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Optimal squeezing for quantum target detection
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It is not clear if the performance of a quantum lidar or radar, without an idler and only using Gaussian

resources, could exceed the performance of a semiclassical setup based on coherent states and homodyne

detection. Here we prove this is indeed the case by showing that an idler-free squeezed-based setup can beat this

semiclassical benchmark. More generally, we show that probes whose displacement and squeezing are jointly

optimized can strictly outperform coherent states with the same mean number of input photons for both the

problems of quantum illumination and reading.

DOI: 10.1103/PhysRevResearch.3.L042039

Introduction. Quantum hypothesis testing [1–4] is one of

the most important theoretical areas at the basis of quantum

information science [5]. In the bosonic setting [6], some of

the basic protocols are those of quantum illumination [7–19],

aimed at better detecting the presence of a remote target in

conditions of bright thermal noise, and quantum reading [20],

aimed at boosting data retrieval from an optical digital mem-

ory. These protocols can be modeled as problems of quantum

channel discrimination where quantum resources are able to

outperform classical strategies in detecting different amounts

of channel loss.

One of the basic benchmarks which is typically considered

in assessing the quality of quantum illumination is the use of

coherent states and homodyne detection. This is considered

the best known (semi)classical strategy and is often adopted

to assess the advantage of quantum resources (e.g., entan-

glement) [12,17] for lidar/radar applications [21–23]. This

classical strategy is clearly based on Gaussian resources (i.e.,

Gaussian states and measurement) and does not involve any

idler system. An open question is to determine if there is

another idler-free strategy based on Gaussian resources which

strictly outperforms the classical one.

In this work we answer this question positively, showing

the advantage of using displaced-squeezed states with a suit-

ably optimized amount of squeezing. Such optimal probes are

able to outperform coherent states for the same number of

mean signal photons per mode irradiated over the unknown

target. While this can be shown for quantum illumination,

i.e., quantum lidar applications, the advantage becomes more

evident and useful in a different regime of parameters, as is

typical for quantum reading.

Optimized probes for target detection. Consider the detec-

tion of a target in terms of a binary test: The null hypothesis
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H0 corresponds to target absent, while the alternative hy-

pothesis H1 corresponds to target present. These hypotheses

correspond to the following quantum channels acting on a

single-mode input state probing the target:

H0: A completely thermalizing channel, i.e., a channel

replacing the input state with a thermal environment state with

n̄B mean photons.

H1: A thermal-loss channel with loss 1 − η, so that only

a fraction η of the signal photons survives, while n̄B mean

thermal photons are added to the state.

Both channels can be represented by a beam splitter with

transmissivity η and input thermal noise n̄′
B := n̄B/(1 − η).

We have η = 0 for H0 and some η > 0 for H1. In terms

of quadratures x̂ = (q̂, p̂)T the action of the beam splitter is

x̂ → √
ηx̂ +

√
1 − ηx̂B, where x̂B is a background mode with

n̄′
B mean photons.

As long as there is a different amount of loss between the

two channels above, it is possible to perfectly discriminate

between the two hypotheses if we are allowed to use input

states with arbitrary energy. However, if we assume that the

input states must have a mean number of photons equal to

n̄S , then there is an error associated with the discrimination

problem.

Consider a displaced squeezed state at the input of the

unknown channel. Assume that this state has n̄A photons asso-

ciated with its amplitude α, namely, n̄A = |α|2. Without losing

generality, assume that α ∈ R, so the mean value of the state

is equal to x̄ = (
√

2n̄A, 0)T (see [24] for details on notation).

The state has covariance matrix (CM) V = (1/2)diag(r, r−1)

for position squeezing r � 1 (= 1 corresponding to a coherent

state). It is easy to compute that the mean number of photons

generated by the squeezing is equal to fr = (r + r−1 − 2)/4.

Thus, the mean total number of photons associated with the

state is n̄S = n̄A + fr . Note that, for fixed value of n̄S , the

amount of squeezing is bounded within the range r− � r � 1,

where [25]

r− := 2n̄S + 1 − 2
√

n̄S (n̄S + 1). (1)

Assume that the state is homodyned in the q̂ quadrature

(position). The outcome q will be distributed according to a
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Gaussian distribution with mean value

q̄ =
√

2(n̄S − fr ) � 0 (2)

and variance σ 2 = r/2. If homodyne is performed after the

unknown beam-splitter channel, then we need to consider the

transformations

q̄ →
√

ηq̄, σ 2 → λ2
η :=

2n̄B + 1 − η(1 − r)

2
. (3)

By measuring the q̂ quadrature for M times and adding the

outcomes, the total variable z will be distributed according to

a Gaussian distribution Pη(z) with mean value z̄ := M
√

ηq̄ =
M

√
2η(n̄S − fr ) and variance σ 2

z := Mλ2
η. Note that, for H0,

we have a Gaussian P0(z) centered in z̄ = 0 with vari-

ance σ 2
z = Mλ2

0 = (M/2)(2n̄B + 1). For H1, we have instead

P1(z) = Pη(z) with η > 0.

Let us adopt a maximum likelihood test with some thresh-

old value t > 0 (implicitly optimized), where we select H1

if z > t (otherwise we select the null hypothesis H0). The

false-alarm probability pFA and the misdetection probability

pMD are therefore given by [26]

pFA := prob(H1|H0) =
∫ +∞

t

P0(z)dz

=
1

2

{

1 − erf

[

t
√

M(2n̄B + 1)

]}

, (4)

pMD := prob(H0|H1) =
∫ t

−∞
P1(z)dz

=
1

2

{

1 + erf

[

t − M
√

2η(n̄S − fr )
√

M[2n̄B + 1 − η(1 − r)]

]}

. (5)

For equal priors prob(H0) = prob(H1) = 1/2, the mean error

probability is given by perr = (pFA + pMD)/2.

It is clear that the performance of the displaced squeezed

states is at least as good as that of the coherent states, because

the optimization over the squeezing parameter r (within the

constraint imposed by n̄S) includes the point r = 1. The goal

is therefore to show that some amount of squeezing can be

useful to strictly outperform the coherent-state probes. For this

purpose, the first step is to correctly quantify the amount of

thermal noise n̄B that is seen by a free-space lidar receiver.

Consider a receiver with aperture radius aR, angular field

of view �fov (in steradians), detector bandwidth W , and spec-

tral filter �λ (the latter can be very small thanks to the

interferometric effects occurring at the homodyne detector).

Compactly, we may define the photon collection parameter

ŴR := �λW −1�fova2
R (see Ref. [27] for more details). Consid-

ering that sky brightness at λ = 800 nm is B
sky

λ ≃ 1.5 × 10−1

W m−2 nm−1 sr−1 [28,29] (in cloudy conditions), the mean

number of thermal photons per mode hitting the receiver is

n̄B =
πλ

hc
B

sky

λ ŴR. (6)

Assuming aR = 10 cm, �fov ≃ 3 × 10−6 sr (�
1/2

fov = 0.1◦),

W = 100 MHz, and �λ = 10−4 nm, we get n̄B ≃ 5.8 × 10−2

mean thermal photons per mode.

Let us take n̄S = 0.1 signal photons per mode and assume

η = 0.2 for the reflectivity of the target (the latter quantity

FIG. 1. Optimal squeezing −10 log10 r versus number of

probes/modes M for the problem of target discrimination. Param-

eters are η = 0.2 for target present (otherwise η = 0), n̄S = 0.1

mean photons per signal mode, and n̄B ≃ 5.8 × 10−2 mean thermal

photons per background mode. The threshold value t is implicitly

optimized for each point.

implies either a proximity of the target or very good reflec-

tivity properties, i.e., very limited diffraction at the target).

For realistic values of M � 103 [21–23], we can see that the

optimal probes are not coherent states but rather states that

are both displaced and squeezed. For the regime of parameters

considered, the difference is small but still very significative

from a conceptual point of view. As we can see in Fig. 1, the

amount of squeezing is small, i.e., less than 0.08 dB. (See [30]

for the Mathematica files associated with this Letter.)

The significance of the result relies on the fact that the

use of coherent states and homodyne detection might be

considered to be the optimal Gaussian strategy for quantum

illumination in the absence of idlers. This is not exactly true.

One can find regimes of parameters where the presence of

squeezing can strictly outperform coherent states, even if the

advantage can be very small. As we discuss below, the dif-

ference becomes more appreciable in problems of quantum

reading [20] or short-range quantum scanning [31], where the

transmissivities associated with the hypotheses are relatively

high.

Optimized probes for quantum reading or scanning. Note

that the probabilities pFA and pMD discussed above can be

extended to the general case where P0(z) = Pη0
(z) and P1(z) =

Pη1
(z) for arbitrary 0 � η0 � η1 � 1. In such a case, we just

write pFA = 1
2
(1 − �0) and pMD = 1

2
(1 + �1), where we de-

fine (for u = 0, 1)

�u = erf

(

t − M
√

2ηu(n̄S − fr )
√

M[2n̄B + 1 − ηu(1 − r)]

)

. (7)

This scenario can refer to the readout of an optical cell with

two different reflectivities [20], or to the scan of a biological

sample to distinguish between a blank from a contaminated

sample [31].

For our numerical investigation, we consider high trans-

missivities η0 = 0.9 and η1 = 0.98, and relatively-high signal

energy n̄S = 1. The other parameters are the same as above for

target detection. Thus, we study the performance for equal-

prior symmetric hypothesis testing, plotting the mean error

probability perr as a function of the number of probes M. As

we can see from Fig. 2, the optimized displaced-squeezed

L042039-2
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FIG. 2. Optimal displaced-squeezed probes for quantum read-

ing and scanning. We plot the mean error probability achievable

with the optimal displaced-squeezed probes (solid) with respect to

just-displaced probes, i.e., coherent states (dashed). Parameters are

η0 = 0.9, η1 = 0.98, n̄S = 1 mean photons per signal mode, and

n̄B ≃ 5.8 × 10−2 mean thermal photons per background mode. The

squeezing parameter r and the threshold value t are implicitly opti-

mized for each point.

probes (here corresponding to about 4 dB of squeezing)

clearly outperform coherent states with orders of magnitude

advantage for increasing M.

We also consider asymmetric hypothesis testing [12,32,33]

plotting the receiver operating characteristic (ROC), ex-

pressed by the misdetection probability versus the false-alarm

probability for some fixed number of probes. As we can see

from Fig. 3, for the case of M = 500, we have a clear advan-

tage of the optimized probes with respect to coherent states.

This behavior is generic and holds for other values of M.

Conclusions. In this work we have investigated the use

of displaced-squeezed probes for problems of bosonic loss

discrimination, i.e., quantum illumination and quantum read-

ing. We have compared the performance of these probes with

respect to that of purely displaced ones, i.e., coherent states,

FIG. 3. Receiver operating characteristic (ROC) pMD as a func-

tion of pFA. We compare the performance of the optimal displaced-

squeezed probes (solid) with respect to just-displaced probes, i.e.,

coherent states (dashed). Parameters are M = 500, η0 = 0.9, η1 =
0.98, n̄S = 1 mean photons per signal mode, and n̄B ≃ 5.8 × 10−2

mean thermal photons per background mode. The squeezing param-

eter r is implicitly optimized for each point.

showing that a strict advantage can be obtained by optimizing

over the amount of squeezing while keeping the input mean

number of photons as a constant. For the specific case of

target detection, our results show that there exists an idler-free

Gaussian-based detection strategy outperforming the typical

(semi)classical benchmark considered in the literature, which

is based on coherent states and homodyne detection. Due to

the intrinsic Gaussian nature of the process, the dependence

of the quantum advantage versus the various parameters is

continuous and expected to be maintained in the presence of

small experimental imperfections of the devices.
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