
This is a repository copy of In-flight novelty detection with convolutional neural networks.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/181593/

Version: Submitted Version

Article:

Hartwell, A., Montana, F., Jacobs, W. et al. (3 more authors) (Submitted: 2021) In-flight
novelty detection with convolutional neural networks. arXiv. (Submitted)

© 2021 The Authors. Preprint available under the terms of the CC-BY-NC-ND licence
(https://creativecommons.org/licenses/by-nc-nd/4.0/).

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs
(CC BY-NC-ND) licence. This licence only allows you to download this work and share it with others as long
as you credit the authors, but you can’t change the article in any way or use it commercially. More
information and the full terms of the licence here: https://creativecommons.org/licenses/

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

In-flight Novelty Detection with Convolutional Neural Networks

Adam Hartwell1, Felipe Montana1, Will Jacobs1, Visakan Kadirkamanathan1, Andrew R

Mills1, and Tom Clark2

1Department of Automatic Control and Systems Engineering, University of Sheffield, UK
2Rolls-Royce Plc, UK

December 8, 2021

1 Abstract

Gas turbine engines are complex machines that typ-
ically generate a vast amount of data, and require
careful monitoring to allow for cost-effective preven-
tative maintenance. In aerospace applications, re-
turning all measured data to ground is prohibitively
expensive, often causing useful, high value, data to
be discarded. The ability to detect, prioritise, and
return useful data in real-time is therefore vital. This
paper proposes that system output measurements,
described by a convolutional neural network model
of normality, are prioritised in real-time for the at-
tention of preventative maintenance decision makers.

Due to the complexity of gas turbine engine time-
varying behaviours, deriving accurate physical mod-
els is difficult, and often leads to models with low pre-
diction accuracy and incompatibility with real-time
execution. Data-driven modelling is a desirable alter-
native producing high accuracy, asset specific models
without the need for derivation from first principles.

We present a data-driven system for online detec-
tion and prioritisation of anomalous data. Biased
data assessment deriving from novel operating con-
ditions is avoided by uncertainty management inte-
grated into the deep neural predictive model. Testing
is performed on real and synthetic data, showing sen-
sitivity to both real and synthetic faults. The system
is capable of running in real-time on low-power em-
bedded hardware and is currently in deployment on

the Rolls-Royce Pearl 15 engine flight trials.

2 Introduction

Aerospace Gas turbine engines (GTE)s are complex
machines that must be monitored and maintained in
order to ensure reliable operation over long time pe-
riods [1]. A key concept to maximise reliability is
condition based, rather than schedule based, main-
tenance [2]. This requires an accurate assessment of
engine condition, which can be challenging to obtain.
The condition of an engine is typically assessed

relative to similar assets in a fleet, as well as func-
tional performance thresholds, and requires expert
engineering knowledge of the maintenance decision
makers. The finite human resource to assess engine
performance is traditionally supported by small data
snapshots and failure-mode specific feature engineer-
ing. Larger data packets are collected from in-service
on an ad-hoc basis, but this is logistically costly and
often limited to cases where operational disruption
has been observed. New methodologies are needed
to support more efficient in-service operations.
Data, obtained from a large variety of different sen-

sors placed on the engine, is the main resource avail-
able to assess engine condition. However, the large
number of sensors, in-flight bandwidth limitations,
and on-board storage limitations mean that it is not
possible to return all data to ground for analysis in
most current systems [3]. It is, therefore, necessary

1

ar
X

iv
:2

11
2.

03
76

5v
1

 [
cs

.L
G

]
 7

 D
ec

 2
02

1

to prioritise which data is returned and, in the con-
text of condition based maintenance, prioritise data
that is anomalous as this may indicate issues that re-
quire maintenance [4]. Furthermore, computational
and data storage resources are extremely limited on
the current generation of civil aerospace GTEs due to
cost and weight restrictions and the harsh operating
environment. Any data prioritisation system must
function in real-time with limited computational re-
sources lest data become unavailable before it can be
saved. 46
Modern detection schemes make use of real-time

engine models that run on-board in parallel to the
real system, recently referred to as a Digital Twin
[5, 6]. Model-based schemes have the advantage
of not requiring fault data to validate their perfor-
mance, and assessments of nominal model accuracy
determine the detectability of an asset’s condition di-
vergence from its twin. Such models are tradition-
ally derived from physical principals by domain ex-
perts. Physical models have advantages, particularly
in terms of explicability and their ability to extrap-
olate (when designed correctly). However, they are
are costly to develop, difficult to tune to an individ-
ual asset, typically bespoke, and are computationally
expensive to run [7, 8]. An alternative paradigm is
data-driven modelling, where a flexible model struc-
ture is fitted to the system by training on historical
data. Data-driven models are often poor in terms
of explicability and their ability to extrapolate be-
yond the training set - but can be more accurate in
prediction for individual assets with a smaller com-
putational demands relative to a physical model.
There is, therefore, a need for an anomaly detection

and prioritisation system that is capable of running
on-board under strict computational resource limita-
tions. To address this need we present a data-driven
system that is capable of real-time anomaly detec-
tion and prioritisation on embedded hardware. The
system can be used on subsets of the GTE system,
or on the system as a whole, facilitating the priori-
tisation of high value data for condition monitoring.
This system is currently in deployment on Pearl 15
engines.
The developed system is based on the Digital Twin

paradigm, that is, accurate simulation of an individ-

ual ’as-operated’ gas turbine. Simulation of the whole
gas turbine is infeasible given the computational con-
straints of embedded devices, however by selecting in-
teresting input-output subsets it is possible to gener-
ate many data-driven models to form a Digital Twin.
Each model may then be run in parallel to give wide
coverage of the gas turbine, allowing for generalised
anomaly detection without excessive computational
overhead.
Each model is trained using nominal data to make

a prediction about a single signal given its input sub-
set. The model also predicts a confidence on its pre-
diction based on the model input. Model inputs that
are not well described by the training data lead to a
low confidence - thus allowing the distinction between
model errors that arise from the unusual data of in-
terest, and those from previously unseen operating
conditions [9]. The system assumes that a sufficient
amount of nominal data that covers expected oper-
ating conditions is available at training time.
The difference between model prediction and mea-

surement, termed the residual, has been widely re-
searched as a fault detection technique. The difficulty
in obtaining an accurate model for the plant led to
significant early work [10] on the development of diag-
nostic methods with plant observers (using data mea-
surements to adapt state estimates), and with parity
equation approaches decoupling known disturbances
from faults into model subspaces [11, 12]. Such meth-
ods rely on analytical forms of the plant, faults and
expected disturbances. The difficulties in suitably
modeling gas turbine behaviour (e.g. its non-linear
nature and inter-unit variance) have led to these ap-
proaches being augmented with data-driven ‘tuning’
elements [13, 14] at the cost of increased complex-
ity. Machine learning offers a more generic, lower
cost, and faster to market approach, as well as the
potential to accurately capture modelled physics be-
haviours embedded in the data.
Other researchers have explored full or partial gas

turbine anomaly detection using the full gamut of
machine learning techniques [4]. Deep learning tech-
niques have also been of particular relevance to the
area in recent years [15, 16, 17, 18, 19, 20, 21] due
to their success in other fields. These solutions are
not suited to deployment on resource-limited hard-

2

ware due to their high computational cost at run-time
and/or their memory requirements.
Anomaly detection using limited hardware has also

been explored, using remote processing [22], look-up
tables [23], model-based comparison [24], and in other
heavily band-limited system [25]. These solutions,
however, are not suited to gas turbine anomaly de-
tection due to the complexity of modelling the highly
non-linear asset behaviours.
Our system’s novelty is derived from its combina-

tion of a flexible modelling approach (allowing predic-
tion of any input-output path within a gas turbine),
a confidence prediction for quantifying uncertainty
in the models, and software that allows for real-time
operation on embedded hardware. Furthermore, our
solution is especially flexible as it allows drop-in, and
drop-out of models without retraining.

3 Methods

We use Chandola et al’s [26] definition of an anomaly:
“Anomalies are patterns in data that do not con-

form to a well defined notion of normal behavior”
That is, we do not know how anomalies will present

themselves ahead of time and therefore must instead
define normal in order to determine when anoma-
lies occur. We therefore take the data-driven Digital
Twin approach of selecting a number of inputs and an
output based on engineering knowledge, so that the
error between the model prediction and true signal
value may be evaluated to determine whether data is
normal.
This viewpoint is also particularly useful in the gas

turbine context because their high reliability means
that the vast majority of available data is of nomi-
nal operation. A prediction approach allows a proxy
measurement for detection in the form of prediction
error. This is useful because it provides an indicator
of model performance even when there is limited data
with faults available.
Each model is designed to predict only a single

output, multiple models with different input-output
subsets are then required to run in parallel to provide
wide coverage of GTE operation. This allows each
model to be made lean and computationally efficient

while simultaneously providing a simple way to scale
to the computational resources available.
The complexity of gas turbines coupled with the

variety of operating conditions and environmental
factors that affect their operation presents an addi-
tional problem for anomaly detection: data acquisi-
tion. It is difficult to acquire enough data to well de-
fine normal for all possible conditions, environments,
and modes of operation. Therefore, we designed our
models following the advice of Nix and Weigend [9],
so that each model predicts a probability distribution
characterised by a mean and confidence, see Section
3.2.1.

3.1 Anomaly Detection System

The architecture of the Anomaly Detection System is
shown in Figure 1 which allows for scalable, real-time
operation:

Figure 1: System architecture. Data from the gas
turbine is piped in and buffered before being run
through the currently loaded models. The most un-
usual data is then stored ready for later review.

The architecture allows streaming of data from sen-
sors attached to a gas turbine in real-time into a
local input buffer. The buffer is then used to feed
N models, where N is selected based on a trade-off
of coverage with computational resources. Data pri-
oritisation is performed based on the Standardised
Euclidean Distance metric described in Equation 10
(Section 3.2.4) and the most anomalous data stored
in a local data store. The data stored can be any sen-
sor information from the gas turbine and need not be
limited to a model input-output subset.
Data in the store may be accessed whenever a data

3

link is available, for example, via satellite link when
in-flight, or airport connectivity when landed. The
store may be sized to match memory requirements of
the hardware.

3.2 Data modelling

The anomaly detection scheme presented in the pre-
vious section is reliant on the existence of models that
can map observations of the input data to observa-
tions of output data. Consider a single input-output
data set D = {X,y}, where

y = [y1, y2, . . . , yN]T ∈ R
N,1,

X =

where N is the length of the data series and m is the
number of channels in the input data. The input-
output mapping is approximated with a function f(·),
such that the n’th element of the output can be mod-
eled as

yn = f(xn) + e(xn), (1)

where e(·) is additive noise that is dependant on the
input data.
The estimation of the distribution of the output

data is central to the anomaly detection scheme, al-
lowing the quantification of uncertainty on the es-
timate. Importantly, the uncertainty is a function
of the input data xn to quantify the uncertainty in
the model in different regions of the input space.
The output distribution is described by a multivari-
ate Gaussian with mean µn = µ(xn) and variance
σn = σ(xn) given by

N
(

yn|µn, σ
2
n

)

=
1

√

2πσ2
n

e
−

(yn−µn)2

2σ2
n . (2)

In this work, the input dependant mean and vari-
ance are estimated simultaneously using a deep neu-
ral network, the design, training, and real-time im-
plementation of which are discussed in the remainder
of this section.

3.2.1 Neural Network Design

The choice of a recurrent neural is often favoured
when dealing with time-series data, however, their

high computational and memory costs make them
generally unsuitable to implement on current embed-
ded hardware [27]. We therefore chose to use a convo-
lutional Neural Network architecture in order to min-
imise the computational cost of the forward passes.

The large number of sensors and complexity of the
gas turbine lead to our decision to use a flexible net-
work design that can be adapted to any target input-
output data set. Further we also engineered the de-
sign to be flexible in terms of the number of time-
steps the network can take as an input. Typically
this requires a large number of extra weights to scale
the number of time-steps. Our design uses a con-
strained convolutional layer (the Temporal Fold) to
minimise the computational impact of inputting ex-
tra time-steps. This is especially important as, while
some input-output subsets are expected to have short
time-lag relationships, others e.g. temperatures, may
have much longer time constants which a convolu-
tional network will not be able to represent if the
input data is unavailable.

The design is flexible in terms of the number of
inputs, which allows for deployment on new data
by non-specialists; since no redesign of the architec-
ture is necessary to accommodate for different input-
output subsets or timescales. The network architec-
ture takes advantage of skip connections to improve
performance at minimal computational cost, dropout
regularisation to reduce over-fitting [28], and Leaky
Rectified Linear Units (LReLU) throughout. The
conceptual architecture is shown in Figure 2 which
is described in more detail below;

Input Incoming data is treated as a 2D window
with length T and width S, where T and S are time
steps and the number of signals for a particular input-
output subset respectively. This simplifies implemen-
tation and visualisation as it means the data can be
treated in a similar manner to images.

Temporal Fold The stage of the network is a 1D
convolution in the time dimension, explicitly enforc-
ing feature extraction from individual signals at the
lowest level, here named the Temporal Fold. Denot-
ing the convolution operator as ∗, the discrete 1D
convolution operation is defined as;

4

Figure 2: Overview of the network architecture.
Number of hidden units and stride size given in brack-
ets, output size given in yellow. The design is flex-
ible such that “T” matches the number of incoming
timesteps in each window and “S” is the number of
signals. The “Dense Blocks” are 3 dense layers each
followed by a dropout layer with rate = 0.5. The
number of hidden units (NX) in different layers may
be adjusted based on the complexity of the input-
output set and available computation.

s
[l]
j = (z

[l−1]
j ∗K) =

∑

i

z
[l−1]
j (i)K(i) (3)

where z
[l−1]
j is the output of the j’th neuron at the

l’th layer of the network and K is a 1D kernel of ap-
propriate size. The temporal fold takes the network

input as input z
[l−1]
j (i) = xk−T :k with K = KTF

is the Temporal Folder Kernel with with height T ,
width 1, and depth equal to the number of input fea-
tures. The output of the convolution can be seen as a
weighted average over the past T data points for each
input channel, where the weighting is defined by the
elements of KTF .

The output of the convolution is passed though a

LReLU activation function defined as,

z
[l]
j = g(s

[l]
j) (4)

g(s
[l]
j) =

{

s
[l]
j if s

[l]
j > 0,

0.01s
[l]
j otherwise

(5)

Squeeze The next stage of the network is
“Squeeze” layer. It consists of a 1 × 1 Squeeze con-
volution which outputs to a 1xS convolution and a
1x1 convolution, both described by Equation 3 with
appropriately sized kernels and with LReLU activa-
tion functions described by Equation 5. This method
is inspired by Squeezenet [29], and replaces the c× c

convolution for a 1 × S convolution in order to sig-
nificantly reduce the number of hyper-parameters to
be learned.
Spatial Fold The two outputs of the Squeeze

layer are passed through a 1D convolution described
by Equation 3, this time in the spatial dimension
(across features generated at the previous layer) and
thus named the Spatial Fold. A LReLU activation
function is again used. The layer determines cross-
channel features and inter-filter features. The out-
puts of the convolutions are flattened and concate-
nated.
Dense layers - Mean Prediction: A skip con-

nection is performed, where the output of the Spatial
Fold is concatenated with the flattened original in-
put. The concatenated outputs are then passed into
a series of three dense layers described by;

z
[l]
j = g(Wz

[l−1]
j + b) (6)

whereW and b are hyper-parameters to be learned
and g is the L − ReLU activation function defined
by Equation 5. A dropout layer with rate = 0.5 is
placed after each dense layer to reduce over-fitting
during training. The output is a single value that is
an mean estimate of the output for the given network
input.
Dense layers - Confidence Prediction: A fur-

ther skip connection is performed where, again, the
output of the Spatial Fold is concatenated with the
flattened original input but here the mean estimate is
also concatenated. This is then passed through into
a series of three dense layers, as above for the mean

5

estimation, and outputs an estimate of the output
variance.

3.2.2 Neural Network Optimisation

Optimisation of the model weights of a deep neural
network requires an optimisation target. Considering
the model described by Equation 2, it is simple to
construct a likelihood function as

LL =

B
∏

n=1

N
(

yn|µn, σ
2
n

)

, (7)

where B is the batch size. Maximisation of the likeli-
hood is equivalent to the minimisation of the negative
log-likelihood

NLL = −
1

B

B
∑

n=1

ln
(1
√

2πσ2
n

e
−

1
2

(

(yn−µn)2

σ2
n

)

)

(8)

=
1

B

B
∑

n=1

(1

2

((yn − µn)
2

σ2
n

)

− ln(σn)−
1

2
ln(2π)

)

(9)

which is used as the target for optimisation [9].
Optimisation was performed using the Rectified

ADAM (RADAM) algorithm [30, 31] combined with
early stopping on a separate validation data split.
The parameters of the Rectified ADAM algorithm
were varied depending on the input-output sub-
set based on experiments with the validation set.
RADAM was selected based on it’s performance rel-
ative to a small pool of candidate optimisers.
The network outputs the mean, µn, and the confi-

dence αn = ln(σn). The re-parameterisation enforces
σn > 0 to ensure that the network output is always
valid. σn is regenerated after the forward pass using
σn = eαn . The assumption of normally distributed
residuals is reasonable, given that we expect random
fluctuations from sensor readings.
This confidence estimation approach is based on

the work of Nix and Weigend [9] and similar to more
recent work e.g. bounding box estimation in com-
puter vision [32]). Other approaches to uncertainty
estimation in neural networks include using dropout
at run-time [33], using ensembles as a prediction scat-
ter and Bayesian neural network solutions. We utilise

the explicit estimation approach since it allows us to
enforce a Gaussian confidence estimation while re-
taining the greater flexibility of non-Bayesian neural
networks and fast run-time of a single network solu-
tion.

3.2.3 Model and Hyper-parameter Selection

In order to ensure a neural network was an appropri-
ate model choice, a number of simpler models were
tested as a benchmark. These models include Lasso,
Ridge, Elastic Net linear regression and Regression
Forests. Each was found to perform worse than the
neural network solution and naturally lacked the abil-
ity to estimate confidence. Typically it was possible
to train these models to work well at a local scale,
performing the same or better than the neural net-
work over small portions of the data, but considerably
worse elsewhere indicating a tendency to over-fit to
the training data and a lack of generalisation.

Network hyper-parameters were selected based on
starting values from the literature followed by jit-
tered grid search and manual tuning. Validation set
(not test set) data was used to evaluate performance
and inform selection. More information on the hyper-
parameters are included in Appendix A.

3.2.4 Model Comparison and Data Prioriti-

sation

The system-level assessment of abnormality relies on
being able to compare measurements to the outputs
of any number of different models where each model
may have a different output range. This is achieved
by treating outputs of the network as a multivari-
ate Gaussian and adopting the Mahalanobis distance
[34]. Since each model is independent, such that
the co-variance matrix is diagonal, the Mahalanobis
distance reduces to Standardised Euclidean Distance
(SED). We then refactor the equation for novelty
ranking and drop the square root since it is unneces-
sary for calculating the relative ranking of each sam-
ple. This leaves Equation (10) that retains the in-
tended functionality, but can be computed quickly in
an online context,

6

d̃(yn, µn) =
(yn − µn)

2

σ2
n

, σ = eα (10)

This setup relies on models being up-to-date, that
is, if an engine maintenance is performed then it is
reasonable to expect some input-output relationships
to change. Therefore, an out-of-date model may cor-
rectly indicate anomalous data for its input-output
set, however, this is likely to be undesirable in prac-
tice. Methods for keeping models up-to-date are be-
yond the scope of this paper, and are discussed in our
forthcoming work.

3.2.5 Real-time Implementation

Deployment to embedded hardware was achieved via
an application written in C++. The Tensorflow Lite
[35] library was employed to ensure fast forward-
passes of all models involved while the application
took care of the input and output buffering as well
as data prioritisation tasks.
Design assurance for the application was achieved

via a combination of automated code analysis (via
CLang Format), automated testing, memory profiling
(via Valgrind) and static analysis.
In order to evaluate performance, internal timers

were used around the critical code sections in or-
der to review data load and data evaluation times
(model runs combined with data prioritisation). This
allowed monitoring of real-world performance.

4 Data Sets

Two different data sets were used to validate that the
system produced appropriate predictions and gave
acceptable novelty detection performance.
Each data set was split into three sets: Training,

Validation, and Test. Test data was used solely for
evaluation and, unless otherwise specified, consisted
of the most recent data. Training and Validation data
was drawn from earlier data randomly. This split
setup mimics real world applications where only past
data is available and models must be deployed to an
aircraft. In all cases, the Training set was used for
determination of scaling and the only data directly

available to the networks for learning. The Valida-
tion set was used for early stopping and for hyper-
parameter tuning while the Test set was kept solely
for evaluation.

NASA TurboFan Degradation Dataset [36].
This data comes from a prognostics competition
aimed at assessing the quality of remaining useful life
prediction algorithms. Specifically, subset “FD002”
was used, that contains data on synthetically mod-
elled degradation over six different operating condi-
tions (combinations of altitude, air speed and thrust
settings). The data simulates one measurement snap-
shot of each measured signal per flight to character-
ize an engine’s performance during that flight. For
the selected data set, 519 (split between training and
testing sets) different engines with different initial
health conditions were simulated over increasing syn-
thetic degradation, each engine is termed a simula-
tion ’run’. Our training data (marked for testing in
the original) contained only low degradation and no
failures, while the test set (marked for training in
the original) had progressed to failure conditions near
the end. Further, only the first half of each run was
used during model training to help prevent the model
learning the degradation.

In-Service Fault Case Study. This case study,
provided by Rolls-Royce, includes continuous data
from a twin engine aircraft across 116 flights at 1Hz.
This data, in contrast to the NASA data set, contains
engine dynamics and real world disturbances, but a
relatively low level of degradation and only one en-
gine. There is one known anomaly in this data (val-
idated by domain experts) as well as several other
potential anomalies. Only one engine from the air-
craft is used for modelling so to represent the real
aircraft avionics, which do not allow real-time access
to signals from both engines by design. The data pre-
sented here has been normalised and anonymised to
protect the interests of parties that supplied it.

7

5 Results and Discussion

5.1 NASA TurboFan Degradation

For each sensor signal in the data a model was trained
using the three “operating condition” signals as input
in order to ensure a model of nominal operation was
learnt. Since the data consists of one measurement
snapshot per flight, the window length was set to 1
i.e. only considering most recent data and without
information on engine physical dynamics.

The model was validated with a Mean Absolute
Error (MAE) of 0.029 +/- 0.034 (normalised range)
across all sensors on all the engines in the valida-
tion data. The growth in plant-model mismatch,
measured by Mean Standardised Euclidean Distance
(MSED), is due to the increase in degradation to-
wards the end of each run, as observed in Figure 3
A.

The high variance in the MSED signal (see Figure
3 A) is due to changes in the estimated confidence,
which is similar across all signal models due to them
using the same three operating condition inputs. The
operating conditions in the MSED troughs of Figure
3 B are different to those found in the training data
which generates a wide confidence interval (since the
model is less likely to be a good predictor) and there-
fore returns a small NSED even if the prediction error
is relatively high. Therefore, the model correctly in-
dicates that its predictions may be less accurate in
these regions.

In the test data, it is known that the Turbofan
degrades to a failure state at the end of each run. It is
therefore expected (and desirable) that the model will
better represent the data at the start of the run and
diverge from the plant behaviour at the end of each
run. In order to test this property, the distribution
of the MSED is compared for the 1st and 2nd half of
each run contained in the test data, for each turbofan.

If the system is functioning correctly, the aver-
age MSED over the second half of each run would
be greater indicating successful prioritisation of de-
graded (more unusual) data. The distributions were
compared using a Mann-Whitney U test (since there
is no guarantee of normality) under the null hypoth-
esis that both sets came from the same distribution.

The arithmetic means of the distributions were then
compared, a larger deviation from 0 indicating more
unusual data.
The two sets of distributions where determined to

have different shapes with a p value ≈ 0 (< 1e−308).
The mean of the earlier portion of the runs was 0.980
while the latter portion was 3.466 thus demonstrating
that the system correctly prioritises this data.
Not all runs are as clear-cut, however, as demon-

strated by the Mann-Whitney U test, the trend of
having higher distances near to faults is consistent.
Each model in this setup used 74,946 parameters

making it suitable for deployment in real-time on em-
bedded hardware (see Section 5.3).
These results illustrate that the modelling process

and prioritisation methodology are applicable to a
time series of static snapshot generated by a time-
varying process1. The model flexibility allows the
approach to be applied without structural changes to
dynamic data, as shown in the next section.

5.2 In-Service Fault Case Study

This case study concerns the detection of a real fault
that was detected in service and has been confirmed
by other health monitoring systems and domain ex-
perts at our industrial partner. The fault was de-
tectable in real-time using the current generation of
health monitoring techniques, but no warning was
given. The symptoms were noted as being most
prominent in the P30 reading and related systems.
The initial spike is most prominent, although not
unique in the dataset, and after the spike, engine be-
haviour changes in an anomalous way for the rest of
the flight, see Figure 4.
A model was trained using the scheme described

in Section 3.2.1 for each of the four signals shown in
Figure 4. The input to each model are the signals not
predicted for, see Appendix B for more details. Each
model has between 42,754, and 49,154 parameters.
This is a tunable parameter, but was only affected
by the number of input signals in this case.
The prediction performance was evaluated across

the test set in terms of Mean Absolute Error (MAE)

1The code to reproduce these models and results on the

NASA data-set is made available alongside this paper.

8

Figure 3: A: Distribution of MSEDs based on normalised position within test run demonstrating higher
mean and spread towards the end of runs where faults occur. B: Example distribution of MSED over a test
run demonstrating much higher values in the latter section where a fault occurs. C: Prediction for dominant
(highest SED) model during the run, changes in shaded 95% confidence interval demonstrate cause of MSED
oscillation is due to lack of confidence.

in the original signal range. This demonstrates that
the models performed well in terms of pure predictive
error:

• The N1 model achieved an MAE of 0.085 (% of
max speed)

• The P30 model achieved an MAE of 0.715psi

• The TGT model achieved an MAE of 1.754°K

• The T30 model achieved an MAE of 0.872°K

Several interesting properties of the system are ob-
served from the models’ signal predictions at the time
region around the known fault, see Figure 5. Firstly,
the fault, and the ensuing anomalous behaviour, is
clearly detected by the system. Secondly, the dom-
inant SED (highest magnitude) for this fault is ob-
served in the model predicting N1, despite the fault
being most prominent in the P30 signal. This in-
dicates that it is possible for the system to detect
anomalous behaviour in signals not being directly
predicted. Further, this indicates that the system

could monitor a wide range of signals with a small
number of models if the set of inputs and outputs is
well designed.

In contrast, the T30 model (which also uses P30 as
an input) is significantly more accurate in prediction,
and therefore rates the data as less anomalous. This
indicates that during the fault, T30 still maintains
the same relationship with P30, unlike the other sig-
nals. It also indicates that, while using a signal as a
model input may allow detection of faults that man-
ifest in that signal, it does not guarantee it.

Thirdly, the confidence intervals for all the mod-
els remain self-similar, with the exception of the P30
and TGT model during the initial spike. This indi-
cates that the training data covers a sufficient range
of operating conditions such that data in this flight is
expected to be accurately predicted. The large confi-
dence interval around the initial spike in these mod-
els demonstrates that this is the only section (from
those tested) that includes data outside previously
seen ranges. A large confidence interval may be an
indication that something unusual is occurring, how-

9

Figure 4: Normalised signals for the flight with the
confirmed fault. The highlighted region in the top
graph is zoomed in on in bottom graph. The spike
in the internal pressure signal (P30) in the bottom
graph is a known fault as is all behaviour afterwards.
The temperature T30 is an internal temperature de-
tected in the same locale as P30, N1 is the low speed
shaft, and TGT is the Turbine Gas Temperature.

ever, since these regions do not appear in training
data, it is not reasonable for the system to identify
them as highly anomalous unless the error is also very
high.

The fault shown in Figures 4 and 5 is the only fault
in the data that has been previously detected, how-
ever , the system was able to identify multiple poten-
tial precursor events that show the same signature as
the known fault, but without the initial spike. These
were detected in the flight prior, 3 flights prior, and
6 flights prior, to the known fault. These events were
not detected by current health monitoring systems,
however, comparison to the other (assumed correctly
functioning) engine on the aircraft, they present the
same fault signature [37]. This indicates that they
are highly likely to be related. The system’s ability
to detect them lends further credence to its effective-
ness. An example from the flight 3 flights before the
known fault is shown in Figure 6.

The MSED for the flight containing the known
fault (flight 113), as well as the following flights, are
observed to be distributed differently from the normal

Figure 5: Top 4 graphs: Prediction around the
fault, in descending order of average Standardised
Euclidean Distance (SED). Highlighted regions indi-
cates a 95% confidence interval (predicted). Bottom
graph: SED of each model around the fault.

10

Figure 6: Potential precursor fault, 3 flights before
known fault.

flights, see Figure 7. The precursor faults also show
a similar shaped distribution with a second peak at
MSED > 100. This indicates that the system is cor-
rectly prioritising unusual data on real flight data.
Flight 111 also demonstrates an unusual distribu-

tion; this is due to unusual behaviour in the shaft
speed signal which is not found in other flights. It is
unclear whether this is another fault or an unusual
but harmless behaviour. This highlights the bene-
fit of data prioritisation, over binary labelling since
an operator can review the data to make the final
determination on this sort of edge case.

5.3 Real-time Performance

The system was deployed on a Xilinx Zynq XC7Z020-
2CLG484I, an industrial grade device based on an
ARM Cortex A7 microprocessor, and on-wing sys-
tem target. In order to test real-time operation, the
models designed above were deployed to the device
and constrained to <= 20% of CPU time. A syn-
thetic data set of 25 signals over 100,000 time points
was sent to the device and an output buffer of size
50 windows was used so that the 50 most unusual
windows would be returned per ground data trans-
mission.

Figure 7: MSED Distribution for test flights. Known
fault has a large amount of mass at a much higher
MSED than other flights. Potential precursors show
smaller mass at similar MSED (> 100). Flight 111
also exhibits an odd profile due to irregularity in the
shaft speed signal not found in other flights.

The actual processing time for each run was
recorded; a run consisted of all currently uploaded
models being run once, the MSED being determined
and the output buffer being updated if necessary.
The other primary resource-intensive operation, in-
put retrieval and clean-up, was ignored since its com-
putational expense is heavily dependent on the data
source. Although, in our application its expense
was orders of magnitude smaller than that of a run
(∼ 25µs).

Figure 8 shows the distribution of run durations
when the 20 models used to evaluate the NASA data
set were used and Figure 9 when the 4 models used
to evaluate the In-Service Fault Case Study data set
were used.

Both histograms have a long tail caused by the
fact that the software runs on a non-real-time oper-
ating system (unpredictable system interrupts) which
is why they are curtailed at the 95th quantile. These
results show that the system is capable of operating
in real-time e.g. all 20 of the NASA models could
be run simultaneously on data at up to ∼ 50Hz and

11

Figure 8: 95th quantile of run durations for the
NASA TurboFan Degradation data. Smaller peak
likely caused by cache hits.

Figure 9: 95th quantile of run durations for the Fault
Case Study data. Smaller number of models and
overall smaller model size relative to NASA data lead
to the lower average run duration and likely the re-
versal of shape due to more cache hits.

the Fault Case Study models could be run at up to
∼ 500Hz, including all overhead.

6 Conclusion

We have presented a data-driven anomaly detection
system that runs in real-time on low-power embed-
ded hardware. The system prioritises data based on
the Maximum Standardised Euclidean Distance of a
flexibly sized ensemble of models. A flexible neu-
ral network design is presented that is used to build
models for the ensemble from any input-output set
and window length without the need for architecture
changes. The efficacy of the system has been demon-
strated on both real time-series and synthetic snap-
shot data, plus its real-time operation on embedded

hardware has been proven and characterised.
The system represents a practically realisable,

computationally inexpensive method for detection of
unusual behaviour in real-time. Further the architec-
ture is flexible and allows for deployment on new sys-
tems with minimal need for in-depth domain knowl-
edge.
The system will be deployed on-board in an up-

coming flight test program. Future work will focus
on analysis of the data returned by this test and how
the process described here-in can be applied to higher
frequency data.

7 Bibliography

References

[1] Y. G. Li and P. Nilkitsaranont. Gas turbine per-
formance prognostic for condition-based mainte-
nance. Applied Energy, 86(10):2152–2161, Octo-
ber 2009.

[2] Martha A. Zaidan, Andrew R. Mills, Robert F.
Harrison, and Peter J. Fleming. Gas turbine
engine prognostics using Bayesian hierarchical
models: A variational approach. Mechanical
Systems and Signal Processing, 70-71:120–140,
March 2016.

[3] Sandra Hofmann, Svetoslav Duhovnikov, and
Dominic Schupke. Massive Data Transfer From
and to Aircraft on Ground: Feasibility and Chal-
lenges. IEEE Aerospace and Electronic Systems
Magazine, 36(5):6–14, May 2021. Conference
Name: IEEE Aerospace and Electronic Systems
Magazine.

[4] Ningbo Zhao, Xueyou Wen, and Shuying Li. A
review on gas turbine anomaly detection for im-
plementing health management. In Turbo Expo:
Power for Land, Sea, and Air, volume 49682,
page V001T22A009. American Society of Me-
chanical Engineers, 2016.

[5] Edward Glaessgen and David Stargel. The
Digital Twin Paradigm for Future NASA

12

and U.S. Air Force Vehicles. In 53rd
AIAA/ASME/ASCE/AHS/ASC Structures,
Structural Dynamics and Materials Conference,
page 118. American Institute of Aeronautics
and Astronautics, 2012.

[6] Fei Tao, He Zhang, Ang Liu, and Andrew YC
Nee. Digital twin in industry: State-of-the-art.
IEEE Transactions on Industrial Informatics,
15(4):2405–2415, 2018. publisher: IEEE.

[7] Hamid Asgari, XiaoQi Chen, and Raazesh Sain-
udiin. Modelling and simulation of gas turbines.
International Journal of Modelling, Identifica-
tion and Control, 20(3):253–270, 2013. pub-
lisher: Inderscience Publishers Ltd.

[8] V. Panov. Gasturbolib: Simulink library for gas
turbine engine modelling. In Turbo Expo: Power
for Land, Sea, and Air, volume 48821, pages
555–565, 2009.

[9] D. A. Nix and A. S. Weigend. Estimating
the mean and variance of the target probabil-
ity distribution. In Proceedings of 1994 IEEE
International Conference on Neural Networks
(ICNN’94), volume 1, pages 55–60 vol.1, June
1994.

[10] S. Willskyi. A Survey of Design Methods for
Failure Detection in Dynamic Systems*.

[11] Paul M. Frank and Xianchun Ding. Frequency
domain approach to optimally robust resid-
ual generation and evaluation for model-based
fault diagnosis. Automatica, 30(5):789–804, May
1994.

[12] Erik Frisk and Lars Nielsen. Robust resid-
ual generation for diagnosis including a refer-
ence model for residual behavior. Automatica,
42(3):437–445, March 2006.

[13] Tom Brotherton, Al Volponi, Rob Luppold, and
Donald L. Simon. eSTORM: Enhanced Self Tun-
ing On-board Real-time Engine Model. Tech-
nical report, INTELLIGENT AUTOMATION
CORP POWAY CA, January 2003. Section:
Technical Reports.

[14] Takahisa Kobayashi and Donald L. Simon. Hy-
brid Kalman Filter Approach for Aircraft Engine
In-Flight Diagnostics: Sensor Fault Detection
Case. pages 745–755. American Society of Me-
chanical Engineers Digital Collection, Septem-
ber 2008.

[15] M. Amozegar and K. Khorasani. An ensemble
of dynamic neural network identifiers for fault
detection and isolation of gas turbine engines.
Neural Networks, 76:106–121, April 2016.

[16] Shisheng Zhong, Dan Liu, Lin Lin, Minghang
Zhao, Xuyun Fu, and Feng Guo. A novel
anomaly detection method for gas turbines us-
ing weight agnostic neural network search. In
2020 Asia-Pacific International Symposium on
Advanced Reliability and Maintenance Modeling
(APARM), pages 1–6. IEEE, 2020.

[17] Weizhong Yan and Lijie Yu. On accurate and re-
liable anomaly detection for gas turbine combus-
tors: A deep learning approach. arXiv preprint
arXiv:1908.09238, 2019. tex.ids: yanAccu-
rateReliableAnomaly2019a.

[18] Weizhong Yan. Detecting gas turbine combustor
anomalies using semi-supervised anomaly detec-
tion with deep representation learning. Cognitive
Computation, 12(2):398–411, 2020. tex.ids: yan-
DetectingGasTurbine2020a publisher: Springer.

[19] Geunbae Lee, Myungkyo Jung, Myoungwoo
Song, and Jaegul Choo. Unsupervised anomaly
detection of the gas turbine operation via con-
volutional auto-encoder. In 2020 IEEE Inter-
national Conference on Prognostics and Health
Management (ICPHM), pages 1–6. IEEE, 2020.

[20] Jiao Liu, Jinfu Liu, Daren Yu, Myeongsu Kang,
Weizhong Yan, Zhongqi Wang, and Michael G.
Pecht. Fault detection for gas turbine hot com-
ponents based on a convolutional neural net-
work. Energies, 11(8):2149, 2018. publisher:
Multidisciplinary Digital Publishing Institute.

[21] Hui Luo and Shisheng Zhong. Gas turbine
engine gas path anomaly detection using deep

13

learning with Gaussian distribution. In 2017
Prognostics and System Health Management
Conference (PHM-Harbin), pages 1–6. IEEE,
2017.

[22] Praween Amontamavut, Yuki Nakagawa, and
Eiichi Hayakawa. Separated Linux process log-
ging mechanism for embedded systems. In 2012
IEEE International Conference on Embedded
and Real-Time Computing Systems and Appli-
cations, pages 411–414. IEEE, 2012.

[23] Douglas H. Summerville, Kenneth M. Zach, and
Yu Chen. Ultra-lightweight deep packet anomaly
detection for Internet of Things devices. In 2015
IEEE 34th international performance computing
and communications conference (IPCCC), pages
1–8. IEEE, 2015.

[24] Maroua Ben Attia, Chamseddine Talhi, Abdel-
wahab Hamou-Lhadj, Babak Khosravifar, Vin-
cent Turpaud, and Mario Couture. On-device
anomaly detection for resource-limited systems.
In Proceedings of the 30th Annual ACM Sym-
posium on Applied Computing, pages 548–554,
2015.

[25] Gianluca Furano, Gabriele Meoni, Aubrey
Dunne, David Moloney, Veronique Ferlet-
Cavrois, Antonis Tavoularis, Jonathan Byrne,
Léonie Buckley, Mihalis Psarakis, Kay-Obbe
Voss, and Luca Fanucci. Towards the Use of
Artificial Intelligence on the Edge in Space Sys-
tems: Challenges and Opportunities. IEEE
Aerospace and Electronic Systems Magazine,
35(12):44–56, December 2020. Conference
Name: IEEE Aerospace and Electronic Systems
Magazine.

[26] Varun Chandola, Arindam Banerjee, and Vipin
Kumar. Anomaly detection: A survey. ACM
computing surveys (CSUR), 41(3):1–58, 2009.
publisher: ACM New York, NY, USA.

[27] Nesma M. Rezk, Madhura Purnaprajna, Tomas
Nordström, and Zain Ul-Abdin. Recurrent Neu-
ral Networks: An Embedded Computing Per-
spective. IEEE Access, 8:57967–57996, 2020.
arXiv: 1908.07062.

[28] Nitish Srivastava, Geoffrey Hinton, Alex
Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. Dropout: a simple way to
prevent neural networks from overfitting.
The journal of machine learning research,
15(1):1929–1958, 2014. publisher: JMLR. org.

[29] Forrest N. Iandola, Song Han, Matthew W.
Moskewicz, Khalid Ashraf, William J. Dally, and
Kurt Keutzer. SqueezeNet: AlexNet-level accu-
racy with 50x fewer parameters and< 0.5 MB
model size. arXiv preprint arXiv:1602.07360,
2016.

[30] Diederik P. Kingma and Jimmy Ba. Adam:
A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

[31] Liyuan Liu, Haoming Jiang, Pengcheng He,
Weizhu Chen, Xiaodong Liu, Jianfeng Gao, and
Jiawei Han. On the variance of the adap-
tive learning rate and beyond. arXiv preprint
arXiv:1908.03265, 2019.

[32] Joseph Redmon, Santosh Divvala, Ross Gir-
shick, and Ali Farhadi. You Only Look
Once: Unified, Real-Time Object Detection.
arXiv:1506.02640 [cs], May 2016. arXiv:
1506.02640 version: 5.

[33] Yarin Gal and Zoubin Ghahramani. Dropout
as a Bayesian Approximation: Represent-
ing Model Uncertainty in Deep Learning.
arXiv:1506.02142 [cs, stat], October 2016.
arXiv: 1506.02142.

[34] R. De Maesschalck, D. Jouan-Rimbaud, and
D. L. Massart. The Mahalanobis distance.
Chemometrics and Intelligent Laboratory Sys-
tems, 50(1):1–18, January 2000.

[35] Mart́ın Abadi, Paul Barham, Jianmin Chen,
Zhifeng Chen, Andy Davis, Jeffrey Dean,
Matthieu Devin, Sanjay Ghemawat, Geoffrey
Irving, and Michael Isard. Tensorflow: A sys-
tem for large-scale machine learning. In 12th
symposium on operating systems design and im-
plementation, pages 265–283, 2016.

14

[36] A. Saxena, K. Goebel, D. Simon, and N. Ek-
lund. Damage propagation modeling for aircraft
engine run-to-failure simulation. In 2008 Inter-
national Conference on Prognostics and Health
Management, pages 1–9, October 2008.

[37] William Jacobs, Huw Edwards, Visakan
Kadirkamanathan, and Andrew Mills. Inter-
engine variation analysis for health monitoring
of aerospace gas turbine engines. PHM Society
European Conference, 4(1), July 2018. Number:
1.

A Appendix 1: Network Re-

production

The loss function (Equation 9) was simplified and
reordered for batch-wise implementation since the
model’s confidence output α = log(σ) rather than
σ:

LL =
1

2

N
∑

n=1

(yn − µ

eαn

)2

−
N
∑

n=1

αn −
1

2
log(2π) (11)

where N is the batch size. The final term is constant
and could therefore be dropped for computational ef-
ficiency, although it was kept during our work to keep
the meaning of the equation intact.
Important network hyper-parameters not men-

tioned elsewhere:

• LReLU α = 0.3

• Dropout Rate = 0.5

• Convolutional layers

– Each used 64 filters in the NASA study

– Each used 32 filters in the Fault Case Study

∗ An optimisation found to cause min-
imal performance loss while reducing
computation

– Padding irrelevant for 1x1 blocks, “same”
used internally

– No padding for Temporal and Spatial Fold
blocks

∗ Used to reduce the size of the input

∗ Equivalent to “valid” padding

• Each dense layer had 64 hidden units for the
signals tested

• Early stopping patience was 10 epochs without
improvement

• RADAM parameters (adjusted based on valida-
tion data for each signal)

– Learning rate 1e− 3 to 1e− 5

– Min learning rate 1e− 5 to 1e− 7

– Total steps 50, 000 to 200, 000

– Warm-up proportion 0.1 to 0.5

An example implementation of the architecture
used on our testing for 7 inputs, looking at 10 seconds
of data per window is shown in Figure 10.

B Appendix 2: Notes on Data

Preprocessing

The same process was applied to each dataset:

• Data was scaled to the range [0, 1]

– Based on 2% to 98% quantiles in the train-
ing set

C Appendix 3: In-Service

Fault Case Study

The four models were:

• P30 (internal pressure) from outside tempera-
ture, outside pressure, and N1

• TGT (Turbine Gas Temperature) from outside
temperature, outside pressure, P30, and N1

• T30 (internal temperature) from outside temper-
ature, outside pressure, P30, and N1

15

Figure 10: Neural network architecture with 7 input
signals and a 10 second window.

• N1 (speed of low speed shaft) from outside tem-
perature, outside pressure, and P30

16

	1 Abstract
	2 Introduction
	3 Methods
	3.1 Anomaly Detection System
	3.2 Data modelling
	3.2.1 Neural Network Design
	3.2.2 Neural Network Optimisation
	3.2.3 Model and Hyper-parameter Selection
	3.2.4 Model Comparison and Data Prioritisation
	3.2.5 Real-time Implementation

	4 Data Sets
	5 Results and Discussion
	5.1 NASA TurboFan Degradation
	5.2 In-Service Fault Case Study
	5.3 Real-time Performance

	6 Conclusion
	7 Bibliography
	A Appendix 1: Network Reproduction
	B Appendix 2: Notes on Data Preprocessing
	C Appendix 3: In-Service Fault Case Study

