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Theory of magnon diffuse scattering in scanning transmission electron microscopy
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We present a theory and a simulation of diffuse scattering due to the excitation of magnons in scanning
transmission electron microscopy. The calculations indicate that magnons can present atomic contrast when
detected by electron energy-loss spectroscopy using atomic-size electron beams. The results presented here
indicate that the intensity of the magnon diffuse scattering in bcc iron at 300 K is 4 orders of magnitude weaker
than the intensity of thermal diffuse scattering arising from atomic vibrations.

DOI: 10.1103/PhysRevB.104.214418

I. INTRODUCTION

Efficient electron beam monochromators have extended
the already wide range of experimental techniques available
to scanning transmission electron microscopy (STEM) by
allowing for the measurement of vibrational spectra [1,2].
Since its first demonstration, vibrational electron energy-loss
spectroscopy (EELS) is developing at a swift pace. Several
key milestones have been reached, such as the identification
of isotope compositions [3], the detection of atomic level con-
trast in vibrational signals [4,5] and of the spectral signatures
of an individual impurity atom [6], and spatial- and angle-
resolved measurements on a single stacking fault [7]. Such
vibrational modes occupy an energy range from zero to tens
or few hundreds of meV in solid state materials. Qualitatively
the same energy range is also occupied by energy losses due to
excitations of magnons, arising from the collective excitation
of the electrons’ spin in a lattice.

Magnons represent collective excitations of the magnetic
subsystem and semiclassically they can be visualized as a
wave of precessing magnetic moments [8]. Among other in-
elastic scattering experimental techniques [9–11], magnons
can be efficiently excited by electron scattering in reflec-
tion geometry: spin-polarised EELS (SPEELS) or reflection
(REELS) using spin- and non-polarised electron sources,
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respectively [12–14]. It is therefore expected that, in di-
rect analogy with phonon spectroscopy, the spectroscopic
signature of magnons and their dispersion in momentum space
should also be accessible within the remit of vibrational
STEM-EELS. Due to the scattering cross sections and low
penetration depth for low-energy electrons (typically the inci-
dent beam energy does not exceed 10 eV), SPEELS (REELS)
measurements are restricted to the detection of spin waves
at surfaces or ultrathin films. However, although these tech-
niques allow the probing of magnon excitations and their
energy-momentum dispersion with high-energy resolution,
localised information stemming, for example, from buried
interfaces or point defects, is lost. The promise, therefore,
of probing magnons with STEM-EELS at simultaneous high
spatial and energy resolution is highly attractive.

It is well known that the interaction of magnetic moments
with the electron beam is significantly weaker than its inter-
action with the Coulomb potential, often by 3 or 4 orders of
magnitude [15,16]. Since magnons represent time-dependent
distortions of the magnetic structure, similarly as phonons
represent time-dependent distortions of the crystal structure,
one might conclude that the inelastic magnon signal will be
of 3 to 4 orders of magnitude weaker than the phonon signal,
which would certainly make their detection very challenging.
In certain contexts, however, the magnetic effects in the elastic
scattering regime can reach relative strengths of up to a few
percent [17–19].

Furthermore, the use of direct or hybrid-pixel detectors
for spectroscopy applications already offers drastically im-
proved detection dynamic range and low background noise,
with signals a mere 10−7 of the full beam intensity readily
detectable within tens of pixels of the recorded signal’s max-
imum [20]. Together with improvements in monochromator
and spectrometer design, resulting in increased energy reso-
lutions in particular at lower acceleration voltages (4.2 meV
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at 30 kV [2]), where the inelastic cross sections are more
favorable, signals of weak intensity such as energy losses due
to excitation of magnons could be accessible experimentally.

Here we devise a model for the simulation of diffuse scat-
tering due to magnons (MDS). Consequent simulations of
the inelastic magnon scattering show an intensity distribu-
tion of the MDS in the diffraction plane under experimental
conditions studied here. We compare the intensity of magnon
scattering with that of phonon scattering. We show that with
an atomic size electron beam the inelastic magnon scatter-
ing displays atomic level contrast. Finally, we briefly outline
the challenges that would need to be overcome for an ex-
perimental detection of magnon signals in monochromated
STEM-EELS.

II. THEORY AND COMPUTATIONAL DETAILS

First, we introduce our theoretical model for the calculation
of the MDS. The model is based on an analogy with the so-
called quantum excitation of phonon (QEP) model [21], where
it was argued that the inelastic signal due to atomic vibrations
can be accessed via sampling from all possible atomic dis-
placement configurations. Averaging over intensities (squared
amplitudes) of exit wave-functions results in an incoher-
ent (total) scattering intensity. Instead, taking the squared
amplitude of the averaged auxiliary exit wave function re-
sults in a coherent (elastic) scattering intensity. Following
Ref. [22] we show in Appendix A that this approach also
extends to magnons. The magnon inelastic scattering signal
is then the difference between the incoherent and coherent
scattering intensities. Instead of vibrating atoms, we deal here
with wiggling magnetic moments. They cause local deviations
of the microscopic magnetic fields from their time average.
These deviations influence the electron beam propagating
through the sample and it is what allows an extraction of
magnon scattering intensities.

To realize this formal analogy practically, we need three
key components. The first component is a beam propagation
method that can take into account the influence of a micro-
scopic magnetic field on the electron beam. Such a method
exists and has been described in Refs. [15,17,18]. In works
of Edström et al., a Pauli multislice method was introduced,
which is a generalization of the classical multislice method
[23], deriving a paraxial approximation starting from Pauli’s
equation rather than Schrödinger’s equation.

The second component is a method for generating the
microscopic magnetic field B(r) and microscopic magnetic
vector potential A(r). In Refs. [15,17–19], A(r) and B(r)
were generated from spin-densities evaluated by calcula-
tions within the scalar-relativistic density functional theory
framework. However, for large supercells containing many
thousands of atoms with varying orientations of magnetic
moments, such an approach becomes impractical. For this pur-
pose we have employed a recently developed parametrization
of the magnetic fields and vector potentials [24].

The parametrization starts with the microscopic magnetic
vector potentials and fields of single atomic systems, where
a quasidipole model is fitted for each individual element in a
way analogous to electron form factors while also account-
ing for the reduced magnetic moment in the atomic to bulk

transition. As the contributions to these magnetic quantities
from each atom can simply be summed up in superposition,
knowledge of the positions and moment directions for a su-
percell in tandem with this parametrization allows for efficient
computation of these magnetic quantities in systems of any
size.

The third and final component provides realistic snapshots
of precessing magnetic moments in the supercell. This can be
efficiently realized by semiclassical atomistic spin dynamics
(ASD) simulations [8]. ASD is a magnetic analog of how
molecular dynamics (MD) simulations describe atomic vi-
brations, here providing a realistic description of thermally
excited magnetic configurations and their dynamics. Here, we
have used the UppASD code [25] for the ASD simulations.

The parameter settings for each step are described in re-
verse order. As our model system we chose ferromagnetic bcc
iron, a prototypical system for ab initio calculations of mag-
netic properties, and one where magnons have been previously
detected experimentally by energy loss spectoscopy using
SPEELS [13]. A supercell of 30 × 30 × 100 unit cells with
dimensions 86 × 86 × 287 Å3 containing 180 000 atoms, has
been constructed. The ASD method relies on a parameterized
spin Hamiltonian to describe the spin dynamics. Here we
have used a Heisenberg Hamiltonian defined by interatomic
exchange interactions calculated ab initio using the scalar-
relativistic SPRKKR [26] code. With this realistic description of
the spin dynamics in bcc Fe, we performed ASD simulations
in order to get representative snapshots of the magnetization
in the sample with a sampling interval of 1 ps. The simulations
were performed with a timestep of 0.1 fs and we used a large
Gilbert damping parameter of 0.1 in order to minimize the
correlation between different snapshots.

In the generation of parametrized fields we utilize a nu-
merical grid of 1500 × 1500 × 3000 grid points spanning
the entire supercell, with points within a 6 × 6 × 6 Å3 cube
surrounding each atom evaluated for the magnetic vector po-
tentials and magnetic fields.

The Pauli’s-equation-based multislice calculations have
been done on the same numerical grid. The cut-off for atomic
potentials, using Kirkland’s parametrization [27], was set to
4 Å. Zero aberrations for the incoming wave have been as-
sumed, and the beam was focused on the entrance surface
of the supercell. The mass and electron wavelength in the
Pauli multislice equation is relativistically corrected, as in the
traditional multislice method [15,23].

III. RESULTS

Since the MDS will create nonzero scattered intensity in
between Bragg spots, it will overlap with the diffuse scattering
stemming from atomic vibrations (TDS). It is therefore impor-
tant to know the distribution and intensity of the TDS signal in
the diffraction plane. We compute the TDS in a similar fashion
to the MDS, but instead of snapshots of the time-varying
magnetic field, snapshots of the vibrating crystal structure are
required. To that end, we simulate the atomic vibrations with
the LAMMPS MD code [28,29]. An orthogonal simulation box
consisting of 30 × 30 × 100 unit cells of bcc-Fe was consid-
ered with a lattice parameter a = 2.859 Å, which was deter-
mined from the time average of the simulation box dimensions
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(a)

(c) (d)

(b)

FIG. 1. Thermal diffuse scattering simulation due to atomic vi-
brations. The acceleration voltage was set to 200 kV. This calculation
neglects magnetic effects. The convergence semiangle was set to 1
mrad in (a) and (b), and to 10 mrad in (c) and (d), respectively. The
total diffraction pattern is shown in panels (a) and (c), while the pure
phonon signal is shown in panels (b) and (d). The intensity is plotted
on a logarithmic scale for scattering angles of ±60 mrad along both
axes, with the white bar in panel (a) representing 30 mrad.

via isothermal-isobaric MD simulation at a temperature of
300 K and a pressure of 0.0 bar. In all MD simulations, the
time step was set to 0.001 ps and the embedded-atom method
potential described the inter-atomic interactions [30]. One
MD trajectory was simulated using a Langevin thermostat at
a temperature of 300 K, from which one structure snapshot
was taken every 2000 time steps, i.e., every 2 ps, for a total of
96 snapshots. Figure 1 shows a calculated total (incoherent)
diffraction pattern and its inelastic phonon component. The
relative strength of energy-integrated phonon signal intensity
reaches up to 10−2 of the total intensity.

Recent high-energy-resolution STEM-EELS experiments
in the vibrational regime have explored the use of either
nanoprobe or atomic resolution modes. Nanoprobe offers
nanometer-scale spatial resolution alongside interpretable
angle-resolved measurements at moderate momentum reso-
lution [4]. In such a case, small convergence semiangles are
being used, such as 1 mrad. In atomic resolution mode we
form an Ångström-sized electron probe by using substantially
larger convergence semiangles, such as 20–30 mrad. Experi-
ments with atomic size electron beams offer atomic-resolution
EELS but without momentum sensitivity [5–7]. Given the
practical and conceptual similarities between these vibrational
spectroscopy results and the experiments envisaged here to
study magnons, these two usecases will form the basis for the
choice of simulation parameters.

We start our discussion of MDS with simulations assuming
a nanometer-sized electron beam with a convergence semi-
angle of 1 mrad at an acceleration voltage of 200 kV, see
Fig. 2. Although lower acceleration voltages, typically 30–
60 kV, have been used in recent vibrational and ultralow
loss STEM-EELS experiments, due in particular to higher

(a) (b)

(c) (d)

FIG. 2. Diffuse scattering simulation due to precession of mag-
netic moments, i.e., excitation of magnons. Atomic vibrations are
neglected in this simulation. The convergence semiangle was set to 1
mrad in (a) and (b), and to 10 mrad in (c) and (d), respectively. The
total diffraction pattern is shown in panels (a) and (c), while pure
magnon signal is shown in panels (b) and (d). The intensity is plotted
on a logarithmic scale for scattering angles of ±60 mrad along both
axes, with the white bar in panel (a) representing 30 mrad.

inelastic scattering cross-sections, the sample requirements
(e.g., the risk of oxidation in very thin lamellae of bcc-Fe)
make the choice of 200 kV pertinent as it would allow for
the observation of thicker objects. Figure 2(a) shows the cen-
tral part of the diffraction pattern within a ±60 mrad range
of scattering angles, where the atomic vibrations have been
neglected. It can be seen that the intensity of the diffuse
signal due to the excitation of magnons is of a similar order
of magnitude as forbidden reflections, that is approximately
10−6-10−7 of the transmitted beam intensity. In a simulation
including atomic vibrations the forbidden reflections are not
visible, being dominated by the vibrational TDS, see Fig. 1(a).
The pure inelastic signal component due to magnons is shown
in Fig. 2(b). It forms clouds of intensity centered around the
Bragg reflections. The per-pixel maximum relative intensity
of the MDS and TDS reaches 3 × 10−4. Figures 2(c) and
2(d) show an analogous calculation for an electron beam with
convergence semiangle of 10 mrad. The relative intensity of
the MDS remains at a very similar level. Figures 2(b) and
2(d) represent the energy-integrated magnon EELS signal,
i.e., excluding the zero-loss peak and phonon EELS intensity.
We have performed similar calculations for a 5-nm thick sam-
ple at 30 kV acceleration voltage with qualitatively similar
outcomes, see Appendix B.

For convergence semiangles of approximately 10 mrad and
beyond, the Bragg discs already overlap, meaning that we
are in the atomic resolution regime. An intriguing question
arises, whether atomic scale contrast could be reached us-
ing purely the magnon EELS signal. In Fig. 3 we present a
calculation of a STEM image based purely on the inelastic
magnon intensity. A convergence semiangle of 30 mrad and
acceleration voltage of 100 kV have been assumed. We have
considered three typical detector settings: high-angle annular
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FIG. 3. STEM images calculated with an electron beam accel-
erated by 100 kV and convergence semiangle of 30 mrad, while
neglecting the atomic vibrations. The white bar in the top left panel
marks 1 Å. Individual rows correspond to three different detector
setups: HAADF detector with inner/outer collection semiangles of
100 mrad and 250 mrad, BF detector with collection semiangle of
30 mrad and a DF detector displaced by 60 mrad off-axis along
the θx direction, with a collection semiangle of 30 mrad. Individual
columns correspond to the total intensity (excluding phonon contri-
bution), magnon scattering intensity, and their ratio.

dark field (HAADF) with inner/outer collection semiangles
of 100 mrad and 250 mrad, bright field (BF) with collection
semiangle of 10 mrad and off-axis dark field (DF) detector
with collection semiangle of 30 mrad, displaced by 60 mrad
from the center of diffraction pattern along θx axis. These
could be thought of as energy-filtered STEM images, that is,
spectrum images collected using equivalent collection angle
ranges, but generated by integrating the energy range solely
over magnon losses. An experimental realization may thus
be possible if the most intense magnon peaks are sufficiently
separated from other losses in the corresponding energy-loss
range.

For all three detector settings we observe an atomic scale
contrast, both in total scattering intensity (left column) as well
as in the magnon diffuse scattering (middle column). The
HAADF detector leads to the highest atomic level contrast,
both in total and in magnon scattering intensity. On the other
hand, owing to the very similar spatial distribution of both
signals, the ratio of the magnon signal intensity to the total
scattering intensity (right column) remains under 10−6. The
magnon signal of the BF detector shows expected strong
dynamical diffraction effects with volcano-shaped features
around the atomic columns. A similar behavior was reported
in phonon EELS maps [31]. The contrast is lower with a ratio
of maximal to minimal intensities near a factor of 5, while the
relative strength of the magnon signal remains below 10−6, at
a similar level to the magnon signal collected by the HAADF
detector. For the chosen geometry of the off-axis DF detector,
in the total scattering cross section we observe elongated
features at the position of atomic columns. Interestingly, the
peaks of the magnon signal are found to be strongly displaced
to the right, by about 0.8 Å in the direction parallel to the

displacement of the detector. Similar observations were made
about phonon EELS in Ref. [32], albeit to a smaller extent.
Thanks to the qualitatively different STEM image of the total
vs magnon signal, the relative strength of magnon scattering
intensity is higher here, reaching 1.3 × 10−6.

IV. DISCUSSION AND OUTLOOK

Although this level of signal is small in absolute terms,
making their detection highly challenging, we would like to
point out some recent instrumentation advances and obser-
vations. For instance, the vibrational signature of guanine
molecules obtained using a hybrid-pixel detector revealed
peaks of intensity well below 2 × 10−5 that of the zero-loss
peak (ZLP), across an energy-loss range starting as low as
∼20 meV. [33] Thanks to the increased energy resolution
of new-generation monochromators, the numerous peaks in
the low energy-loss sector are also well separated, making it
easier to isolate the contribution from each allowed vibrational
mode into, e.g., an inelastic “phonon” image or “magnon” im-
age, as simulated here. Furthermore, in a dark-field geometry,
such as that described above for the HAADF or off-axis DF
detectors, the relative intensity of the ZLP is vastly reduced
(for a lower overall signal) and its intensity for dark-field
phonon imaging is of a similar order of magnitude to that of
vibrational peaks [4]. This alternative electron optical geom-
etry should allow for an enhancement of the relative magnon
signal in future experiments, especially if direct electron de-
tectors are used.

In the presented simulations it was assumed that the sample
is subjected to a 1 T magnetic field parallel to the beam com-
ing from the objective lens. Newly-developed instrumentation
makes it possible to either null or control the magnetic field
of the STEM objective lens at the sample while retaining an
atomic-size probe [34]. It would thus be of interest to analyze
the impact of the strength and direction of the magnetic field
on the observed magnon signal as an additional experimental
means to boost or isolate magnon peaks in the recorded spec-
tra. Another parameter of great interest is the temperature. It
is likely that the temperature dependence of the phonon and
magnon signals will qualitatively differ, perhaps even offering
routes to attempt the separation of these signals. Bcc iron has a
magnetic transition temperature above 1000 K, therefore one
would expect stronger magnon scattering intensities at higher
than room temperatures. All these aspects will be the subject
of future research.

The simulations presented here lack the spectroscopic
dimension in the magnon scattering: All calculations are
integrated over all possible energy losses where magnons
contribute to the spectra. We aim to extend our work
to include energy channel sensitivity by analogy with the
frequency-resolved frozen phonon multislice method (FRF-
PMS; [35,36]). For that purpose, we are implementing colored
thermostats into UppASD. Such simulations will provide snap-
shots of magnetic moments vibrating only within desired
frequency ranges. This will allow us to assemble magnon EEL
spectra by repeating the simulation procedure described here
for each of the frequency ranges.
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V. CONCLUSIONS

In summary, we have constructed a model and presented
simulations of diffuse scattering due to magnons. The magnon
scattering has a relative intensity of up to 10−4 of the phonon
scattering intensity, meaning that an experimental detection
of a magnon signal appears very demanding, although recent
instrumental developments are likely to at least partially alle-
viate the challenges. Successful fingerprinting of magnons in
an electron microscope would create a radical way of studying
the fundamentals of magnetic ordering and spin wave excita-
tions, e.g., in material systems used for spintronics and spin
caloritronics, where spin currents are propagated by magnons
[37].
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APPENDIX A: PARALLELS BETWEEN THE EXCITATION

MECHANISMS OF PHONONS AND MAGNONS

The description of electron-phonon scattering in multislice
calculations makes use of the frozen phonon method, which
is based on the idea that electrons passing through a con-
figuration of vibrating atoms can be treated by having the
atoms frozen in place, due to the period of vibration of the
atom being much shorter than the interaction time of the
electron in the system. This approach has been shown to be
formally exact under certain conditions [38], with van Dyck
[22] showing that in the case of single inelastic scattering and
independent atom vibrations, this approach is fully equivalent
to a quantum-mechanical description based on the Yoshioka
equations. Following the formalism presented in that paper,
with adjustments reflecting the magnetic rather than vibra-
tional nature of the scattering mechanism under consideration,
an analogous frozen magnon method is formalized.

Following Edström et al. [18], the time-independent parax-
ial Pauli equation is

∂�

∂z
=

im

h̄
(h̄k + eAz )−1

{

h̄2∇2
xy

2m
+

ieh̄

m
Axy · ∇xy

−
h̄keAz

m
−

eh̄

2m
σ · B + eV

}

�, (A1)

where � is a two-component wave function with a spin up
and spin down part, ∇xy is the in-plane gradient operator,

V is the electrostatic potential, and k and m are de Broglie
wavelength of electron and electron mass, both relativistically
corrected [27]. To the first order in the magnetic vector poten-
tial A, which is a valid approximation for fast electrons where
h̄k ≫ eAz, this becomes

∂�

∂z
≈

im

h̄2k

{

h̄2∇2
xy

2m

}

�

+

[

im

h̄2k

{

eV +
ieh̄

m
Axy · ∇xy −

h̄keAz

m

}

−
imeAz

h̄3k2

{

h̄2∇2
xy

2m
+ eV

}

−
ie

2h̄k
σ · B

]

�. (A2)

This expression is analogous to Eq. (1) in van Dyck’s paper
[22], with the scattering mechanism being magnetic fields and
potentials. In the following equation in the paper, it is assumed
that the potential is time dependent and can be broken up
as V (t ) = 〈V 〉 + W (t ), with 〈〉 representing an average taken
over time and 〈W (t )〉 = 0. In contrast to the potential resulting
from a vibrating lattice, in the case of magnon scattering there
are terms in W (t ) dependent on ∇xy. Here we invoke the ap-
proximation that � under the influence of magnetic scattering
should not change to the degree that terms dependent on ∇xy

will substantially change from snapshot to snapshot, thereby
allowing an average over time for the potential to be taken.

There are two additional assumptions made through the
derivation of the frozen phonon method in the paper [22] in
Eqs. (3)–(36), that must be noted. First is that the scattering
interaction term 〈W (z, t )W (z′, t )〉 is assumed to be zero for
z 	= z′. For phonons, this is justified in that, for small atomic
displacements, the perturbation in the crystal potential W (t ) is
sharply peaked at the atom centres. The same assumption can
be made for magnetic moments, with magnetic fields peaking
within 1 Å of atomic centres. The second assumption made
is that the atom motions are uncorrelated to avoid a non-
local component in the optical potential, although the same
assumption is made in the quantum mechanical derivation.

FIG. 4. Phonons at 30kV for a 5-nm thick sample. The rest as in
Fig. 1 of the main text. The convergence semiangle was set to 1 mrad
in (a) and (b), and to 10 mrad in (c) and (d), respectively. Color bars
refer to a decadic logarithm of intensity.
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FIG. 5. Magnons at 30kV for a 5nm thick sample. The rest as in
Fig. 2 of the main text. The convergence semiangle was set to 1 mrad
in (a) and (b), and to 10 mrad in (c) and (d), respectively. Color bars
refer to a decadic logarithm of intensity.

Analogous to this is the assumption that magnetic moments
are uncorrelated, i.e., an independent atom approximation.

Equations (37)–(77) in the van Dyck paper [22] outline
the quantum mechanical treatment for describing electron-
phonon interactions in the multislice framework. In Eq. (37)
of the paper, wave functions are expressed in a joint basis in
the position vector of the electron r and that of atom i ri.
For the frozen magnon method, assuming a fixed lattice, the
wave function will instead be expressed as ψ (r, mi ), where
mi is the vector describing the magnetic moment of the atom.
Knowledge of the orientations of the magnetic moments of
all atoms is sufficient to uniquely describe the magnetic vec-
tor fields A and B up to gauge invariance. Analogous to
Eq. (38), eigenstates for a given magnetic moment configu-

FIG. 6. Ratio of MDS and TDS at 1 mrad (left) and 10 mrad
(right), respectively, both at 30 kV for a 5-nm thick sample. Color
bars refer to decadic logarithm of the ratio.

ration |an(mi )〉 exist and form a complete set for all functions
over mi, so that

ψ (r, mi ) =
∑

m

ψm(r)|am(mi )〉. (A3)

It is worth noting that the terms of the interaction part of
the Hamiltonian, αnm = 〈an(mi )|Hint|am(mi)〉, contain terms
corresponding both to the electrostatic potential of the atoms
and the magnetic vector fields as seen in Eq. (A1), analogous
to the treatment of magnetism and magnons in the context of
spin-polarized DFT [39]. Lastly, it is important to note that,
while the approach above has been done for a fixed lattice for
simplicity, none of the assumptions or formalism preclude the
inclusion of lattice vibrations, which is especially important
given the overlapping energy spectrum of these two quantized
vibrations.

APPENDIX B: ADDITIONAL FIGURES

Additional Figs. 4–6 from simulations at 30 kV accelera-
tion voltage are presented here.

[1] O. L. Krivanek, T. C. Lovejoy, N. Dellby, T. Aoki, R. W.
Carpenter, P. Rez, E. Soignard, J. Zhu, P. E. Batson, M. J. Lagos
et al., Nature (London) 514, 209 (2014).

[2] O. L. Krivanek, N. Dellby, J. A. Hachtel, J.-C. Idrobo,
M. T. Hotz, B. Plotkin-Swing, N. J. Bacon, A. L. Bleloch,
G. J. Corbin, M. V. Hoffman et al., Ultramicroscopy 203, 60
(2019).

[3] J. A. Hachtel, J. Huang, I. Popovs, S. Jansone-Popova, J. K.
Keum, J. Jakowski, T. C. Lovejoy, N. Dellby, O. L. Krivanek,
and J. C. Idrobo, Science 363, 525 (2019).

[4] F. S. Hage, D. M. Kepaptsoglou, Q. M. Ramasse, and L. J.
Allen, Phys. Rev. Lett. 122, 016103 (2019).

[5] K. Venkatraman, B. D. A. Levin, K. March, P. Rez, and P. A.
Crozier, Nat. Phys. 15, 1237 (2019).

[6] F. S. Hage, G. Radtke, D. M. Kepaptsoglou, M. Lazzeri, and
Q. M. Ramasse, Science 367, 1124 (2020).

[7] X. Yan, C. Liu, C. A. Gadre, L. Gu, T. Aoki, T. C. Lovejoy,
N. Dellby, O. L. Krivanek, D. G. Schlom, R. Wu, and X. Pan,
Nature (London) 589, 65 (2021).

[8] O. Eriksson, A. Bergman, L. Bergqvist, and J. Hellsvik, Atom-

istic Spin Dynamics: Foundations and Applications (Oxford
University Press, Oxford, 2017).

[9] S. K. Sinha, S. H. Liu, L. D. Muhlestein, and N. Wakabayashi,
Phys. Rev. Lett. 23, 311 (1969).

[10] P. S. Keatley, T. H. J. Loughran, E. Hendry, W. L. Barnes, R. J.
Hicken, J. R. Childress, and J. A. Katine, Rev. Sci. Instrum. 88,
123708 (2017).

[11] T. Sebastian, K. Schultheiss, B. Obry, B. Hillebrands, and H.
Schultheiss, Front. Phys. 3, 35 (2015).

[12] R. Vollmer, M. Etzkorn, P. Anil Kumar, H. Ibach, and J.
Kirschner, J. Magn. Magn. Mater. 272-276, 2126 (2004).

[13] K. Zakeri, Y. Zhang, and J. Kirschner, J. Electron Spectrosc.
Relat. Phenom. 189, 157 (2013).

[14] H. Ibach, F. C. Bocquet, J. Sforzini, S. Soubatch, and F. S. Tautz,
Rev. Sci. Instrum. 88, 033903 (2017).

[15] A. Rother and K. Scheerschmidt, Ultramicroscopy 109, 154
(2009).

[16] J. C. Loudon, Phys. Rev. Lett. 109, 267204 (2012).
[17] A. Edström, A. Lubk, and J. Rusz, Phys. Rev. Lett. 116, 127203

(2016).
[18] A. Edström, A. Lubk, and J. Rusz, Phys. Rev. B 94, 174414

(2016).
[19] A. Edström, A. Lubk, and J. Rusz, Phys. Rev. B 99, 174428

(2019).
[20] B. Plotkin-Swing, G. J. Corbin, S. De Carlo, N. Dellby, C.

Hoermann, M. V. Hoffman, T. C. Lovejoy, C. E. Meyer,
A. Mittelberger, R. Pantelic, L. Piazza, and O. L. Krivanek,
Ultramicroscopy 217, 113067 (2020).

214418-6



THEORY OF MAGNON DIFFUSE SCATTERING IN … PHYSICAL REVIEW B 104, 214418 (2021)

[21] B. D. Forbes, A. V. Martin, S. D. Findlay, A. J. D’Alfonso, and
L. J. Allen, Phys. Rev. B 82, 104103 (2010).

[22] D. Van Dyck, Ultramicroscopy 109, 677 (2009).
[23] J. M. Cowley and A. F. Moodie, Acta Crystallogr. 10, 609

(1957).
[24] K. Lyon and J. Rusz, Acta Cryst. A 77, 509 (2021).
[25] The Uppsala atomistic spin dynamics code, UppASD, https:

//github.com/UppASD/UppASD.
[26] H. Ebert, D. Ködderitzsch, and J. Minár, Rep. Prog. Phys. 74,

096501 (2011).
[27] E. J. Kirkland, Advanced Computing in Electron Microscopy

(Springer, Boston, 2010).
[28] S. Plimpton, J. Comput. Phys. 117, 1 (1995).
[29] LAMMPS website, version 3Mar2020 stable, accessed: 2021-

03-03 (2020), http://lammps.sandia.gov.
[30] M. I. Mendelev, S. Han, D. J. Srolovitz, G. J. Ackland, D. Y.

Sun, and M. Asta, Philos. Mag. 83, 3977 (2003).

[31] F. S. Hage, Q. M. Ramasse, and L. J. Allen, Phys. Rev. B 102,
214111 (2020).

[32] P. M. Zeiger and J. Rusz, Phys. Rev. B 104, 094103 (2021).
[33] N. Dellby, T. Lovejoy, G. Corbin, N. Johnson, R. Hayner,

M. Hoffman, P. Hrncrik, B. Plotkin-Swing, D. Taylor, and O.
Krivanek, Microsc. Microanal. 26, 1804 (2020).

[34] N. Shibata, Y. Kohno, A. Nakamura, S. Morishita, T. Seki, A.
Kumamoto, H. Sawada, T. Matsumoto, S. D. Findlay, and Y.
Ikuhara, Nat. Commun. 10, 2308 (2019).

[35] P. M. Zeiger and J. Rusz, Phys. Rev. Lett. 124, 025501
(2020).

[36] P. M. Zeiger and J. Rusz, Phys. Rev. B 104, 104301 (2021).
[37] J. Sinova, S. O. Valenzuela, J. Wunderlich, C. H. Back, and T.

Jungwirth, Rev. Mod. Phys. 87, 1213 (2015).
[38] Z. L. Wang, Acta Cryst. A 54, 460 (1998).
[39] N. Tancogne-Dejean, F. G. Eich, and A. Rubio, J. Chem. Theory

Comput. 16, 1007 (2020).

214418-7


