (2018), Liu et al. (2018) and by following the
theoretical proof developed in Braitor et al. (2020a,c),
the feasible solution of the load voltage Vo becomes

Vo =

∑n
i=1

Vi

Ri

+

√
(
∑n

i=1
Vi

Ri

)2

−4P
∑n

i=1
1

Ri

2
∑n

i=1
1

Ri

. (7)

It should be underlined that theoretically, there are
two possible expressions for the load voltage, a high and
a low voltage. However, if a current-limiting property
|iLi| ≤ |imax

Li | is guaranteed, then not only each converter
is inherently protected, but also as shown in Braitor et al.
(2020a,c), only the high load voltage solution is possible.
This can be accomplished with the proposed controller
as it will be explained in the sequel.

Remark 1 Note that compared to Simpson-Porco et al.
(2017), Su et al. (2018), Liu et al. (2018) that assume
the load voltage given as in equation (7) based on the
feasibility of the high-voltage solution, in this work it can
be analytically guaranteed through the current-limiting
property of the proposed controller.

Obviously, the existence of a real solution of the load
voltage requires the expression in the square root in (7)
to be non-negative. Hence, for higher values of the load
power P , the output voltages of the converters should be
increased or a higher rated voltage of the DC micro-grid
can be considered, as discussed in Su et al. (2018).

For an equilibrium point (iLie, Vie) given by a constant
control input ui, by taking the partial derivative of the
output current ii = Vi−Vo

Ri

with respect to the output

voltage Vi, as in Braitor et al. (2020a,c), Braitor et al.
(2020b) we obtain the conductance matrix, in parallel
configuration case, as

Y = R−1 (In − 1n×nD) , (8)

withR = diag{Ri} andD = diag{ ∂Vi

∂Vo

} > 0, ∀i ∈ I. For
a more thorough explanation and in-depth expansion of
the conductance matrix for parallel configuration micro-
grids with CPL, the reader is referred to Braitor et al.
(2020b).

3 Proposed controller design

3.1 Primary control steady-state analysis

The key grid-forming control strategy in modern
micro-grids, consisting of multiple distributed
generation units, is represented by the well-established
droop control, which in its conventional dynamic form is

τiV̇i = V ∗ − Vi −miPinj,i. (9)

where Pinj,i is the injected power by the i-th converter,
V ∗ is the rated/nominal voltage, τi is the time-constant,
and mi is the positive droop coefficient chosen to satisfy

mi ≤
V ∗

Pi

. (10)

By further looking into (9), it is clear that the output
voltage Vi will deviate from the nominal voltage V ∗ as
long as Pinj,i ̸= 0. Furthermore, the larger the droop
gainmi, the more the voltage deviation V ∗−Vi becomes.

In order to regulate the output voltage Vi to the
nominal value V ∗, and at the same time maintain the
power sharing accuracy, a correction term, ei is added
into the droop function (9), as

τiV̇i = V ∗ − Vi −miPinj,i + ei, (11)

where ei is obtained from the dynamics of the secondary
control layer. The first task of this paper is to design
a primary controller that inherits the droop control
concept and additionally maintains an upper limitation
for the input current for each converter independently of
the system parameters. To this end, the duty-ratio input
of each boost converter is proposed to take the form

ui = 1−
rviiLi + Ui − Emaxi sinσi

Vi

, (12)

where rvi represents a constant virtual resistance and
Emaxi a constant maximum virtual voltage for the i-
th converter, chosen to satisfy, in matrix form, Imax =
Emaxr

−1
v . Inspired by the state-limiting PI (sl-PI)

controller proposed in Konstantopoulos & Baldivieso-
Monasterios (2019), σi is designed to follow the nonlinear
dynamics:

σ̇i =
ki

Emaxi

(

V ∗−Vi−mi

UiEmaxi sinσi

rvi
+ei

)

cosσi (13)

with ki, Emaxi being positive constants and σi (0) = 0.

Proposition 1 The controller state σi (t) is uniformly
ultimately bounded, within the range σi ∈

[
−π

2
, π
2

]
.

Proof. Based on the sl-PI properties given in
Konstantopoulos & Baldivieso-Monasterios (2019). ✷

A detailed diagram of the control implementation
is shown in Fig. 2. Note that the droop function in
the proposed control dynamics (13) differs from the
conventional one in (11), since the term Pinj,i has been

replaced with UiEmaxisinσi

rvi

. In order to explain why the
new term represents the converter power at the steady-
state, let us replace the control input, ui, from (12) into
(1). This results in the closed-loop current dynamics

Lii̇Li = −rviiLi + Emaxi sinσi, (14)
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Fig. 2. Detailed diagram with primary and secondary
controller

where one can observe that Emaxi sinσi represents a
virtual voltage, and rvi a virtual resistance. At steady
state there is

iLi =
Emaxi sinσi

rvi
, (15)

and since Pinj,i = UiiLi, equation (13) has incorporated
the expression

Pinj,i ≈
UiEmaxi sinσi

rvi
, (16)

which will represent the converter power at steady state.

Proposition 2 The solution iLi (t) of (14) is uniformly
ultimately bounded, i.e. |iLi (t) | ≤ imax

Li , ∀ t ≥ 0, with the

maximum current given as imax
Li = Emaxi

rvi

.

Proof. Following a similar approach as in Braitor et al.
(2020a,c). ✷

This new primary control structure has been proposed
to facilitate the stability analysis of the entire micro-
grid, as it will be further explained in Section 4.

3.2 Secondary control design and analysis

The second task herein is to design a secondary
controller that meets the power sharing requirements,

lim
t→∞

∑

j∈Ni

(mjPinj,j (t)−miPinj,i (t)) = 0 (17)

where Ni ⊂ ν : (νj , νi) ∈ ε denotes the neighbourhood
set of the i-th vertex of the cyber network. Furthermore
in the parallel operation case, DC bus voltage restoration
to the rated value V ∗ is additionally required, i.e.,

lim
t→∞

(V ∗ − Vo) (t) = 0. (18)

Then the distributed secondary control that generates
the correction term ei for the primary controller can be
designed in the dynamic form

ėi = αgi (V
∗ − Vo) + β

∑

j∈Ni

(mjPinj,j −miPinj,i) (19)

where α, β ∈ R
+ are constant gains, gi = {0, 1}, and Pi,

Pj given from (16). Note that in meshed configurations
where there are no shared loads, the control gain α = 0.
Driven by the concept of the pinning control, since the
DC bus voltage Vo may not be known by all the DGs, the
pinning gain gi is introduced, being non-zero for the DG
that has access to the DC bus voltage Vo. By applying
the secondary controller at each converter, (19) can be
written in the matrix form

ė = αg (V ∗ − Vo)1n − βLcybmPinj (20)

where g = diag{gi}, m = diag{mi}, and Pinj =
[Pinj,1 . . . Pinj,n]. At the steady state there is

αg (V ∗ − Vo)1n − βLcybmPinj = 0n (21)

Corollary 1 Since mi ̸= 0 and assuming that at least
one convertermeasures the load voltage, i.e.

∑n
i=1

gi > 0,
the following equations hold:

m1Pinj,1 = m2Pinj,2 = . . . = mnPinj,n (22)

Vo = V ∗. (23)

Remark 2 One can clearly notice that in the case
of meshed architectures, where the voltage restoration
term of equation (20) disappears, the proof is more
straightforward than the one presented for Corollary 1
in Appendix C. Since the cyber network induces
a connected, undirected and balanced graph, its
corresponding Laplacian matrix Lcyb guarantees that
equality (22) holds at the steady state.

4 Stability Analysis

4.1 Closed-loop system

By applying the proposed controller (12)-(13), (19)
into the DCmicro-grid dynamics (1)-(2), the closed-loop
system can be written in the following matrix form
[

i̇L

V̇

]

=

[

L−1 (−rviL + Emaxsin(σ))

C−1[V ]
−1
(rv [iL] + [U ]−Emax[sin(σ)]) iL−i

]

(24)




σ̇

ė



=




E−1

maxk[cos(σ)]
(
V ∗−V−[rv]

−1
m[U ]Emaxsin(σ)+e

)

αg (V ∗ − Vo) 1n − βLcybmPinj



 (25)

where σ = [σ1 . . . σn]
T
, k = diag{ki}, Emax=

diag{Emaxi}. For the closed-loop system, consider the
following assumption:

Assumption 1 For a constant σie ∈
(
−π

2
, π
2

)
,

satisfying (22), there exists a unique equilibrium point
(iLie, Vie, σie, eie), corresponding to the desired voltage
regulation (23).

The above assumption is considered since the proof of
the existence of a unique equilibrium point for a micro-
grid with primary and secondary control is a non-trivial
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problem, as one can see from Simpson-Porco et al.
(2017), Liu et al. (2018).

Since rvi and ki represent control parameters, they
can be suitably selected in order for the terms Li

rvi

and
1

ki

to be sufficiently small. Hence, by introducing the

perturbation parameter ε, as ε = min{ 1

ki

, Li

rvi

}, one can

conclude that there exist δL = diag {δLi} ≥ 0 and δσ =
diag {δσi} ≥ 0 such that Lr−1

v = 1

ε
In + δL and k =

1

ε
In + δσ. Hence, (25) becomes as shown in (26), where

it has been taken into account that Imax = r−1
v Emax.

Therefore, the closed-loop system equations (24) and
(25) can be written in the following form

ẋ= f(x, z) (27)

εż = q(x, z, ε) (28)

where x=

[

V − Ve

e− ee

]

and z =

[

iL − iLe

σ − σe

]

. System (27)-

(28) can then be investigated as a singularly perturbed
system using two-time-scale analysis (H.K.Khalil 2014).
Since it represents the immediate vicinity of a bounding
surface, system (26) is also referred to as the boundary
layer, and it is analyzed in the section below.

4.2 Boundary layer stability analysis

Let functions f , q be continuously differentiable in the
domain (x, z, ε) ∈ Dx × Dz × [0, ε0]. Considering the
scenario where the controller parameters rvi and ki are
selected sufficiently large, then ε → 0 and, according to
the singular perturbation theory, function q will have an
algebraic form of 0 = q(x, z) as follows

02n=

[

−iL + Imaxsin (σ)

E−1
max [cos (σ)] (V

∗−V −m [U ] Imaxsin (σ) + e)

]

The roots of the above system can be computed as

[

iL

σ

]

=




Imaxsin (σ)

sin−1
(

m−1[U ]
−1

I−1
max(V

∗In − [V ] + [e])
)



 (29)

and can also be referred to as z = h(x) with σi ∈
(−π

2
, π
2
), such that h(0) = 0. Thus, the roots also

represent the equilibrium points of the nonlinear system
(24)-(25). Exponential stability at the origin can be
investigated via its corresponding Jacobian matrix:

J1 =

[

−In Imax [cos (σ)]

0n×n −[cos (σ)]
2
E−1

maxm[U ] Imax

]

. (30)

As one can observe matrix J1 is Hurwitz, since J1
is upper triangular and all its diagonal elements are
negative. Hence, there exist ρ1 > 0 and a domain
D̃z =

{
z ϵR2n, ∥ z ∥2 < ρ1

}
where D̃z ⊆ Dz such that

(28) is exponentially stable at the origin uniformly in x.

4.3 Reduced model

To obtain the reduced model, the roots iL and σ are
substituted from (29) into (24)-(25), yielding

V̇ = C−1 [V ]
−1

m−1 (V ∗1n − V − e)− C−1i (31)

ė = αg (V ∗ − Vo)1n − βLcyb (V
∗1n − V + e) (32)

often referred to as the quasi-steady-state model,

because iL, and σ, introduce a velocity
[
i̇L σ̇

]T
= ε−1q

which is very large when ε is small and q ̸= 0. This
leads to rapid convergence to a root h(V, e), which is
also the equilibrium of the boundary-layer. The stability
analysis of the reduced-order model follows different
proofs depending on the micro-grid configuration, which
not only induces distinct network graphs with different
adopted expressions of the conductance matrices,
but also influences the secondary control design by
excluding the voltage restoration term. Hence, the
meshed and parallel micro-grid configuration cases will
be investigated separately in the reduced-order model.

The corresponding Jacobian J2 of the reduced model
(31)-(32) becomes as shown in (33).

4.3.1 Meshed micro-grid configuration
In the generic meshed architecture, the load voltage

restoration term is not needed as the converters do
not share any load, thus the control gain α = 0. By
substituting the conductance matrix with its expression
from (6), the Jacobian matrix J2 can be rewritten as
J2,α=0 = −βJ3 +Q1, with

J3 =




1

β
C−1[Ve]

−1
m−1 0n×n

0n×n Lcyb





︸ ︷︷ ︸
X1




[Ve]

−1(V ∗In+[e])+[Ve]mL −In

−In In





︸ ︷︷ ︸
X2

,

and

Q1 =

[

C−1D 0n×n

0n×n 0n×n

]

.

One notices that the block-diagonal matricesQ1 andX1

are positive semi-definite, the latter having Lcyb ⪰ 0 on
its main diagonal. Consider the following lemma.

Lemma 5 Matrix X1X2 (or X2X1) is semi-positive
stable and diagonalizable.

One can write the standard eigenvalue problem (SEP)
for the Jacobian matrix J2,α=2 as

(−βX1X2 +Q1)x = λx. (34)

where λ ∈ R is an eigenvalue and x ∈ R
n is the

associated eigenvector. AsX2 ≻ 0 (Lemma 5), by taking
the similarity transformation J2,α=0 = X2J2,α=0X

−1
2 ,

one gets



−β X2X1

︸ ︷︷ ︸

J3

+X2Q1X
−1
2

︸ ︷︷ ︸

Q1




 v = λv. (35)
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[

εi̇L

εσ̇

]

=

[

(In + εδL) (−iL + Imaxsin (σ))

(In + εδσ)E
−1
max [cos (σ)] (V

∗ − V −m [U ] Imaxsin (σ) + e)

]

(26)

J2 =

[

−C−1 [Ve]
−2

m−1 (V ∗In + [e])− C−1Y C−1 [Ve]
−1

m−1

−αg1n×nD + βLcyb −βLcyb

]

(33)

Theorem 1 The equilibrium point (iLie, Vie, σie, eie)
of the reduced system (31)-(32), when α = 0, is
exponentially stable if

β > max

{

Pi

(

CiV
2
i min

zT z ̸=0

zTΛ1z

zT z

)−1
}

, ∀ i ∈ I. (36)

where Λ1 is diagonal with same index of inertia asX2X1.

By virtue of H.K.Khalil (2014, Th.11.4), there exists

ε∗ = min{min{Li}
r∗
v

, 1

k∗
> 0} such that for all ε < ε∗ (or

equivalently rvi

Li

>
r∗
v

min{Li}
, or ki > k∗), the equilibrium

point
[
iTLe V

T
e σT

e eTe
]T

of (27)-(28) with σie ∈ (−π
2
, π
2
)

is exponentially stable. This concludes the stability
analysis of the generic meshed DC micro-grid.

A special case of meshed micro-grids where converters
share the same load and the voltage restoration term
would make sense, thus α ̸= 0, is the parallel
configuration case which is investigated next.

4.3.2 Parallel micro-grid configuration

The Jacobian matrix J2 can be rewritten as a sum of
two matrices, i.e., J2,α ̸=0 = αJ4 − βJ5, with

J4=

[
1

α
C−1R−1 −g

−g 1

α
In

]

︸ ︷︷ ︸

X3

[

1n×n 0n×n

0n×n 0n×n

]

︸ ︷︷ ︸

X4

[

D 0n×n

0n×n D

]

︸ ︷︷ ︸

Q2

and

J5 = X1 ×

[

[Ve]
−1

(V ∗In + [e]) + [Ve]mR−1 −In

−In In

]

︸ ︷︷ ︸

X5

.

Hence, the stability problem becomes an SEP, i.e.
J2,α ̸=0y = λy, which gives

(αX3X4Q2 − βX1X5) y = λy (37)

where λ ∈ R is an eigenvalue and y ∈ R
n is the

associated eigenvector. Let w ≜ Q2y; then the SEP
becomes J2,α ̸=0w = λw, as follows



αX3X4

︸ ︷︷ ︸

J4

−β X1X5Q
−1
2

︸ ︷︷ ︸

J5




w = λw (38)

Lemma 6 Matrix J4 = X3X4 is semi-positive stable
and diagonalizable if

α <
1

C
1
4

i R
1
4

i

, ∀ i ∈ I, (39)

where the pinning control gain gi = 1.

Lemma 7 Matrix J5 = X1X5Q
−1
2 is diagonalizable and

semi-positive stable.

Now, let the following similarity transformation
J̃2,α ̸=0 =

(
X5Q

−1
2

)
J2,α ̸=0

(
Q2X

−1
5

)
for the SEP (38).

Hence

X5Q
−1
2

(
αJ4 − βJ5

)
Q2X

−1
5 u = λu (40)

which gives



αX5Q

−1
2 J4Q2X

−1
5

︸ ︷︷ ︸

J̃4

−β X5Q
−1
2 X1

︸ ︷︷ ︸

J̃5




u = λu (41)

Remark 3 According to Sylvester’s Law of inertia, the
similar matrices J2,α ̸=0, J2,α ̸=0 and J̃2,α ̸=0 have the same
inertia, i.e. same number of positive, negative and null
eigenvalues.

Theorem 2 The equilibrium point (iLie, Vie, σie, eie)
of the reduced system (31)-(32), when α ̸= 0, is
exponentially stable if (39) is satisfied and

β >

∑n
i=1

1

CiRi

minuT u ̸=0
uTΛ2u

uTu

, ∀ i ∈ I (42)

holds, where Λ2 is diagonal having the same index of
inertia as matrix J4.

According to H.K.Khalil (2014, Th.11.4), there exists

ε∗ = min{min{Li}
r∗
v

, 1

k∗
> 0} such that for all ε <

ε∗ (or equivalently rvi

Li

>
r∗
v

min{Li}
, or ki > k∗), the

equilibrium point
[
iTLe V

T
e σT

e eTe
]T

of (27)-(28) with
σie ∈ (−π

2
, π
2
) is exponentially stable; thus completing

the stability analysis of the entire parallel DCmicro-grid
architecture.

Remark 4 Note that the presence of a parasitic
resistance rs in series with the converter inductor would
not affect the stability result, due to the additional
damping introduced into the converter current dynamics.
Nonetheless, one can consider the following control law
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u = 1−
(rvi + rs) iLi + Ui − Emaxi sinσi

Vi

instead of (12), and result in the same stability analysis.

It is worth mentioning, at this point, that the impact
of time delays, which may occur in the secondary control
implementation, on the stability of the entire micro-
grid is of great interest, see Milano & Anghel (2012),
Coelho et al. (2016). In particular, several methods for
computing the maximum delay to avoid instability, such
as Pade approximations (Jr. & Graves-Morris 1996)
or by using Rekasius substitution-based algorithm (Jia
et al. 2007), have been designed. In the same framework,
Lyapunov-based methods (Polyakov et al. 2015), such
as the Implicit Lyapunov Krasovski Functional (ILKF)
have emerged to provide sufficient stability conditions.
Nevertheless, themain aim of this paper was to introduce
for the first time this novel two-level control for the
nonlinear model of the DC micro-grid with multiple
nonlinear boost converters and guarantee its stability.
Future research will focus on investigating the effect of
delays to this particular design.

4.4 Micro-grid scalability

In order to guarantee the system scalability, i.e. if one
converter, for instance, is plugged in/out, the passivity
property of the system with the primary controller needs
to be investigated. Let the input u = Vn+1 − Vn+1,e,
and the output y = in+1, being the output voltage and
current, respectively, of the n+1 converter. The network
structure changes, and the output current vector of the
micro-grid system with n converters becomes

i = Y ′








Ṽ1

...

u







= (L′ −D′)

︸ ︷︷ ︸
γ

Ṽ +








∂i1
∂u

...
∂in
∂u







u

where Ṽ = V − Ve is the shifted state to the origin.

Remark 5 Note that for the parallel micro-grid
configuration case, one considers the input u = Vn+1 −
Voe. Then, the output current vector of the micro-grid
system with n converters becomes

i=Y ′








Ṽ1

...

u







=R−1 (In−1n×nD

′)
︸ ︷︷ ︸

γ

Ṽ +R−1







1n−








∂Ṽo

∂u

...
∂Ṽo

∂u














u

where Ṽo = Vo−Voe, having with the following expression

Ṽo =
[

∂Ṽo

∂Ṽ1

. . . ∂Ṽo

∂Ṽn

]

Ṽ +
∂Ṽo

∂u
u.

Next, consider the vector state x =
[

xT
1 xT

2 xT
3

]T

, with

x1 = iL − iLe, x2 = V − Ve, and x3 = σ − σe. One can
write the plant system as

ẋ = Ax+Bu (43)

y = Cx+Du (44)

with the scalar D = −
∑

k∈Nn+1

1

Rk

+ Pn+1

V 2
n+1

< 0 (or

D = 1

Rn−1

(
∂Ṽo

∂u
− 1

)

< 0 for the parallel micro-grid

configuration case). Conducting the same time-scale
separation approach as in Section 4.3, one can obtain
the boundary layer system with a similar Jacobian
matrix as matrix J1, which is upper triangular, with
the diagonal elements being negative-definite diagonal
matrices, therefore, Hurwitz. The roots of the boundary
layer system have the same expression as in (29).
Hence, the reduced system can be obtained, whose
corresponding Jacobian matrix has the form

J ′
2 = −C−1 [Ve]

−2
m−1 (V ∗In+1 + [e])− C−1γ (45)

with γ = L′+D′, and L′ ≻ 0 according to Lemma 4. By
Lemma 1, Matrix J ′

2 is Hurwitz if the following sufficient
condition in scalar form
V ∗ + eie
miV 2

ie

+min{λL,i} −
Pi

V 2
ie

> 0 (46)

holds. The above condition is always satisfied by
appropriately selecting mi as specified in equation (10).
Note that for parallel topology, γ ≻ 0 by virtue
of Lemma 4, in which case J ′

2 is Hurwitz, as both
terms of the sum are negative definite matrices. Thus,
according to H.K.Khalil (2014, Th.11.4), the system is
exponentially stable. Thus matrix A is Hurwitz, hence,

there exists a matrix P = PT ≻ 0, such that A
T
P +

PA ≺ 0. Then, based on Xia et al. (2015, Th.1) the
system is passive if the following inequality given by the
Schur complement

(

A
T
P+PA

)

+
(

PB − C
T
)(

D
T
+D

)−1(

B
T
P − C

)

≺0 (47)

holds. The negative scalar
(

D
T
+D

)−1

can be moved

in front of the expression and, hence, be multiplied by a

term that has the form vT v ⪰ 0, where v = B
T
P − C.

Therefore, the second term of the inequality is negative
semi-definite. Since both terms are Hermitian, one being
strictly negative definite, and the other is negative semi-
definite, their sum is always strictly negative definite,
satisfying (47). Thus, the passivity of the plant system
can be proven according to Xia et al. (2015, Th.1).

Although the passivity property of the system is
important to illustrate the scalability of the micro-grid,
it remains an input-output property. Hence, the stability
analysis presented in Section 4.3 should be considered
to ensure the stable operation of the micro-grid with a
generic number of n converters.

5 Simulation results

To test the theoretical findings, simulations are being
performed in Matlab/Simulink. The two DC micro-
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Fig. 3. DC micro-grid example consisting of 7 converters
in (a) meshed topology, with local CPLs, each of
them communicating with their respective neighbours
and (b) parallel configuration, feeding a common CPL,
with converters 1 and 5 sampling the load voltage and
participating in the voltage restoration

grid configurations considered for testing are presented
in Fig. 3, with the parameters specified in Table 1,
both topologies consisting of the same seven converters.
Each source is driven by bidirectional boost converters
connected to local CPLs in the meshed architecture, or
to a common CPL in the parallel configuration. The
rated voltage is set to V ∗ = 400V .

5.1 Meshed micro-grid topology case

One can see in Fig. 3a, the meshed DC micro-grid
configuration with the line impedances being R12 =
1.4Ω, R24 = 1.8Ω, R34 = 1.1Ω, R45 = 2.2Ω,
R36 = 1.9Ω, R56 = 0.5Ω, R57 = 1.5Ω. Note that
the physical and communication architecture describe
different network graphs. The aim is to regulate the
converters output voltage close to the rated value based
on the droop control concept, and ensure that the sources
inject power into the network to satisfy the 7 : 6 : 5 :
4 : 3 : 2 : 1 imposed agreement, while guaranteeing the
current limitation of individual units.
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Fig. 4. Dynamic response of the meshed DC micro-grid
system under primary and secondary controller

5.1.1 Secondary control enable, load increase and
communication failure

The dynamic behaviour of the meshed micro-
grid system when enabling the secondary controller,
increasing the loads power demand, and experiencing
a communication failure is shown in Fig. 4. During
the first 2 s, the converters under primary control
only are feeding the local CPLs, with the requested
local power given by the power vector P =
[100 300 200 50 300 250 150] W . The output voltages
remain closely regulated to V ∗ = 400V (Fig. 4b), with
the input currents below their imposed limits (Fig. 4a),
while in Fig. 4c the power injected in the network clearly
does not satisfy the distribution agreement chosen to be
7 : 6 : 5 : 4 : 3 : 2 : 1.

To address the latter issue, at t = 2 s the secondary
controller is enabled. Instantly, the distribution of the
injected power by each converter is improved, as one
can observe in Fig. 4c, having the output current vector
i = [0.12 0.24 0.36 0.49 0.61 0.72 0.85] A. This also
improves the output voltages, becoming slightly closer
to the rated V ∗ = 400 value, as shown in Fig. 4b.

The requested power in the network increases at t =
4 s, with the local load power vector becoming P =
[200 330 200 75 300 275 225] W . The input currents
increase to satisfy the new load power demand, but
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remain below their imposed limits (Fig. 4a). In Fig. 4b,
the output voltages decrease, with the lowest being
V1 = 397V ; that is, a voltage drop of below 1%. The
injected power keeps the accurate distribution among
converters with the output current vector being i =
[0.145 0.29 0.43 0.58 0.72 0.865 1] A as seen in Fig. 4c.

A communication failure occurs at t = 6 s. The
communication link between converters 2 and 3 is
disconnected. However, this fault does not affect the
system performance as one can notice in Fig. 4, the
system retaining the same dynamic behaviour as prior
to the communication failure occurring.

5.1.2 Voltage fluctuations and converter loss

Renewable energy sources are well-known to exhibit
unpredictable behaviour due to the variation of their
availability. That is why, the controller performance is
tested when unpredictable phenomena occurs (Fig. 5),
such as input voltage fluctuations, or complete unit
disconnection.

At time interval 0 s − 2 s, the system is running
under both primary and secondary control. The power
injected into the network is accurately distributed by
each converter (Fig. 5c), the output voltages are closely
regulated to the rated value (Fig. 5b), while the input
currents are kept within their limits as seen in Fig. 5a.

Over the following 4 s, converter 1 experiences a
sudden input voltage drop of 10%, followed by quick
voltage recovery. Hence, at time t = 2 s, the input
voltage of converter 1 drops by 10%. The input current
iL1 increases to keep satisfying the accurate power
distribution, given the value is still below its maximum
limit iL1 < imax

L1 = 5A (Fig. 5a). In Fig. 5b, the output
voltage V1 remains closely regulated to the rated value,
seemingly unaffected by the input variation. Moreover,
the power distribution of the all seven converters is
kept accurate as shown in Fig. 5c, having the output
current vector i = [0.12 0.24 0.36 0.48 0.6 0.72 0.84] A.
The input voltage recovers to its nominal value at time
t = 4 s, and the system comes back to its initial running
state.

Converter 7 is disconnected at t = 6 s, and, following
short transients in the input current that decreases and
output voltage that increases to the rated V ∗ = 400V ,
converter 7 starts feeding its own load only. The output
voltages of the remaining six converters in the network
drop slightly (Fig. 5b), but the power distribution is kept
accurate between them, having the output current vector
i = [0.145 0.29 0.43 0.57 0.72 0.86] A, as presented in
Fig. 5c. This concludes the simulation part when having
meshed network configuration.

5.2 Parallel micro-grid topology case

For the converters feeding a common load, the same
ratio is kept for the output power among the sources,
that is is 7 : 6 : 5 : 4 : 3 : 2 : 1. According to Fig. 3b,
only converters 1 and 5 participate in the load voltage
recovery, that is, the pinning control gains are set as
g1 = g5 = 1 and g2 = g3 = g4 = g6 = g7 = 0.
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Fig. 5. Dynamic response of the meshed DC micro-grid
system under voltage fluctuations and converter loss

5.2.1 Secondary control enable, load increase, current
limitation and communication failure

The dynamic response of the parallel DC micro-
grid system when enabling the secondary controller,
increasing the load power demand, limiting the current
and experiencing communication failure is presented in
Fig. 6. During the first 2 s, the load power demand is
P = 4.2 kW and the system is controlled by the primary
controller only. The load voltage is kept below the
reference V ∗, having Vo ≈ 392V as depicted in Fig. 6b.

Table 1
System and control parameters for simulation testing

Parameters Values

U [V ] [200 150 250 100 240 220 200]

C [µF ] [700 400 500 100 150 450 490]

R [Ω] [0.5 1.5 1 0.7 1.2 0.8 0.65]

L [mH] [2.3 2.2 2 2 2.5 2.1 2]

k [1.8 2 2.5 1 1.9 1.8 1.5]

m× 10−2 [1.4 1.05 0.84 4.2 2.1 0.7 0.6]

Emax [25 35 32 18 24 30 36]

rv [5 5 4 3 2 3 3]

α, β 100, 10
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Fig. 6. Dynamic response of the parallel DC micro-grid
system under primary and secondary controller

Also, it is clear fromFig. 6c, that the power sharing is not
accurate, since the output currents are not proportional,
i.e. i ≈ [2.63 2.23 1.84 1.4 1.32 0.84 0.46] A.

At t = 2 s, the secondary controller is enabled,
enhancing the performance of the system with the
load voltage tightly regulated to the reference, Vo =
V ∗ = 400V (Fig. 6b), and the power sharing becoming
very accurate with proportional output currents being
i ≈ [2.62 2.25 1.87 1.5 1.13 0.75 0.376] A as one can
notice in Fig. 6c, given the inductor currents being below
their maximum technical limit as depicted in Fig. 6a.

The load power demand increases to P = 5.6 kW , at
t = 4 s. In Fig. 6b, one can see that the load voltage
remains at the desired 400V value, while the output
currents are still accurately shared, in Fig. 6c, having
proportional values i ≈ [3.5 3 2.5 2 1.5 1 0.5] A.

In order to test the overcurrent protection, the system
is required, at t = 6 s, to feed an increased load of
7.6 kW . The load voltage stays fixed at 400V (Fig. 6b).
But, the inductor current of the second converter,
iL2, reaches its imax

L2 = 7A limit (Fig. 6a), and as
a consequence, the converter loses its power sharing.
However, the power sharing is kept between the other
six converters in a 7 : 6 : 5 : 3 : 2 : 1 ratio (Fig. 6c),
having i ≈ [4.78 4.09 3.41 2.06 1.37 0.69] A.
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Fig. 7. Dynamic response of the parallel DC micro-grid
system under voltage fluctuations and converter loss

So as to investigate the influence of the possible
communication failures on the performances of the
proposed method, at t = 8 s, the communication
network is subjected to three faults. The link that
connects converter 1 to the common bus is disconnected
(g1 = 0), and also the connections between converters
5 to 6, and 6 to 7 are disrupted. In Figures 6b and 6c,
one can observe that the voltage remains at the desired
V ∗ value and the power sharing is unaffected by the
communication failure.

5.2.2 Voltage fluctuations and converter loss

In this subsection, the effect of input voltage
fluctuations is investigated under primary and secondary
controller. Additionally, the event of a complete
disconnection of a converter from the main bus is
included, for the same case study.

Over the first 2 s, the converters operate under
primary and secondary control feeding a 2.4 kW
load. It can be observed in Fig. 7b that the voltage
regulation is very accurate with Vo = 400V , while
the output currents are accurately shared having i ≈
[0.21 0.43 0.64 0.86 1.07 1.29 1.50] A.

At t = 2 s, converter 6 experiences a 15% input voltage
drop. After a short transient, the voltage regulation and
power sharing return back to their previous accurate

11
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Fig. 8. Experimental testbed

Table 2
System and control parameters for experimental testing

Parameters Values Parameters Values

U [V ] [24 24 24] m [3 6 6]×10−3

C [µF ] [100 100 100] Emax [10 9 10]

R [Ω] [1 1 2.3] rv [5 6 5]

L [mH] [2.2 2.2 2.2] α 2

k [5 5 10] β 1

values since the load remained constant. However, one
can notice, in Fig. 7a, that the input current of converter
6 increases to satisfy the amount of power required to
keep the power sharing accurate.

Later on, at t = 4 s, converter 7 is disconnected
from the network. The input current iL7 tends to zero
(Fig 7a), and also the output voltage V7 starts decreasing
(Fig 7b), but the load voltage stays tightly regulated to
400V . In Fig. 7c, it can be observed that the remaining
currents stay accurate in a 6 : 5 : 4 : 3 : 2 : 1 ratio, with
i ≈ [0.285 0.57 0.86 1.14 1.42 1.71] A.

6 Experimental results

For experimental testing, the DCmicro-grid displayed
in Fig. 8 is considered, consisting of three Texas
Instruments modules operated as DC/DC boost
converters and feeding a common ETPS ELP-3362F
electronic load acting as a CPL, with the parameters
given in Table 2. The main tasks of the primary
and secondary controllers are to regulate the output
voltage to V ∗ = 48V , while keeping a proportional
1 : 1 : 2 output load power sharing, provided none
of the converters violate their maximum allowed input
current, imposed by their technical requirements. The
filtered dynamic response of the output voltages and
input/output currents is captured in Fig. 9.

In Fig. 9a, under primary control only, the load power
demand increases from 40W to 50W . One notices
that the power sharing is not accurately kept in a
1 : 1 : 2 ratio, having i ≈ [0.18 0.21 0.47] A when
the load is 40W , and i ≈ [0.23 0.26 0.60] A when
it increases to 50W . Furthermore, the load voltage
regulation decreases from Vo ≈ 46.6V , as it was initially,

0A,0V 
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iL1:[1A/div] 

iL2:[1A/div] iL3:[1A/div] 
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Vo:[15V/div] 

(a) Load power demand increases from 40W to 50W under
primary control
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(b) Dynamic response when enabling the secondary control
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(c) Load power demand increases from 40W to 50W under
primary and secondary control

Fig. 9. Experimental results of the DC micro-grid system
under primary and secondary controller
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down to Vo ≈ 45.9V following the load change.

The dynamic response when enabling the secondary
control is captured in Fig. 9b, while maintaining the
load power demand constant at 40W . It becomes clear
that when the secondary controller is enabled, the
accuracy of the power sharing is improved, reaching
the desired proportional 1 : 1 : 2 sharing, having
i ≈ [0.22 0.22 0.44] A. Moreover, the load voltage rises
and becomes closer to the rated value V ∗ compared to
the case where only the primary control is applied.

To highlight the superiority of the combined primary
and secondary control under power demand variation,
the same load power change is performed, from 40W
to 50W . The dynamic response is presented in Fig.9c.
Unlike case (a), the voltage regulation is tighter, i.e. the
output voltage Vo is closer to V ∗, while the improved
output currents maintain their 1 : 1 : 2 desired sharing,
with i ≈ [0.27 0.27 0.55] A.

7 Conclusions

A novel decentralised primary and distributed
secondary control was proposed to achieve accurate
power sharing, voltage regulation, input current
limitation and overcome the CPL instability problem.
By employing singular perturbation theory and two
time-scale analysis, the closed-loop system stability
was analytically proven, taking into account both the
physical system and the two-level control dynamics.
Both simulation and experimental testings were carried
out to validate the presented approach and analysis.

Future research will focus on the implementation of
the proposed control scheme with different converter
types, and on the effect of communication delays on the
stability of the entire system. The scenario where the
line inductance is considered that would pose the non-
trivial challenge of computing the solutions of the load
voltage is also an open problem for future investigation.
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APPENDIX

A Proof of Lemma 3

Matrix SD is similar to the symmetric matrix
D

1
2 (SD)D− 1

2 = D
1
2SD

1
2 , hence it is diagonalizable.

This proves conclusion (a). By employing polar
decomposition SD (or DS) can be written as SD =

UP , where U is unitary and P =
√

(SD)
∗
SD is an

unique positive-semidefinite Hermitian matrix. DefineQ
to satisfy Q2 = U (see Garcia & Horn (2017, Ch.12)).
Note that M = Q−1 (SD)Q = QPQ is Hermitian,
hence, by eigendecomposition M = V ΛV −1, with V
unitary and Λ diagonal with the eigenvalues of M (and

the same index of inertia as SD) as main diagonal

entries. It can be concluded that (QV )
−1

SD (QV ) = Λ,
with QV unitary according to Lemma 2.

As the similarity transformation D
1
2 (SD)D− 1

2 =

D
1
2SD

1
2 is congruent to S; then, according to Sylvester’s

law of inertia, SD has the same index of inertia as matrix
S. The proof of conclusion (b) is shown in Meyer (2000,
Ch.7). ✷

B Proof of Lemma 4

Since G is connected and there exists at least a single
non-zero entry in y, then G† is also connected. Thus,
G† has at least one spanning tree, and by Kirchhoff’s
Theorem, anyminor ofL† is positive. That is, |L+∆| > 0
and since both L and ∆ are positive semi-definite, which
excludes the possibility of pair-wise negative eigenvalues,
then L+∆ is positive-definite. 1 ✷

C Proof of Corollary 1

As the Laplacian Lcyb is balanced and symmetric,
ker (Lcyb) = span (1n). That is 1

T
nLcyb = 0T

n . Hence, by
left multiplication with 1T

n , equation (21) becomes

α1T
ng (V

∗ − Vo)− β1T
nLcybmPinj = 0n. (C.1)

As the right term in (C.1) is 0n, equality (23) holds if
∑n

i=1
gi ̸= 0, or equivalently

∑n
i=1

gi > 0, given that
gi ≥ 0, ∀i ∈ I. By substituting (23) into (21), it yields

βLcybmPinj = 0n.

One can easily see that mPinj ∈ span (1n), since it is
equivalent to (22). This completes the proof. ✷

D Proof of Lemma 5

By employing the QEP theory for the symmetric
matrix −X2, one obtains

|λI2n +X2| = |λ2
T+ λF+ S| = 0 (D.1)

By left multiplying (D.1) with m−1 [Ve]
−1 ≻ 0, one gets

|λ2
T+ λF+ S| = 0 (D.2)

where T = m−1 [Ve]
−1 ≻ 0 and

F =m−1 [Ve]
−2

(V ∗In+[e])+L+m−1 [Ve]
−1

(D.3)

S = m−1 [Ve]
−2

(V ∗In+[e])+L−m−1 [Ve]
−1

(D.4)

Since matrix T is already positive-definite, if the
remaining matrices F and S are positive-definite, then
−X2 is negative-definite, hence X2 is positive-definite.
Condition F ≻ 0 is satisfied since it is represented by
a sum of two positive-definite matrices and the positive

1 To prove that L+∆ ≻ 0, one can equivalently show that
the null-spaces of L and ∆ exclude any non-zero vector at
their intersection.
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semi-definite matrix L. By virtue of Lemma 1, S ≻ 0
holds if the following condition in scalar form

V ∗ + eie
miV 2

ie

+ λLi −
1

miVie

> 0 (D.5)

is satisfied. By factorising, it yields

1

miVie

(
V ∗ + eie

Vie

− 1

)

+ λLi > 0 (D.6)

where λLi ≥ 0 represents the eigenvalues of the
Laplacian matrix L. Considering a worst-case scenario,
where λLi = 0, the inequality in (D.6) will always hold

since V ∗

+eie
Vie

> 1 is guaranteed by the droop equation

(11) at steady state. Thus X2 ≻ 0, and since X1 ⪰ 0, by
virtue of Lemma 3, X1X2 (or X2X1) is diagonalizable
i.e. P−1

1 J3P1 = Λ1, with P1 unitary and Λ1 diagonal
having real eigenvalues and same index of inertia as X1.

Hence, the proof of Lemma 5 is complete. ✷

E Proof of Theorem 1

From the proof of Lemma 5, X2 is positive-definite,
with ker (X2) = 02n. Note that matrix X1 is positive

semi-definite, having ker (X1) = span
([

0T
n 1T

n

]T
)

corresponding to the global synchronization of the
graph. Since Im (Lcyb) = 1⊥

n , Im (X2) ∩ ker (X1) =

02n, that is, Im (X2) excludes span
([

0T
n 1T

n

]T
)

or

X1v is never in the kernel of X2. Thus one concludes
that ker

(
J3

)
= ker (X1), which corresponds to global

synchronization of the graph. By virtue of Simpson-
Porco et al. (2013, Th.8), applying the Courant-Fischer
Theorem to the eigenvalue problem (35), for global
synchronization of the graph, all eigenvalues of J3 are
real and negative.

The diagonal matrixQ1 and its similar transformation
Q1 are isospectral, having n null eigenvalues and n
positive eigenvalues of the form λ1...n

(
Q1

)
= Pi

CiV
2
i

. One

can notice that multiplying Q1 by v =
[
0T
n 1T

n

]T
would

yield eigenvalues outside of the matrix spectrum. Thus,

v =
[
0T
n 1T

n

]T
is not an eigenvector of Q1, and, hence,

not an eigenvector of J2,α=0. That is, it does not belong

in the eigenspace of the Jacobian matrix J2,α=0, i.e.

v /∈ N
(
J2,α=0 − λI2n

)
.

One can express J̃2,α=0 =
(
P−1
1 X−1

2

)
J2,α=0 (X2P1),

thus the SEP becomes as follows

(−βΛ1 + P−1
1 Q1P1)z = λz (E.1)

having matrix Λ1 diagonal, unitarily similar to X2X1

as shown in Lemma 4, and P−1
1 Q1P1 symmetrical,

isospectral with matrix Q1. Lemma 1 can be applied for
the above SEP, yielding

−β min
zT z ̸=0

zTΛ1z

zT z
+

Pi

CiV 2
i

< 0. (E.2)

This condition is always satisfied with an appropriate
choice of the gain β, given to satisfy (36), in which case

matrix J̃2,α=0 is Hurwitz, and by similarity also J2,α=0

and J2,α=0. Then there exist ρ2 > 0 and a domain D̃x =
{
x ϵR2n, ∥ x ∥2 < ρ2

}
where D̃x ⊆ Dx such that the

reduced model is exponentially stable at the origin.

This concludes the proof of Theorem 1. ✷

F Proof of Lemma 6

Matrix X4 is symmetric and singular, having 2n−1
null eigenvalues, i.e. λ1...2n−1 (X4)=0, and one positive
eigenvalue equal to its trace, i.e. λ2n (X4) = Tr (X4) =
n. Hence X4 is positive semi-definite.

To prove that the symmetric matrix X3 is positive-
definite, one uses again the quadratic eigenvalue problem
(QEP) theory for matrix −X3. This yields

|λI2n +X3| = |λ2
M+ λC+K| = 0 (F.1)

where M = In ≻ 0 and

C =
1

α

(
C−1R−1 + In

)
(F.2)

K =
1

α2
C−1R−1 − α2g2 (F.3)

IfM, C andK are positive-definite, thenRe (λ) < 0, and
−X3 is negative-definite, thus X3 is positive-definite.
The first condition C ≻ 0 is easily satisfied, given that
α > 0. Regarding the second condition K ≻ 0, since
it consists of a sum of two diagonal matrices, using
Lemma 1 in Su et al. (2018), the condition, in scalar
form, becomes

1

α2CiRi

− α2g2i > 0, ∀i ∈ I (F.4)

with the pinning control gain gi either 0 or 1. Assuming
a worst case scenario, gi = 1, the above inequality holds
given an appropriate selection for α as specified in (39).

As X3 is a positive definite symmetric matrix, and
X4 is a positive semi-definite symmetric matrix, then
according to Lemma 3,

1) X3X4 (or X4X3) is diagonalizable, i.e. P
−1
2 J4P2 =

Λ2, with P2 unitary and Λ2 diagonal having the same
index of inertia as matrix J4, and

2) the eigenvalues ofX3X4 are real, andX3X4 has the
same number of positive (zero, or negative) eigenvalues
with matrix X4.

Hence, the proof of Lemma 6 is complete. ✷

G Proof of Lemma 7

Matrix J5 can be split into a product of two symmetric
matrices, X1 and X5Q

−1
2 . The latter symmetric matrix,

X5Q
−1
2 , has the following shape

X5Q
−1
2 =

[

[Ve]
−1
(V ∗In+[e])D

−1+[Ve]mR−1D−1 −D−1

−D−1 D−1

]
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By applying the QEP theory again for the matrix
−X5Q

−1
2 , we get

|λIn +X5Q
−1
2 | = |λ2

N+ λE+ L| = 0 (G.1)

where N = In ≻ 0 and

E = [Ve]
−1
(V ∗In+[e])D

−1+[Ve]mR−1D−1+D−1 (G.2)

L = [Ve]
−1
(V ∗In+[e])D

−2+[Ve]mR−1D−2−D−2 (G.3)

If the conditions N ≻ 0, E ≻ 0 and L ≻ 0 hold,
then Re (λ) < 0, and −X5Q

−1
2 is negative-definite,

thus X5Q
−1
2 is positive-definite. Condition E ≻ 0 is

satisfied as it represents a positive-definite diagonal
matrix. Condition L ≻ 0 will hold, according to Lemma
1, if the following condition in scalar form is guaranteed
(

1

Vie

(V ∗ + eie) +
Viemi

Ri

− 1

)
1

λ2
Di

> 0, ∀i ∈ I (G.4)

which is easily satisfied since V ∗

+eie
Vie

> 1 from the droop

equation (11) at the steady state. Thus, X5Q
−1
2 ≻ 0,

and since X1 ⪰ 0, then J5 is diagonalizable, according
to Lemma 3, i.e. P−1

3 J5P3 = Λ3, with P3 unitary and Λ3

diagonal having the same index of inertia as matrix J5.

This completes the proof of Lemma 7. ✷

H Proof of Theorem 2

As already mentioned, matrix X1 is semi-positive

definite with kernel spanned by
[
0T
n 1T

n

]T
corresponding

to the global synchronization of the graph, while matrix
X5Q

−1
2 is positive definite with kernel spanned by 02n.

Following the proof in Simpson-Porco et al. (2013,
Th.8), by applying the Courant-Fischer Theorem to the
eigenvalue problem, for global synchronization of the
graph, all eigenvalues of J̃5 are real and negative since
Im (L) = 1⊥

n , and Im
(
X5Q

−1
2

)
∩ ker (X1) = 02n,

which means that X1u is never in the kernel of X5Q
−1
2 .

Hence, one can see that ker
(

J̃5

)

= ker (X1). As the

image of the matrix X5Q
−1
2 excludes span

([
0T
n 1T

n

]T
)

,

it follows that J̃5u is the zero vector if and only if

u ∈ span
([

0T
n 1T

n

]T
)

that corresponds to the global

synchronization of the graph.

Matrices J4 and J̃4 have the same spectrum, that
is, they have 2n − 1 null eigenvalues and one positive
eigenvalue. It is important to underline that multiplying
J̃4 with vector u = [01 1n] would render a value outside
of the matrix spectrum. Hence, one can conclude that

u =
[
0T
n 1T

n

]T
is not an eigenvector of J̃4, and hence,

not an eigenvector of J̃2,α ̸=0. That is, vector u = [01 1n]
does not belong in the eigenspace of the Jacobian matrix

J̃2,α ̸=0, i.e. u ̸∈ N
(

J̃2,α ̸=0 − λI2n

)

.

Consider matrix J4 for which there is

J4w = λw (H.1)

with λ the eigenvalue of J4, and w the corresponding
eigenvector. Following the similarity transformation in
(40), there is J̃4u = λu, with u given as

u =
(
X5Q

−1
2

)−1
u (H.2)

MatrixX5Q
−1
2 is given in Appendix G, while its inverse,

(
X5Q

−1
2

)−1
, has the following expression

(
X5Q

−1

2

)−1

=

1

|L|




D−1 D−1

D−1 [Ve]
−1 (V ∗In + [e])D−1 + [Ve]mR−1D−1



(H.3)

where L is expressed in (G.3). Notice that (H.3) is
also symmetric and positive-definite since X5Q

−1
2 ≻ 0,

according to Proposition 2. For u given as u =
[
0T
n 1T

n

]T
,

then there is

(
X5Q

−1

2

)−1




wn1

wn2



 =




0n

1n



 =





1

|L|

(
D−1

)
(wn1 + wn2)

1

|L|

(
D−1wn1 +[Ve]

−1(V ∗In+[e])D−1+[Ve]mR−1D−1wn2

)





which holds if wn1 = −wn2. However, if w =

[wn1 − wn1]
T
, then from (H.1), eigenvector w would

yield a positive eigenvalue outside of the spectrum of
matrix J4. Thus, w is not an eigenvector of J4 since the
opposite implies that J4 has two non-zero eigenvalues,
which would be in contradiction with the proof of
Proposition 1. Therein, it is demonstrated that the index
of inertia of J4 is i

(
J4

)
= [1 0 2n− 1].

Therefore, it follows from Lemma 1, that if u =
[
0T
n 1T

n

]T
is not an eigenvector of matrix J̃4, then

ultimately it is not an eigenvector of the Jacobian J̃2,α ̸=0.

Note that J6 =
(
P−1
2 Q2X

−1
5

)
J̃2,α ̸=0

(
X5Q

−1
2 P2

)
,

isospectral with J̃2,α ̸=0, can be expressed as

J6 = αΛ2 − βP−1
2 X1X5Q

−1
2 P2 (H.4)

Then, let the matrix J7 = P−1
4 J6P4, isospectral with

J6 and J̃2,α ̸=0, with P4 = P−1
2 P3, unitary according to

Lemma 2, such that the new SEP becomes

(
αP−1

4 Λ2P4 − βΛ3

)
e = λe. (H.5)

Thus, matrix P−1
4 Λ2P4 is symmetric, since P4 is

unitary, similar to Λ2, having the same index of inertia
as X3X4 as shown in Lemma 6, and Λ3 diagonal having
the same index of inertia as X1X5Q

−1
2 , as explained in

Lemma 7. Lemma 1 can be applied for the eigenvalues
problem as follows
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α

n∑

i=1

1

αCiRi

− β min
eT e ̸=0

eTΛ3e

eT e
< 0. (H.6)

or simply
n∑

i=1

1

CiRi

− β min
eT e̸=0

eTΛ3e

eT e
< 0. (H.7)

The above condition is satisfied at all times, with a
proper choice of the gain β, required to satisfy (42).

Hence, if condition (42) holds, matrix J7 is Hurwitz,

and by similarity both J6 and J̃2,α ̸=0 are Hurwitz, the

latter having the same index of inertia as J2,α ̸=0 and
J2,α ̸=0 (as mentioned in Remark 3). Then, there exist

ρ3 > 0 and a domain D̃x =
{
x ϵR2n, ∥ x ∥2 < ρ3

}
where

D̃x ⊆ Dx such that the reduced model is exponentially
stable at the origin. This completes the proof. ✷
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