

This is a repository copy of *Growth of crystalline C₆₀* by evaporation.

White Rose Research Online URL for this paper: https://eprints.whiterose.ac.uk/181596/

Version: Published Version

Monograph:

Moorsom, T orcid.org/0000-0002-1771-7185 (2020) Growth of crystalline C₆₀ by evaporation. Report. Materials from the Royce Deposition System (4). University of Leeds

https://doi.org/10.48785/100/83

Reuse

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the authors for the original work. More information and the full terms of the licence here: https://creativecommons.org/licenses/

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Growth of crystalline C₆₀ by evaporation

T. Moorsom

This application note describes the growth of crystalline thin films of C₆₀.

1 Introduction

 C_{60} , also known as Buckminsterfullerene, is the most common and stable of the fullerenes, comprising a near spherical cage of sixty carbon atoms. C_{60} has a wide range of applications in molecular electronics and spintronics, solar cells and molecular magnetism. [1–3] The growth of high quality, crystalline C_{60} films is vital for the production of hybrid meta-materials and devices. In this note, we outline the optimal growth parameters for the evaporation of highly crystalline C_{60} films from an effusion cell onto Pt substrates.

2 Growth

C₆₀ can be grown easily on various metallic and semi-conducting substrates. C₆₀ grows poorly on oxides due to high surface tension, causing large clusters to form. [4] Epitaxial platinum with a (111) texture is an ideal metallic substrate for C₆₀ growth. Pt (111) films were grown on Al₂O₃ substrates (see application note for e-beam Pt growth). The substrate temperature was maintained at 20° C. C₆₀ was evaporated from a graphite crucible in a single filament effusion cell. The effusion cell temperature was increased from standby at a rate of 10 °C per minute to 430 °C. The deposition rate was measured to be 0.5 Å/s using a quartz balance. The rate varies during growth, reaching a maximum value of 0.74 Å/s. The substrate was rotated at 90°/s during deposition. the background pressure was 8×10^{-10} mbar. After growth, the film was capped with a 15 nm thick film of Nb to protect it from oxidation.

3 Properties

Structural characterisation was obtained using X-ray reflectivity (XRR) and TEM. Figure 1 shows the XRR data taken of the bilayer film. C_{60} has a very low density of 1.65 g/cc. However, a structural peak is observable at 11°. Because of the low scattering length of C_{60} , this peak is only visible in samples with extremely high crystallinity. A GenX reflectivity fit was performed for this data. The low angle fit does not

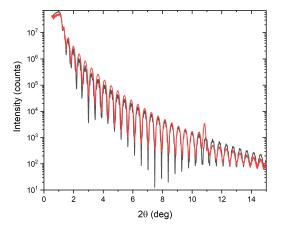


Figure 1: X-ray reflectivity data of a platinum C_{60} bilayer (red) and GenX fit (black). The structural C_{60} peak at 11° is not captured by the low angle fit.

capture the structural peak as this method does not simulate crystal structure.

A lamella, 80 ± 10 Å thick, was cut from the sample using a Dual-Beam Ga Ion FIB. This lamella was then measured using a Titan FEI TEM at 100 kV 2. The van der Waals lattice of the C_{60} is clearly visible with (111) vertical orientation. The interface between the Pt and C_{60} is atomically sharp. The lattice spacing of the C_{60} film is 1.05 ± 0.03 nm.

The vibrational spectrum of C₆₀ films was recorded

GenX fitting parameter	Value
Thickness - C_{60} (Å) Density - C_{60} (% of bulk) RMS Roughness - C_{60} (Å)	975±0.7 100±0.01 1.8±0.9
Thickness - Pt (Å) Density - Pt (% of bulk) RMS Roughness - Pt (Å)	191±0.2 100±0.01 1.7±0.1

Table 1: Structural parameters obtained through the fitting of XRR data with GenX

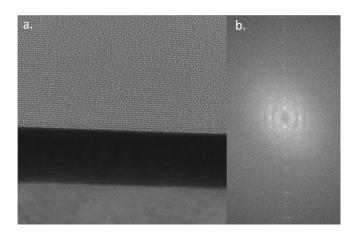


Figure 2: a. TEM obtained from the Pt/C60 bilayer lamella, showing clear molecular layers and an atomically sharp interface. b. FFT of the C_{60} layer, showing 3D crystal structure.

Mode	Raman Shift
$Ag(2)$ - Δcm^{-1}	1470±2
$Hg(7)$ - Δcm^{-1}	1434±5
$Hg(8)$ - Δcm^{-1}	1575±5

Table 2: Positions of the major Raman active modes of C60.

using a Horiba Raman Microscope with a 471 nm diode laser, Figure 3. The three highest intensity Raman active modes: Ag(2), Hg(7) and Hg(8) are used to determine the quality of the film. [5]

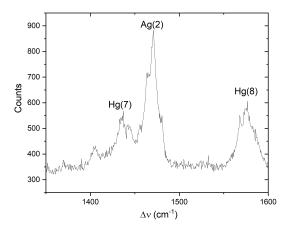


Figure 3: Raman spectrum of C₆₀ film. The three major Raman active modes are present and the characteristic mode of graphite at 1600 cm⁻¹ is absent. The splitting of the Ag(2) peak is characteristic of electron transfer across a metallic interface.

References

- 1. W. Kratschmer et al., Nature, 354–358 (1990).
- M. Gobbi et al., Advanced Materials 23, 1609–1613, eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/adma.201004672 (2011).
- 3. F. A. Ma'Mari et al., Nature **524**, 69–73 (2015).
- 4. F. Loske *et al.*, *Nanotechnology* **20**, 065606 (Jan. 2009).
- 5. V. Schettino *et al.*, *The Journal of Physical Chemistry A* **105**, 11192–11196, eprint: https://doi.org/10.1021/jp012874t (2001).