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Time-Domain Wideband DOA Estimation under the

Convolutional Sparse Coding Framework
Zhengyu Wan and Wei Liu Senior Member, IEEE

Abstract—The wideband direction of arrival (DOA) estimation
problem can be formulated into a narrowband form by applying
discrete Fourier Transform (DFT) to sensor measurements; how-
ever, a large number of temporal snapshots are required in order
to meet the narrowband assumption in the frequency-domain.
To reduce the number of snapshots required, a convolutional
sparse coding (CSC) based wideband signal model is proposed
for direct time-domain DOA estimation, and a group sparsity
based minimization problem is formulated. Simulation results
indicate that the proposed time-domain CSC (TD-CSC) based
method has a better performance than the frequency-domain
method, but with a higher computational complexity.

Index Terms—wideband array, DOA estimation, convolutional
sparse coding, time domain.

I. INTRODUCTION

Direction of arrival (DOA) estimation has various applica-

tions such as radar, sonar and wireless communications [1].

Many DOA estimation algorithms have been proposed based

on the narrowband signal model, where array measurements

can be simply expressed by direct multiplication of the steering

matrix of the array and the baseband signal vector in addition

to additive noise [2]–[5].

Those methods cannot be applied to wideband signals

directly, since the array output for wideband signals is obtained

through a convolution process [6], [7]. For such a wideband

DOA estimation problem, a common approach is applying

discrete Fourier transform (DFT) to those measurements, and

decomposing wideband signals into different frequency bins,

where each bin provides a similar model as the narrowband

one, when the number of DFT points is sufficiently large [8].

Under such a framework, many subspace based methods for

wideband DOA estimation have been proposed, such as in-

coherent subspace method (ISM) [9], [10], coherent subspace

method (CSM) [11], and test of orthogonality of projected

subspaces (TOPS) [12] as well as their variants [13].

Most recently, compressive sensing (CS) has been exploited

for narrowband DOA estimation as the signal is sparse in the

spatial domain [4], [5], [14]. These CS based algorithms can

be extended to wideband by applying it to each frequency

bin separately. As the spatial support of incident signals over

all frequency bins is identical, joint group sparsity has been

introduced for the wideband signal model [15]–[17], which

performs more effectively.
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However, those aforementioned methods are based on the

assumption that at each frequency bin, the signal can be

treated as narrowband, which means the number of DFT

points should be large enough; moreover, for many DOA

estimation methods to work, especially the subspace based

one, the number of snapshots at each frequency bin should be

large enough too. As a result, these frequency-domain methods

have to rely on a sufficiently large number of snapshots in the

time-domain. With a limited number of temporal snapshots,

these methods cannot work properly. Thus, in this letter, a

wideband DOA estimation method still working effectively for

a small number of snapshots is proposed. Unlike those popular

frequency-domain methods, the proposed one works on the

time-domain data directly based on the idea of convolutional

sparse coding (CSC) [18]–[20], where the wideband DOA es-

timation problem is fomulated into an l2,1 norm minimization

problem. Compared to frequency-domain methods [15], the

proposed one has a better estimation result when the number

of snapshots is small. In addition, Cramer-Rao bound for the

proposed time-domain model is derived.

The remaining part is structured as follows. The wideband

signal moldel with the CSC framework is described in Sec. II.

The proposed wideband DOA estimation method and its CRB

are presented in Sec. III-A. Simulation results are provided in

Sec. IV and conclusions are drawn in Sec. V.

II. WIDEBAND SIGNAL MODEL

Assume that there are K wideband signals sk(t) from

directions θk, k = 1, 2, ...,K, respectively, impinging on a

uniform linear array (ULA) of M sensors with an adjacent

sensor spacing d. The corresponding received signal at the

m-th sensor is expressed as

xm(t) =

K
∑

k=1

δ(t− τm,θk) ∗ sk(t) + nm(t), (1)

where nm(t) is noise, c is signal propagation speed, and

τm,θk = md sin θk
c is the time delay of the k-th signal with

DOA θk at the m-th sensor, m ∈ {0, ...,M − 1}, with the

zeroth sensor regarded as the reference one.

With a sampling frequency fs, the received signal at the

m-th sensor can be expressed in a discrete convolution form

[6], given by

xm[p] =

K
∑

k=1

(

+∞
∑

i=−∞

ai,m,θksk[p− i]) + nm[p], (2)

where sk[p] represents the p-th snapshot of the k-th source

signal, and ai,m,θk = sinc(i − τm,θk/Ts). In (3), Ts is its
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sampling period, and sinc() is the normalized sinc function,

defined as sinc(v) = sin(πv)/(πv).

If d = λmin/2, where λmin is the wavelength correspond-

ing to the maximum frequency of the signal and we sample the

signal at the Nyquist rate, i.e. the sampling period Ts =
λmin

2c ,

then we have

τm,θk

Ts
= m sin θk, ai,m,θk = sinc(i−m sin θk), (3)

For convenience of modelling in the following steps, the

infinite impulse response in (2) is truncated to the range from

−I to I , where I is a large enough number. Then, (2) can be

approximated with a small error, as

xm[p] ≈

K
∑

k=1

(

I
∑

i=−I

ai,m,θksk[p− i]) + nm[p]. (4)

Considering P snapshots for the received signal xm[p], p ∈
{0, ..., P − 1}, the required snapshots range of source signal

sk[p] for xm[0] is −I < p < I , while for xm[P − 1], the

required snapshots range of source signal sk[p] is P − 1 −
I < p < P − 1 + I . As a result, to calculate all values of

xm[p] for all 0 ≤ p ≤ P − 1, the required range of sk[p] is

−I < p < P−1+I , and the total number of required different

snapshots for sk[p] is P + 2I .

Therefore, constructing source signal vectors

sk = [sk[−I], ..., sk[P − 1 + I]]T , (5)

and the measurements vector at the m-th sensor xm

xm = [xm[0], ..., xm[P − 1]]T , (6)

(6) can be written in a convolutional sparse coding (CSC) form

[18]–[20], as

xm =
K
∑

k=1

Cm,θksk + nm, (7)

where Cm,θk is a P × (P + 2I) banded and circulant matrix,

given by

Cm,θk =







aI,m,θk · · · a−I,m,θk · · · 0
. . .

. . .
...

0 · · · aI,m,θk · · · a−I,m,θk






(8)

and nm = [nm[0], ..., nm[P − 1]]T is the noise vector at the

m-th sensor.

Furthermore, (7) can be reformulated in a more compact

form as

xm = Cms + nm, (9)

where

s = [sT1 , ..., sTK ]T ,

Cm = [Cm,θ1 , ...,Cm,θK ].
(10)

III. PROPOSED METHOD AND CRB

A. Proposed method

Unlike those traditional CSC model, the signal vector sk
in DOA estimation is not sparse in the time-domain, and

correspondingly, s is not sparse either. However, the signals are

indeed sparse in the spatial domain, i.e., they only come from

a rather limited number different directions [5]. Based on this

spatial sparsity concept, to construct a spatially sparse source

vector, we divide the whole admissible DOA range into G grid

points with G ≫ K, and for each direction θg, g ∈ {1, 2, ...G}
we can construct the corresponding matrix Cm,θg , and form

an overcomplete matrix

C̃m = [Cm,θ1 , ...,Cm,θG ]. (11)

Then, the signal vector s is extended to its corresponding

G(P + 2I)× 1 sparse vector

s̃ = [sT1 , ..., sTG]
T , (12)

where only K groups out of its G groups corresponding to

the true incident angles are supposed to be non-zero. Finally,

the array output at the m-th sensor is given by

xm = C̃ms̃ + nm. (13)

For M sensors in total, we have

x = [xT0 , ..., xT
M−1]

T = C̃s̃ + n,

C̃ = [C̃
T

0 , ..., C̃
T

M−1]
T ,

n = [nT
0 , ..., nT

M−1]
T .

(14)

Now, since signal s̃ is sparse, the wideband time-domain

based DOA estimation problem can be formulated as a LASSO

problem [21],

min
s̃

‖C̃s̃ − x|22 + γ‖s̃‖1, (15)

where ‖ · ‖1 represents l1 norm of its variables to enforce its

sparsity and γ is the penalty term.

In addition, the signals s̃ has a group sparsity structure,

where all the entries within a group are all zeros if there is no

signal coming from that direction. Thus, the DOA estimation

problem can be further formulated as a group LASSO problem

[22], represented by the l2,1 norm, given by

min
s̃

‖C̃s̃ − x‖22 + γ‖s̃‖2,1 (16)

and the l2,1 norm ‖ · ‖2,1 is defined as

‖s̃‖2,1 :=

G
∑

g=1

‖sg‖2, (17)

where sg has been defined in (12).

Thus, the wideband DOA estimation problem can be for-

mulated as

min
s̃

γ

G
∑

g=1

‖sg‖2 + ‖C̃s̃ − x‖22, (18)

This problem is convex and can be solved by convex

optimization methods directly, such as the FISTA algorithm,
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which is an accelerated version of the proximal gradient

method [23]–[26]. A summary of FISTA can be found in the

following Algorithm Summary part.

Algorithm Summary (FISTA)

Input: C̃, x, ρ, λ,
Output: s̃ (reconstructed signal).

Initialization: Set s̃0 as a zero vector, b̃
0
= s̃0.

β0 = 1. Defining G groups of s̃,
General steps: for q=0, ..., Q
1) Calculate gradient as

Gradient:f(b̃) = ∇F (b̃
q
) = 2C̃

H
(C̃b̃

q − x),
2)For i = 1, ..., G,

Find s̃
q+1
i as

s̃
q+1
i = (bq

i − λf(bq
i ))max(1− ρλ

‖b
q
i
−λ∇f(b

q
i
)‖2

, 0),

where si is subvector of s̃ indexed by i.

3) Update: βq+1 =
1+

√
1+4(βq)2

2
.

bq+1 = s̃q+1 + βq−1
βq+1 (̃s

q+1)− s̃q .

4) q=q+1.

B. Cramer-Rao Bound

Based on the new model, the CRB for time-domain wide-

band DOA estimation is derived. From (14), the probability

density function is expressed as

p(x;Φ) =

MP−1
∏

n=0

1

2πσ2
e(xn−Cnsn)

2/2σ2

, (19)

where Cn and xn represent the n-th row of C and x, separately.

The unknown parameter vector of arriving angles, magnitude,

phase difference and noise level can be represented as

Φ = [θ1, ..., θK , sT , σ2], (20)

For deterministic but unknown Cs, the Fisher information

matrix (FIM) F is defined as

F(Φ) = E{
∂ln2p(x;Φ)

∂Φ∂ΦT
}, (21)

The {i,j}-th entry of the FIM F is given by [27]

Fi,j =
[∂µ(Φ)

∂Φi

]T

Γ−1(Φ)
[∂µ(Φ)

∂Φj

]

+
1

2

[

Γ−1(β)
∂Γ−1(Φ)

∂Φi
Γ−1(Φ)

∂Γ−1(Φ)

∂Φj

]

,

(22)

where Γ−1(Φ) = 1
σ2 IMP , IMP is the identity matrix, (·)−1

is the matrix inverse operator, and µ(Φ) = Cs. Since µ(Φ)
is independent with the noise level, we have

F =

[

F̃ 0
0 0

]

+

[

0 0
0 Fσ

]

, (23)

where the DOA related block is in F̃ and its {i, j}-th entry is

expressed as

F̃i,j =
[∂µ(Φ)

∂Φi

]T

Γ−1(Φ)
[∂µ(Φ)

∂Φj

]

, (24)

with (·)−1 being the matrix inverse operator. As the FIM is

block diagonal, Fσ has no effect on the CRB result of DOAs.

Thus, CRB of DOAs can be determined by the inverse of F̃.

Computing the derivatives of µ(Φ) with respect to Φ, we have

D =
∂µ(Φ)

∂Φ
= [G,∆,0],

G = [cθ1s1, ..., cθksK ], cθK =
∂Cθk

∂θk
,

∂sinc(i−m sin θk)

∂θk
=

m sin(π(i−m sin θk)) cos θk
π(i−m sin θk)2

−
m cos(π(i−m sin θk)) cos θk

i−m sin θk
,

Cθk = [CT
0,θk

, ...,CT
M−1,θk

]T ,

∆ =
∂µ(Φ)

∂s
= C.

(25)

Then, F̃ can be given by

F̃ =
1

σ2
DHD, (26)

The CRB associated with the DOA of signals can be

obtained by the diagonal elements of the inverse F̃. However,

in the proposed signal model, it is assumed that I >> P and

K(P +2I) > MP , which leads to a singular and uninvertible

FIM [28]. Thus, CRB is approximated by the Moore–Penrose

pseudoinverse of FIM in steand of its inverse [29].

IV. SIMULATIONS

In this section, performance of the proposed time-domain

CSC based method (TD-CSC) is studied and compared with

the traditional frequency-domain method in [15] for wideband

DOA estimation. A ULA of M = 7 sensors is used with

d = λmin/2 and sampling frequency Ts = λmin/(2c).
The steering matrix is formed based on a step size of 0.5◦,

and the truncated convolution filter for generating wideband

signals has a value of I = 100. The normalized frequency of

wideband signals ranges from 0.5π to π, and for the traditional

method, P -point DFT is applied and the normalized frequency

range of impinging signals covers the frequency bin range

of U = [P/4 + 1, P/2 − 1] (the same settings as in [15]).

Note that with P time-domain snapshots and a P -point DFT,

for the traditional method, there is only one data sample for

each frequency bin. Both methods are run with FISTA [24].

The FISTA setting for both the proposed and the traditional

methods are the same, with the number of iterations fixed

at R = 300, and stepsize set as 1/(2λmax(C̃
H

C̃)), where

λmax(·) is the maximum eigenvalue of its variable and C̃

represents the overcomplete dictionary of sparse signals.

First, performances of the two methods are evaluated with

different SNR values ranging from 0 dB to 20 dB in terms

of the root mean square error (RMSE). P = 32 temporal

measurements are collected, with two signals located at −10◦

and 10◦ with equal signal power, and the value I to construct

time-domain steering matrix C in the algorithm is set as 50.

The results are shown in Fig. 1a, with each point obtained by

averaging over 100 trials. It can be observed that, although
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Figure 1: RMSE results versus SNR and number of snapshots.
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Figure 2: Spatial spectrums of the two methods with 8

snapshots.

both methods have achieved more accurate results with in-

creasing SNR, the proposed method consistently outperforms

the traditional one.

Next, the impact of the number of snapshots P is consid-

ered. The SNR is fixed at 20 dB while the number of snapshots

ranges from 8 to 112. As shown in Fig. 1b, the performance of

the proposed time-domain method is acceptable even with only

8 snapshots, while the traditional frequency-domain method

leads to a rather high RMSE initially (about 11◦). Moreover,

increasing the number of snapshots can enhance the estimation

performance of both methods, and with around 64 snapshots,

both methods have reached almost the same performance.

Now we examine the case with only 8 snapshots in a bit

more detail. An example of estimated spatial spectrum in

one run is given in Fig. 2, which shows that although the

proposed method maintains some error with only 8 snapshots,

the traditional method has effectively failed. Note that the

spacing between the two sources is 20 degrees, while the

RMSE has been about 11 degrees for each source according

to Fig. 2.

Then, we evaluate the computational complexity and the

number of parameters involved in both methods. As listed in

Table 1, the number of parameters to be estimated for the

proposed method is much more than that for the traditional

method since U ≈ P/4 in this simulation example. As a result,

we can find that the running time of the proposed method

is much longer. In addition, it is clear that the number of

parameters to be estimated for the time-domain method is not

only related to the number of snapshots, but also the value of

I to construct the circulant matrix C.

The performance of the proposed method with respect to

the value of I for constructing C in the solution is presented

in Fig. 3a. All settings are the same as in the first simulation

except for I and SNR is 20 dB. As shown, although the RMSE

decreases with the value of I , the effect of I on RMSE can

Table I: Running times of the proposed method and the

traditional method.

Computational time (sec)

Snapshots The proposed method The traditional method

112 53.52 19.35

64 25.36 4.66

16 4.64 0.64

Number of parameters to be estimated
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Figure 3: The effect of I and the underdetermined case.

be ignored for a value larger than about 80.

Finally, we examine whether the proposed method can deal

with the underdetermined case or not. For underdetermined

DOA estimation, a sparse array is normally employed and here

we consider a minimum redundancy array (MRA) [1] and the

results with P = 64 snapshots are shown in Fig. 3b. It can

be seen that although there are only 4 sensors, the proposed

method can identify all the five sources successfully. This is an

interesting result, as no co-array operation is employed in the

process, which is different from the frequency-domain method

in [15].

V. CONCLUSIONS

A wideband DOA estimation method called TD-CSC based

on the time-domain model directly has been proposed. The

wideband DOA estimation problem was formulated in a CSC

form first, and the l2,1 norm was then employed to enforce

spatial sparsity. Unlike those existing frequency-domain based

methods, no additional Fourier transform operation is needed

by the proposed method, which means that even a small

number of temporal snapshots are sufficient for DOA esti-

mation. Simulation results shows that the proposed method

outperforms the frequency-domain based method in terms of

RMSE when the number of snapshots is small, but at a cost

of extra computational time.
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