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Abstract

Materials combining efficient thermal insulation and high mechanical properties

are needed in many areas of technology. Various aerogels provide a convenient

design framework for thermal insulators, but they are often brittle. Furthermore,

the spectrum of advanced properties is constantly expanding while requirements

to the degree of control of the three‐dimensional gel‐forming network is con-

stantly increasing. Here, we report on biomimetic aramid nanofibers aerogels

with the structure replicating articular cartilage, prepared by supercritical drying

of 3D networks held together by hydrogen bonds. Owing to the branching

morphology of the nanofibers, the three‐dimensional nanoscale networks with

extensive percolation and high interconnectivity can be obtained. The aerogels

showed high porosity with an average open pore size of 21.5 nm and corre-

spondingly low specific density of 0.0081 g/cm3. The aerogels also possess a high

compressive strength of 825 kPa at a strain of 80%. Due to the unique aramid

chemistry of the parent nanofibers, aramid aerogels combine low thermal con-

ductivity of 0.026W/m·K with high thermal stability up to 530°C, which is

unusually high for polymeric and composite materials of any type, opening a

broad range of applications from electronics to space travel.
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1 | INTRODUCTION

Aerogels are known for large specific surface area, high

porosity, low density, and low thermal conductivity. These

properties enabled multiplicity of applications in thermal

insulation,1–5 optics,1,6,7 acoustics,8,9 and biosensing,10 to

name a few. Some of these applications represent iconic

marks of technological progress, such as capture and return

to Earth interstellar particles.11–13 In the last 5 years, there is

a resurgence of aerogel research related to the emergence of

aerogels from premade nanoscale components, such as car-

bon nanotubes,14–16 graphene oxide,17–20 silicon oxide,21–24

boron nitride,3 and cellulose.25–27 While a variety of hydro-

gels and aerogels is increasing, so do the property
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requirements for them. For instance, the properties set to

structural thermal insulators may include high toughness,

resilience to humidity, high temperature, and biological

erosion. Existing hydrogels based on some nanostructures

may possess these attributes while others may not. Fur-

thermore, there is a distinct need to control and improve the

interconnectivity of the three‐dimensional networks produ-

cing gels. The ability of the nanoscale components to form

strong junctions with one another is essential to prevent

their collapse28–30 into random agglomerates during both

solvent exchange, supercritical drying,31,32 or freeze‐

drying.33–35 Both the need to diversify aerogel properties and

to control their morphology better necessitates the develop-

ment of new materials platforms for their preparation.36–38

Here, we studied the aerogels made from branched

aramid nanofibers (BANFs) derived from Kevlar™ poly-

mer, known for its high strength, stiffness, and toughness.

The mechanical properties of nanofibers and, in parti-

cular, their connections with each other are essential both

for prevention of network collapse under high capillary

pressure (see Supporting Information) characteristic of

multiple steps of aerogel preparations and for diversifica-

tion of their properties. Improvements of the stiffness and

the strength of the three‐dimensional skeleton of the

aerogel are the aerogel design strategy in this project. Im-

portantly, it is not the mechanics of the nanoscale com-

ponents that matter in this case: mechanical properties of

individual nanoscale carbon components are exceptional,

but those of aerogels from graphene,29,39,40 graphene

oxide,41,42 and carbon nanotubes14,28,38,43 are not. It is the

combined strength of the junctions and the stiffness of the

nanofibers forming the pore walls that are essential here.

Therefore, we decided to utilize BANFs38,44 to reinforce

the aerogel network via the facile formation of multiple

junctions between the nanofibers enabled by this nanoma-

terial. As confirmed recently by the application of graph

theory on the nanofiber networks from BANFs and collagen,

they reveal percolated network structure replicating the na-

nofiber network of cartilage,45 which is known for its ex-

ceptional mechanical properties. In addition to the high

stiffness of the aramid nanofibers,46 thinner segments of the

branches can wrap around the thicker ones, substantially

strengthening the contacts that are also taking place in many

biological tissues based on nanofibers.47 At the molecular

scale, multiple and reconfigurable hydrogen bonds48,49 at the

junctions provide strong connections between BANFs re-

plicating, in fact, nanoscale junctions known from biol-

ogy.50,51 The BANF aerogel obtained has a density of

0.0081 g/cm3 while its specific compressive strength reaches

up to 102MPa·cm3/g, which is much higher than that of

other aerogels. Additionally, the BANF‐based aerogel

showed large porosity, high special surface area, good ther-

mal stability, and excellent thermal insulation.

2 | MATERIALS AND
EXPERIMENTAL

2.1 | Materials

Para‐aramid fibers (Kevlar 49) were purchased from

E. I. Du Pont Company and used without further

purification or bleaching; they were subjected to cut-

ting and shredding processes before dissolution. The

solvents used in this study, dimethyl sulfoxide

(DMSO), acetonitrile, ethanol, n‐heptane, deionized

water, and other solvents, were purchased from Tianjin

Fuyu Fine Chemical Co. Ltd. A supercritical CO2 re-

actor capable of extraction was purchased from Harbin

Guangming Gas Company.

2.2 | BANF dispersion preparation

The fabrication of aramid nanofiber aerogel (BANF

aerogel) starts with the preparation of a BANF disper-

sion. Initially, Kevlar 49 fibers were shredded into small

pieces. Subsequently, the shredded Kevlar 49 fibers (30 g)

and deionized water (30 ml) were added to DMSO (3 L)

and stirred vigorously for 1 day at ambient temperature,

and then suitable KOH solution was added and stirred

for another 6 days. After stirring and swelling, the BANF

dispersion was completed.

2.3 | Synthesis of wet gels

The dark brown BANF dispersion was transferred to a

100‐ml glass bottle and stirred for 5 min. Then various

quantities of acetonitrile were slowly added to the BANF

dispersion until their mass fractions of BANF dispersion

in the final mixtures were 45, 50, and 55 wt%, respec-

tively. The aerogel made from these three wet gel sam-

ples are labeled as BANF aerogel 45 wt%, BANF aerogel

50 wt%, and BANF aerogel 55 wt%, respectively. The

mixtures were stirred for 5 min and transferred to 50‐ml

centrifuge tubes and were allowed to stand for 30 min to

create the porous structure.

To improve the bonding network of BANFs, as‐

made wet gels were aged for 24 h.52,53 After prepara-

tion, the gelation solvents were replaced with other

solvents, such as DI water, n‐heptane ethanol, and

DMSO, to strengthen the BANF network. Although

there was a solvent‐dependent shrinkage of the BANF

hydrogels (Figures S7–S9), in all cases, the aerogels

obtained after supercritical drying possessed open

porous structures formed by a fibrillar network

(Figures 1 and S1–S3).
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2.4 | Synthesis of BANF aerogel

While the wet gel was standing, some stock solution pre-

cipitated from the solid phase. To facilitate the wet gel for-

mation of stable supporting skeletons, the wet gel block was

maintained in a stock solution at ambient temperature for

24 h. After aging, the wet gel block was immersed in 2‐L

fresh n‐heptane to exchange the DMSO from the wet gel.

Magnetic stirring was used to accelerate the extraction pro-

cess. Six hours later, most of the DMSO and other solvents

were removed. The removal of high surface tension of so-

lution in wet gel block resulted in a more stable structure.

Finally, the gel was dried using supercritical CO2, and the

BANF aerogel monolith was investigated. The results are

summarized in Figures S10–S13.

2.5 | Characterization

Surface and internal morphologies of the aerogels were

observed by an S‐4800 Field Emission Scanning Electron

Microscope. All the samples were treated with spray‐gold

before scanning. To investigate the microstructure, samples

were observed with a Tecnai G2 F30 field emission high‐

resolution transmission electron microscope. Furthermore,

the nanoporous structures of the aerogels were studied by

N2 adsorption–desorption measured at 77 K using a TriStar

II 3020M analyzer. The pore size distribution (PSD) and

pore parameters of the aerogels were calculated by the

Brunauer–Emmett–Teller (BET) method.

Chemical bonds were confirmed using an FTIR

Nexus 670 spectrometer (Nicolet) in the spectral range of

600–4000 cm−1. Thermogravimetric analysis was con-

ducted using 851e (Bruker) to study the pyrolysis

temperature of the aerogels. Samples were scanned as the

temperature was raised from 30°C to 1000°C at a rate of

10°C/min in a nitrogen atmosphere. The apparent den-

sities of a series of BANF aerogels were determined by

measuring the weight and regular cylinder volume. The

weight of the sample was measured by an analytical

balance. The diameter and height of each sample were

measured multiple times by Vernier calipers. The

shrinkage of each aerogel block was measured according

to Equation (1), where V1 and V2 were the volumes of

aramid nanofibers gel and BANF aerogel, respectively.

The volume of each sample before and after drying was

measured multiple times using Vernier calipers.

The porosity of each sample was calculated using the

apparent density of BANF aerogel and the skeleton density

of BANF aerogel according to Equation (2)54,55 where ρb

was the apparent density of BANFs, and ρs was fixed at

1.44 g/cm3, based on the product data provided by DuPont

Company. The stress–strain curves of BANF aerogels were

measured by an Istron‐5569 electronic universal testing

instrument when all the samples were cut into the same

cylinder blocks (Φ8 × 16mm).

V V VShrinkage (%) = ( – )/ ,1 2 1 (1)

ρ ρPorosity (%) = (1 − / ) × 100.b s (2)

The plating method was used to determine the

thermal conductivity of samples (Φ18 × 3 mm). First,

the relative humidity was controlled to be between 45%

and 55%. Then, each sample was sandwiched between

FIGURE 1 Microscale and nanoscale

morphology of branched aramid nanofibers

(BANFs). (A) Scanning electron microscopy

(SEM) image of the fibrils stripped from

Kevlar 49 fiber. (B) SEM image of branched

BANFs. (C) Transmission electron

miscroscopy image of BANFs. The inset with

the red marker highlights the fiber geometry.

(D) Atomic force microscopy image of one

branched BANF

LI ET AL. | 3 of 12



two glass plates (reference materials) of 3‐mm thick-

ness. The sandwich was placed between a heat source

(heated copper sheet) and a cold source (ice water

mixture in a glass box). The temperature of the heat

source remained constant at 120°C, and the cold

source was maintained at 0°C. The warm current in-

troduced a range of temperature gradients across the

sandwich, and temperature mapping was obtained

through emissivity. As the thermal conductivity of the

reference material glass is known, the heat flux in the

sandwich could be calculated. The thermal con-

ductivity of BANF aerogel could also be calculated

utilizing the Fourier equation. The fitted linear re-

gression lines of heat flux and temperature gradient

suggest a negligible contribution of convection side

losses during the measurements.

3 | RESULTS AND DISCUSSION

It was previously found that 1‐wt% aramid nanofiber hy-

drogels56,57 showed a much higher shear modulus than 1‐wt

% hydrogel made from other nanofibers and rod‐like na-

noscale materials,58–60 which indicates that these BANFs

have substantially better three‐dimensional connectivity and

stronger fiber‐to‐fiber contacts than other hydrogels.41,42,58

The drastic change of dynamic mechanical properties was

associated with unique branched geometry that was

confirmed in the later studies.61–63 None of the other

artificial nanoscale materials have similar fractal geometry at

that time, opening a possibility to understand the funda-

mental significance and utility of such nanoscale dispersions.

Aerogels can be considered to be a solid made from

nanoscale trusses. As an increase in contact points prevents

slipping or breaking of the trussed structures, the branched

morphology of the components is expected to benefit its

resistance to external and internal pressure10,35,38,41,64,65

because an increase in the number of contact points pre-

vents slipping or breaking of the trussed structures.66–68

Amphiphilic nature of BANFs also helps to increase the

attraction between the fibers to strengthen the junction—

the weakest parts of aerogel networks. In this perspective,

BANF and other gels also replicate the organization of

nanofiber‐based biological tissues.

Therefore, we used BANFs instead of straight nanofi-

bers to produce aerogel expecting to see a substantial in-

crease in mechanical properties and potentially a decrease

in pore size. Briefly, BANFs were made by controlled sol-

volysis of macroscale Kevlar 49 fibers via abstraction of

protons from aramid chains by KOH. The dissociation of

intermolecular bonds leads to splitting into nanofibers.

Depending on the solvolysis conditions, the obtained

nanofibers acquire a branched structure (Figure 2 and

Schematics S1). Such morphology is likely to reflect their

structural organization in the macroscale precursor.69

The surface of BANF contains many polar groups, such

as −COOH, −NH−, and −NH2.
33 The negative charges on

the BANF surface in basic media (Figure S1) provide them

FIGURE 2 Scanning electron

microscopy images of branched aramid

nanofiber aerogels showing the effects of

different exchange solvents: (A) deionized

water, (B) no exchange solvent, (C) ethanol,

and (D) n‐heptane
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dispersion, as well as excellent colloidal stability.56,70 Fur-

thermore, the presence of –COOH and –NH2 groups enables

the formation of interfiber hydrogen bonds38,56 and poten-

tially the peptide bonds.

The association of nanofibers with each other can be

promoted by solvent exchange. We tried several types of

solvents to induce the phase change from BANFs dispersion

into a gel and aerogel (Tables S1 and S2). The volume of

obtained BANF hydrogels decreased compared with the in-

itial BANFs dispersion (Table S3). The obtained aerogel

showed a different structure, as shown in Figure 3. Mean-

while, the gelation process is accompanied by color change;

using acetonitrile, the solution color changed from red to

light orange, and for the other solvents, the color changed

from red to light yellow (Figure 1). However, no BANF gel

was formed for N,N‐dimethylformamide under a variety of

conditions because of its weak protonation. Conversely, the

gradual gelation of BANFs caused by the addition of acet-

onitrile takes about 5min to complete.71 The volume of

hydrogel does not change significantly after the gelation

point.

The presence of hydrogen bonds between BANFs was

confirmed by the 3450 cm−1 peak in the FTIR spectra

(Figure S2). We concluded that acetonitrile is the best re-

agent for controlling the gelation process of BANFs disper-

sion due to its greater overall volume of the gel than for other

solvents, which, in turn, means high porosity desirable in

aerogels.72,73

BANFs dispersion concentration also affected the

structure of different aerogels. As the concentration of

BANFs dispersion increases, the porous structure forms

more homogeneously (Figure 4), and the apparent density

of the aerogel decreases (Figure 5A). Similarly, shrinkage of

aerogel from the gel decreases with increasing BANFs

dispersion concentration (Figure 5B), which is associated

with an increase in stiffness of the framework created by

BANF that resists capillary forces during drying.74 Most of

the pores in the BANF aerogel were maintained through

the solvent exchange and drying processes when the con-

centration of BANFs dispersion increases from 40 to 55wt%

(Figure 5C). However, when the concentration increases to

more than 55wt%, the porosity decreases because of the

increasing aggregation of BANFs. The aerogel made from

the BANFs dispersion of 55wt% has the lowest density of

0.0081 g/cm3, which is comparable or even lower than

other reported aerogels (Figure 5D).75,76 The porosity of

55wt% BANF aerogel was 99.4%, and the network was also

more regular and had fewer breaks than the other two.

To investigate the microstructure and contact point

interactions of our BANF aerogel, the differences be-

tween BANF aerogel and Kevlar 49 were contrasted in

their FTIR spectra. FTIR spectra of the dry BANF aero-

gels (Figure S3) show a broad and strong peak at

3321 cm−1, which is attributed to the N–H stretching

vibrations. A peak observed at 1645 cm−1 is associated

with C═O stretching vibrations. The peak at 1545 cm−1 is

ascribed to N–H deformation and C–N stretching‐

coupled modes. The peak at approximately 1516 cm−1

represents C═C stretching vibrations of an aromatic ring.

The stretching vibration of the C6H5–N bond (Ph‐N)

emerges at 1322 cm−1. The peak at 1021 cm−1 corre-

sponds to the in‐plane stretching vibration of C–H

bonds.57 One can see that N–H and C═O stretching

vibrations of BANF aerogel have stronger peaks

FIGURE 3 Synthetic steps for preparation of branched aramid nanofiber (BANF) gels. (A) BANFs dispersion in dimethyl sulfoxide

(DMSO). (B,C) BANF gel made by using solvent exchange with water (B) and acetonitrile (C). (D,E) Demonstration of the gelation of

(B,C) by turning the flask upside down. (F) Self‐standing BANF gel. (G) BANF aerogel. It can be seen that the volume swelling of gelatin

obtained by gelation of acetonitrile is much larger than that of the gel obtained by water gel, indicating that the nanofibers in

the samples obtained by gelation of acetonitrile are more stretched
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compared with those of Kevlar 49, attributed to stronger

hydrogen bonds in BANF aerogel. This observation de-

monstrates the entanglement of nanofibers in BANF

aerogels.38

Compared with many other aerogels, those from BANF

display high thermal stability inherited from Kevlar 49 fiber

(Figure S4). A weight loss of 2% occurs before 530°C, which

could be attributed to thermal decomposition of the term-

inal groups, such as the carboxyl and amino groups.38,77

The main decomposition temperature of BANF aerogel is

553°C. Kevlar 49 fiber represents a higher degradation

temperature and carbonization rate, which indicates de-

creased compactness and increased specific surface damage

to thermal stability.

Nitrogen sorption measurements were conducted to

further examine the pore structure of various BANF aero-

gels. Figures 6A and 6B show the N2 adsorption–desorption

isotherms and the pore‐size distribution curves of different

BANF aerogels, respectively. These isotherms are classified

as Type IV with hysteresis loops, closely related to the oc-

currence of capillary condensation,78,79 indicating meso-

porosity. The surface areas were calculated using BET

analysis, and the BET‐specific surface areas were found to

range from 396 to 542m2/g (Figure S5), which are larger

than those of branched BANF aerogels gelled with water.38

The PSDs were analyzed by the Barret–Joyner–Harrenda

method, and the wide PSDs ranged from 2 to 70 nm. The

average pore size ranged from 10.8 to 21.5 nm, depending

on the concentration of BANFs.

The total thermal conductivity can be represented as the

sum of contributions from three parts: heat transfer through

solid, heat transfer through gas, and heat radiation.80 For the

BANF aerogel, heat transfer through gas mainly consists of

two parts: conduction through the gas itself and convection

of gas. The averaged pore sizes in BANF aerogels ranged

from 10.8 to 21.5 nm. These values are lower than the mean

free path of the N2 and O2 molecules (~70 nm),80,81 which

must result in low thermal conductivity. Indeed, the thermal

FIGURE 4 Scanning electron

microscopy images at low (left) and high

(right) magnification of branched aramid

nanofiber (BANF) aerogels made using

different concentrations of BANFs. (A,B)

BANF aerogel 45 wt%. (C,D) BANF aerogel

50 wt%. (E,F) BANF aerogel 55 wt%.

According to (B, D, and F) the joints of

BANFs aerogels become thinner at the same

magnification. This further proves that the

porosity of BANF aerogels becomes larger as

the concentrations of BANFs increases
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conductivity of 0.026W/m·K (Figure 7) of BANF aerogels

approaches the thermal conductivity of air at room tem-

perature, 0.023W/m·K. This value is also lower than that for

Kevlar 49 fiber 0.045W/m·K and the values reported before

for aramid aerogels without controlled branching was

0.028W/m·K, as reported in Leventis et al.76 As expected,

the thermal conductivity was found to decrease as BANFs

dispersion concentration increases (Figure 7D). We tested

the thermal insulation properties of aerogel materials, as

shown in Figure 7E–G. After 5min of baking with a lighter

flame, there is no change in orchid on the top of BANF

aerogel, which indicates that the aerogel insulation is

excellent. From the side of aerogels, carbonization can be

seen in the baking mask, and the carbonization layer is very

thin, indicating that the transmission of high temperature is

limited under the barrier of aerogels.

Branching also affects the shear stress–strain curve of

BANF aerogel (Figure 8 and Table S4). Ultimate strength

at 80% strain shows a linear elastic deformation region

ending at the strain of 2%, followed by a softening region

where plastic deformation begins to occur.82 After being

compressed to 80% of its original length, the aerogel

shows favorable toughness, without any cracks. The

compressive energy could be absorbed by the strong

FIGURE 5 (A) Relationship between the concentration of branched aramid nanofibers (BANFs) and density. (B) Relationship between

concentration of BANFs and shrinkage. (C) Relationship between concentration of BANFs and porosity. (D) Comparison of our BANF

aerogel with other aerogels reported in the literature

FIGURE 6 (A) Nitrogen adsorption/desorption curves of branched aramid nanofiber (BANF) aerogels. (B) Pore distributions of BANF aerogels

LI ET AL. | 7 of 12



three‐dimensional network interconnection and contact

points of nanofibers, leading to elastic deformation.83

The compressive strength of BANF aerogel reached

825 kPa at a compressive strain of 80%, which is about

five times greater than the values measured for

graphene‐, carbon nanotube‐, and cellulose‐based

aerogels.84–87 Compressive strength normalized by the

density is 102MPa/cm3·g for BANF aerogels, which is

also much larger than that of other aerogels; even the

strongest hybrid aerogels reported the state‐of‐the‐art in

the field29,38,86,88–100 (Figure 5D) while demonstrating

excellent flexibility (Figure S6). These combinations of

mechanical properties can also be attributed to the

cartilage‐like percolated network structure.

The finite element model of BANF gel in Figure 8D,E

helps to simulate the mechanical deformations of aramid

nanofiber gel during deformations. For BANF nanofibers

forming the pore walls, elastic modulus of 126 GPa,

density of 1.44 g/cm3, and Poisson ratio of 0.42 were used

in simulations. One can clearly see that under pressure,

stress is concentrated on the junction points, which

confirmed our aerogel design strategy. When the

FIGURE 7 Thermal conductivity of branched aramid nanofiber (BANF) aerogels. The insets in each plot are the images obtained by an

infrared (IR) microscope. (A) Thermal conductivity of BANF aerogel 55 wt%. (B) Thermal conductivity of BANF aerogel 50 wt%. (C)

Thermal conductivity of BANF aerogel 45 wt%. (D) Relationship between concentration of BANFs and BET thermal conductivity in

which the q″ of the Y axis in (A), (B), and (C) mean the heat flux density. The thermal conductivity decreases with BANFs dispersion

concentration because the network formed in BANF aerogel 55 wt% is more regular and has fewer breaks than the other two. (E) BANF

aerogel was baked with lighter flame for 5 min, with the orchid being laid on top of it, which indicates that the aerogel insulation is

excellent. (F, G) Side view of aerogel. Carbonization can be seen in the baking edge. The carbonization layer is very thin, indicating that the

transmission of high temperature is limited under the barrier of aerogels
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pressure is 50MPa, the mass stress concentration is

808MPa, providing the numerical reference point for

further development of these materials.

4 | CONCLUSIONS

The BANF dispersions form a uniform three‐dimensional

open network via gelation with acetonitrile. The primary

solvent‐rich gel can be converted into an aerogel by media

exchange with n‐heptane, followed by supercritical CO2

drying. The resulting biomimetic material exhibits low

density and high porosity, which yields outstanding thermal

insulation. The entanglement of individual nanofibers and

the high strength of the parent polymer results in a fibrous

network with remarkable mechanical properties that stand

out among the properties of known composite, polymeric, or

inorganic aerogels. The unique combination of properties

endows cartilage‐like BANF aerogels with multiple potential

applications from thermal insulation for processors in com-

puters to the structural elements in spacecrafts, which is

further augmented by the simplicity of their production,

including the recycling of used aramid fabrics.
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