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Abstract

Although deep learning-based stereo matching approaches have achieved excel-

lent performance in recent years, it is still a non-trivial task to estimate the uncer-

tainty of the produced disparity map. In this paper, we propose a novel approach

to estimate both aleatoric and epistemic uncertainties for stereo matching in an

end-to-end way. We introduce an evidential distribution, named Normal Inverse-

Gamma (NIG) distribution, whose parameters can be used to calculate the un-

certainty. Instead of directly regressed from aggregated features, the uncertainty

parameters are predicted for each potential disparity and then averaged via the

guidance of matching probability distribution. Furthermore, considering the spar-

sity of ground truth in real scene datasets, we design two additional losses. The

first one tries to enlarge uncertainty on incorrect predictions, so uncertainty be-

comes more sensitive to erroneous regions. The second one enforces the smooth-
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ness of the uncertainty in the regions with smooth disparity. Most stereo matching

models, such as PSM-Net, GA-Net, and AA-Net, can be easily integrated with

our approach. Experiments on multiple benchmark datasets show that our method

improves stereo matching results. We prove that both aleatoric and epistemic un-

certainties are well-calibrated with incorrect predictions. Particularly, our method

can capture increased epistemic uncertainty on out-of-distribution data, making it

effective to prevent a system from potential fatal consequences. Code is available

at https://github.com/Dawnstar8411/StereoMatching-Uncertainty

Keywords: Stereo Matching, Uncertainty Estimation, Evidential Deep Learning

1. Introduction

Obtaining dense depth map is a crucial task in 3D reconstruction [1], visual

SLAM [2], and autonomous driving [3]. Active 3D sensors, such as structured

light, ToF cameras, and LiDAR, suffer from expensive imaging hardware, limited

sensing range, or very sparse depth output. Stereo-based depth estimation is an

alternative solution, which obtains dense disparity maps through stereo matching

and then uses camera’s imaging model to restore the depth of the scene. With

the rapid development of deep learning technologies, many stereo matching mod-

els, such as PSM-Net [4], GA-Net [5] and AA-Net [6], have been proposed and

achieved promising results. Despite the high performance, it is crucial to deter-

mine whether the model’s output can be trusted, especially for some safety-critical

applications. For example, for obstacle avoidance, which is a key feature in au-

tonomous driving, it is not only necessary to obtain accurate depth information

but also essential to know how reliable the predictions are. The stereo depth esti-

mation model has a high possibility to fail when there are camera blurring, over-
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Figure 1: (a) Left stereo image. (b) Right stereo image. (c) Estimated disparity. (d) Disparity error

map. Red means higher error. (e) Estimated aleatoric uncertainty that accounts for the regions

which are hard to match, such as sky, object boundaries. (f) Estimated epistemic uncertainty that

quantifies the uncertainty in the model. They are both well calibrated with erroneous regions.

exposure or an unfamiliar environment. Assigning high uncertainty to potentially

wrong predictions can give warnings and prevent the autonomous driving system

from making fatal decisions.

The uncertainties can be categorized as aleatoric or epistemic [7] depending on

whether the error arises from imprecise data or poor knowledge. In stereo match-

ing, aleatoric uncertainty is related to the input data, indicating regions that may

be hard to match. Epistemic uncertainty captures the uncertainty in the model,

which is suitable to identify the out-of-distribution data when the variations of

the test domain are too complex to be covered in the training domain. Fig. 1

shows the visualized results of stereo matching and uncertainty estimation. Both

aleatoric and epistemic uncertainties have high values on the erroneous regions.
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In stereo matching, most approaches [8, 9] only model the aleatoric uncertainty

by obtaining the confidence measure through handcrafted rules such as left-right

consistency checking, but epistemic uncertainty is often ignored.

From the data analysis perspective, some approaches [10, 11, 12], such as

Bayesian neural networks [10], consider both aleatoric and epistemic uncertain-

ties. However, Bayesian neural networks place priors on network weights, which

leads to a high computational sampling cost to estimate epistemic uncertainty

during inference. Different from the Bayesian neural network, evidential ap-

proaches [13, 14, 15] consider learning as an evidence acquisition process. Priors

are directly placed over the likelihood function to form a higher-order, evidential

distribution. Training samples add evidence to fit this distribution. By learning to

estimate the parameters of the evidential distribution, a grounded representation

of both aleatoric and epistemic uncertainties can be obtained without the need for

sampling. However, this strategy has not been applied to uncertainty estimation

for stereo matching.

Two characteristics in stereo matching make it inappropriate to directly use

evidential learning for uncertainty estimation. Firstly, stereo matching is not

a strict classification [15] or regression [13] problem. In stereo matching net-

works [4, 5, 6], features of stereo image pairs are aggregated by 2D correlation

or 3D cost volumes. In addition to the spatial features, the aggregated features

also contain matching relationships. The process first calculates a D dimensional

classification probability vector and then use it to obtain output disparity via sof-

targmin. In the same way, it is not appropriate to directly regress uncertainty

parameters from the aggregated features. In other words, the uncertainty should

reflect the difficulty of matching, not just the final disparity result. The second
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characteristic is that, in practice, it is extremely expensive and hard to capture

dense disparity annotations, especially in autonomous driving. The uncertainty

estimation model obtains sub-optimal results, lacking uncertainty constraints on

regions without ground truth disparity.

To address the above-mentioned problems, we propose a novel approach that

estimates uncertainty for stereo matching based on end-to-end evidential deep

learning. Our method predicts uncertainties for each potential disparities at first

and then takes stereo matching probabilities as guidance to softly average them to

obtain the final uncertainty. Thus the matching behavior on each potential dispar-

ity contributes to the final uncertainty estimation. Furthermore, we propose two

loss functions to constrain the uncertainty parameters despite the fact that there

are no ground truth disparity annotations. The first loss minimizes evidence on

incorrect predictions and inflates the uncertainty. The second loss constrains the

smoothness of the uncertainties in regions with smooth disparities. By combining

these two losses, pixels without ground truth disparities can be used in the training

process to improve the performance of uncertainty estimation.

We utilize the Normal Inverse-Gamma (NIG) distribution as the evidential

distribution. This models a higher-order probability distribution over the indi-

vidual likelihood parameters. Given a stereo image pair, disparity, aleatoric and

epistemic uncertainties can all be obtained through estimating the parameters of

the NIG distribution. The backbone model can be replaced by most of the exist-

ing stereo matching networks with aggregated feature volume. We propose four

branches to estimate the parameters respectively. The main contributions of this

paper can be summarized as follows:

1) We propose a novel uncertainty estimation approach for stereo matching
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based on evidential deep learning. Both aleatoric and epistemic uncertainties can

be estimated in an end-to-end way. By utilizing matching probabilities as guid-

ance to estimate uncertainty, the uncertainty well reflects the difficulty of match-

ing.

2) We propose two loss functions to constrain the uncertainty parameters. By

using prediction errors and a disparity agreement prior, pixels without ground

truth disparity can be utilized during training to improve the performance of the

uncertainty estimation.

3) We undertake comprehensive experiments to show that the proposed method

improves stereo matching performance and obtains well-calibrated uncertainty.

The proposed method not only assigns high uncertainty to erroneous estimation,

but also captures increased epistemic uncertainty when there is out-of-distribution

data.

2. Related Work

In this section, we give a brief overview of related work on deep learning based

stereo matching and uncertainty estimation methods.

2.1. Deep Learning for Stereo Matching

Conventional stereo matching methods mainly consist of four stages: a) match-

ing cost calculation, b) cost aggregation, c) disparity calculation/optimization, and

d) disparity refinement [16]. Most recent stereo matching methods have leveraged

deep learning approaches which considerably boost the accuracy of stereo match-

ing thanks to their impressive feature representation capability. Early deep learn-

ing methods only utilized networks at some stages [17, 18, 19]. More recently,

end-to-end neural networks for stereo matching have prevailed at processing and
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are conceptually appealing with the availability of a relatively large amount of

training data. These methods can be classified into 2D and 3D convolution based

architectures depending on how the cost volumes are constructed. 2D architec-

tures [20] use correlation to measure the similarity between features in the left

image and their matching candidates in the right image (offset by disparity val-

ues). 3D architectures [4], on the other hand, directly concatenate the feature

maps of the left image and their matching candidates and then let the network

learn proper cost volumes.

PSM-Net [4] is a CNN based stereo matching method, containing a spatial

pyramid pooling module and a 3D CNN. The spatial pyramid pooling module ex-

ploits global context information to form a cost volume and the 3D CNN learns

to regularize cost volume. GA-Net [5] introduces a semi-global aggregation layer

and a locally guided aggregation layer to capture both local and global cost depen-

dencies. AA-Net [6] replaces the commonly used 3D convolutions with a sparse

point-based intra-scale cost aggregation and a cross-scale cost aggregation mod-

ule, which leads to fast inference speed. In this work, we adopt and compare these

three networks as our backbone models.

2.2. Uncertainty Estimation Methods

Recent work mostly focuses on a) improving the accuracy [5, 21], b) design-

ing faster and more efficient architectures [6], c) improving generalization and

robustness via self-supervised learning [22] and d) domain adaptation [23]. In ad-

dition to these considerations, it is crucial to estimate the uncertainty of predicted

results.

Uncertainty is a vital factor for safety-critical systems, as it gives a confidence

measure associated with the estimation procedure adopted. An important issue for
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stereo matching is to determine the confidence of the disparity map. Confidence

values reveal the ranking of the reliability of the estimated disparity values among

pixels and indicate possibly occluded pixels [8]. Thus, confidence measures can

be utilized to indicate the pixels whose disparity values should be refined [18] or

to aggregate predictions from different methods [24].

Recently, confidence measure estimation has benefited from deep learning and

shown increased reliability of disparity estimation. Joint learning of disparity

and confidence maps also improves the disparity map, since confidence values

enable the detection and filtering of outliers. Reflective confidence networks [25]

and unified confidence networks [26] jointly learn both confidence values and

cost optimization to improve the final disparity estimation. Most recently, the

disparity network and confidence network are trained jointly in an adversarial

learning framework to make the confidence estimation method explicitly refine

the disparity results in an end-to-end manner [27].

Althought confidence estimation methods can measure the reliability of stereo

matching, they can not identify the sources of error. It is critical for matching

methods, including deep learning models, to understand the regions or situations

in which a model is uncertain about the estimated depth and the inherent reasons.

Kendall and Gal [10] first analyzed the uncertainty in computer vision appli-

cations and proposed a Bayesian deep learning framework for uncertainty quan-

tification. Their framework considers two main sources of uncertainty. Firstly,

aleatoric uncertainty accounts for the inherent noise in the observations. It is

modeled as the variance of the Gaussian likelihood model learned via maximum

likelihood training. Secondly, epistemic uncertainty quantifies the uncertainty in

model parameters, which is obtained via Monte Carlo dropout (MC Dropout) dur-

8



ing inference as a variational Bayesian approximation [11]. An alternative to es-

timating epistemic uncertainty is to create an ensemble of multiple networks with

random changes in the training setup, thus approximating the posterior distribu-

tion by the ensemble of several sampled distributions [28]. These methods have

shown their efficiency and scalability in many computer vision tasks, such as clas-

sification (e.g. semantic segmentation) and regression (e.g. monocular depth es-

timation) [10]. However, multiple forward passes during inference are requested

for obtaining epistemic uncertainty, resulting in a large consumption of both re-

sources and time.

Several works have attempted sampling-free uncertainty estimation. Variance

propagation methods [12] estimate epistemic uncertainty by injecting a noise layer

into the network and approximating the variances at the output layer. Carvalho

et al. calculated predictive uncertainty via functional variational inference and

Gaussian processes [29]. Another avenue of investigaton is to place an explicit

distribution over the distribution of the output values, specifically, over the hyper-

parameters of the output distribution. Two representative examples of such models

are prior networks [14] and evidential methods [15], which are structurally sim-

ilar but trained in a different manner. For classification, a Dirichlet distribution

is placed over the softmax outputs and a network is trained to predict the hyper-

parameters of the Dirichlet distribution. These methods are effective in uncer-

tainty estimation and out-of-distribution detection with a significant reduction of

resource cost compared to both MC Dropout and ensemble approaches. Only very

recently have these methods been applied to regression tasks such as monocular

depth estimation. Deep evidential regression extends the evidential approaches

by placing the evidential prior (a Normal Inverse-Gamma distribution) over the
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Gaussian likelihood function [13]. This is closely related to our motivation of ef-

ficient and scalable uncertainty learning for stereo matching networks. Whereas,

directly applying this work to stereo networks remains unexplored and deserves

analyses in detail.

Uncertainty estimation has been widely applied to a variety of computer vision

tasks. But most works only either model the aleatoric uncertainty or estimate the

epistemic uncertainty using resource-demanding MC Dropout and ensembles. In

the stereo matching task, Hu et al. [30] used predicted aleatoric uncertainty to

refine disparity maps for high-resolution images. In this paper, we predict both

aleatoric and epistemic uncertainties in a single forward pass for stereo matching.

Evidential deep learning relies on ground truth disparity annotations and cannot

be directly transformed to support unsupervised learning. We therefore introduce

our work on uncertainty estimation for supervised stereo matching models.

3. Method

In this section, we describe our proposed uncertainty estimation approach for

stereo matching. Fig. 2 illustrates the network architecture of our method. Given

a stereo image pair, features are extracted and aggregated through CNN modules.

Then the matching cost volume and uncertainty volume are predicted via four

branches. Disparity, aleatoric and epistemic uncertainties can be obtained through

the four estimated evidential distribution parameters γ, v, α and β, which are

calculated under the guidance of matching probability distribution. The network

is trained by minimizing a hybrid loss function composed of evidential learning

loss and two regularization terms. A detailed description of this method is given

in the following subsections. Firstly, we briefly introduce the evidential deep
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learning approach. Then we describe the details of our proposed loss functions.

Finally, we describe the network architecture and how to obtain the parameters of

the evidential distribution.

3.1. Evidential Deep Learning

Given two stereo images Il and Ir, the stereo matching model learns to predict

the disparity value di for each pixel in one of the stereoviews. The model can be

optimized through the following absolute error loss:

L =
1

N

N∑

i=1

|di − d∗i |, (1)

where N is the number of pixels and d∗i is the ground truth disparity of the ith

pixel. However, it does not explicitly model the underlying uncertainty in the

data.

Uncertainty estimation can be performed on a maximum likelihood setting.

We assume the estimated disparity di is drawn from a distribution, such as a Gaus-

sian, with mean and variance parameters θ = (µ, σ2). By drawing observations y

from the training data, model parameters can be learned to infer the parameter θ

that maximize the likelihood p(y|θ). While the variance parameter σ2 represents

the aleatoric uncertainty, this method ignores the epistemic uncertainty.

Let us now consider the observations drawn from the Gaussian distribution but

with unknown µ and σ2. The unknown mean and variance, regarded as random

variables, could follow the Gaussian distribution and the Inverse-Gamma distri-

bution as their respective prior distributions:

(y1, . . . , yN) ∼ N (µ, σ2)

µ ∼ N (γ, σ2v−1) σ2 ∼ Γ−1(α, β)
(2)
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Figure 2: Illustration of the proposed uncertainty estimation approach for stereo matching. Fea-

tures are extracted from input stereo image pair and cost aggregation is done by 2D or 3D CNN

modules. Various cost aggregation methods can be used to aggregate features. Four parameters of

the evidential distribution are estimated separately through the guidance of matching probability.

The disparity, aleatoric uncertainty, and epistemic uncertainty can then be obtained.

where Γ(·) is the Gamma function, γ ∈ R, v > 0, α > 1, β > 0.

We want to estimate the posterior distribution

q(µ, σ2) = p(µ, σ2|y1, . . . , yN) (3)

given observations from the available samples of training data. For computational

tractability, we assume the independence of the mean and variance, which gives

an factorized posterior

q(µ, σ2) = q(µ)q(σ2) (4)

Thus, we can take the Normal Inverse-Gamma (NIG) distribution, i.e. the con-

jugate prior of the Gaussian distribution, as the approximated posterior. In deep

evidential regression, Amini et al. [13] related this conjugate prior to evidential

deep learning and defined the total evidence, Φ = 2v + α, to support the parame-

12



ter estimation.

Following the deep evidential regression framework, we train a network to

infer the hyper-parameters m = (γ, v, α, β) of the NIG evidential distribution.

Through the network, we can calculate both aleatoric and epistemic uncertainty

along with disparity prediction in a single forward pass. Since the disparity value

follows a Gaussian distribution, it can be expressed by the expectation of the mean

of the Gaussian distribution. The aleatoric uncertainty indicates the degree to

which the disparity value deviates from the ground truth. So it can be calculated

by the expectation of the variance of the Gaussian distribution. The epistemic

uncertainty represents the degree of dispersion of the disparity values. It can be

calculated through the variance of the mean of the Gaussian distribution. The

disparity, aleatoric and epistemic uncertainties are calculated as:

E[µ] = γ,E[σ2] =
β

α− 1
, V ar[µ] =

β

v(α− 1)
(5)

To train the network that outputs the desired hyper-parameters m, we de-

rive the loss term from the model evidence. The marginal likelihood thus max-

imizes model evidence in support of observations from the training data. The

model evidence for the NIG prior and Gaussian likelihood follows a Student’s t-

distribution [13]. Based on Type II Maximum Likelihood, the loss function can

be defined as the negative logarithm of the model evidence distribution:

Ldata
i (w) = (α +

1

2
) log((yi − γ)2v + Ω)

+
1

2
log(

π

v
)− α log(Ω) + log(

Γ(α)

Γ(α + 1

2
)
)

(6)

where Ω = 2β(1 + v). Amini [13] gives a detailed derivation for Eq. 6. As can

be seen from the first term, when the error of predicted result becomes larger, the
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evidence parameter α will become smaller. Thus incorrect results will correspond

to high uncertainties. This loss function gives an objective to train the network to

estimate evidential distribution parameter m = (γ, v, α, β) to with the support of

traning samples by maximizing the model evidence.

3.2. Regularization Terms

In this section, we illustrate additional regularization terms to constrain the

model via an incorrect prediction prior and a disparity agreement prior. The first

term enforces lower estimated evidence parameters v and α in incorrect predic-

tion regions, thus assigning high uncertainty on these regions. The second term

constrains the smoothness of uncertainty values for regions with smooth disparity.

3.2.1. Regularization Based on Predictions

To ensure that the uncertainty and prediction errors are correctly calibrated,

regularization terms should be introduced to minimize the weight of the evidence

where the prediction is incorrect, while not influencing the evidence prediction

where the prediction is close to the ground truth. A straight forward way to achieve

the goal is to scale the total evidence Φ with the prediction errors as follows:

Lsup
i (w) = |yi − E[µi]| · Φ = |yi − γ| · (2v + α) (7)

This regularization term only works in a supervised setting since the error

computation requires the ground truth disparity. However, dense ground truth is

usually hard to obtain in real-world stereo matching. In the autonomous driving

scenario, for example, the ground truth depth map is often acquired by LiDAR,

which is both sparse and noisy. Evidence learning is regularized by the supervised

term above where the ground truth is available, but it is not penalized where there
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is no ground truth, which is a more frequent case. Therefore, appropriate loss

terms are needed.

Here, we utilize the image reconstruction loss which is commonly used for

self-supervised stereo matching methods. The ideal disparity map should ideally

transform the right image of the stereo pair into the exact left image. Thus, a

reconstructed left image I ′l can be obtained from the given corresponding right

image Ir and the estimated disparity map d:

I ′l(xi) = Ir(xi − di) (8)

The image reconstruction loss is used to maximize the photometric consistency

between the original left image and the reconstructed left image, thus improving

the quality of the predicted disparity map. A widely used image reconstruction

loss is the weighted sum of the SSIM and the L1 loss:

Lpc
i (w) = λpc

1− SSIM(Il(xi), I
′
l(xi))

2
+ (1− λpc)|Il(xi)− I ′l(xi)| (9)

However, this loss does not take uncertainty estimation into consideration.

Following the original uncertainty estimation work [10], we define the regular-

ized loss in the form of negative log-likelihood minimization for aleatoric uncer-

tainty estimation. However we only take advantage of the property of learned loss

attenuation, which forces model evidence negatively related to the image recon-

struction loss. Considering the inverse of the total evidence, the loss is defined

as:

Lepc
i (w) =

Lpc
i (w)

1/(Φ− 1)
+log(

1

Φ− 1
) = (2v+α−1)Lpc

i (w)−log(2v+α−1) (10)
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Noting that Φ > 1, here we use Φ−1 instead of Φ to ensure that 1/(Φ−1) ∈ R
+.

Thus whatever the value of the image reconstruction loss, the model evidence

gives reasonable values. The final form of the regularization term is as follows:

Lpred
i (w) = Lsup

i (w) + Lepc
i (w) (11)

3.2.2. Regularization Based on Disparity Agreement

We can penalize unreliable evidence for the whole image by extending the

supervised regularization loss to the unsupervised learning setting. Nevertheless,

since the image reconstruction loss provides a weaker training signal than su-

pervised regularization, the output hyper-parameters of the NIG distribution are

likely to contain a high level of noise, causing poor uncertainty estimation. Also,

the above regularization only penalizes α and v, with the estimation of β not

constrained. To reduce noise in the hyper-parameter estimation and make β con-

strained, we need to restrict the uncertainty of unannotated pixels by leveraging

useful information from annotated pixels. We find that the hyper-parameter es-

timates for unannotated pixels can benefit most from the more reliable estimates

from nearby annotated pixels. For the stereo matching task, this heuristic would be

valid for most pixels except for those lying near the depth boundaries. Therefore,

we propose a heuristic smoothness regularization on the output hyper-parameters

β, α, v for pixels in smooth regions. Following the method proposed in [31], we

rely on the disparity agreement between neighboring pixels to discard pixels close

to depth boundaries, given by:

DA =
HN×N(d)

N ×N
(12)

where for each pixel HN×N denotes the number of neighboring pixels that have

the same disparity value as the center pixel (considering sub-pixel precision within
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1 pixel). Clearly, the higher the disparity agreement values are, the smoother the

disparity patches behave. Thus, we define a mask M that contains pixels with high

DA (heuristically, M = I(DA > 0.5), where I is the indicator function), repre-

senting whether pixels lie in smooth regions. Those pixels have similar hyper-

parameter values to their neighbors. Therefore, we introduce a smoothness regu-

larization loss that penalizes the hyper-parameter gradient variation on the smooth

regions masked by M :

Lsmooth
i (w) = Mi(|∂xαi|+ |∂yαi|) (13)

Here ∂x and ∂y are the horizontal gradient and vertical gradient respectively. Sim-

ilar smoothness regularization can be defined for β and v. With the help of the

proposed smoothness regularization, the training of a hyper-parameter network

can be more constrained, especially when the ground truth annotations are sparse

and noisy. To summarise, the total loss function is the weighted sum of all the

above loss terms and is given by:

Li(w) = λsupL
data
i (w) + λpredL

pred
i (w) + λsmoothL

smooth
i (w) (14)

where λsup, λpred, λsmooth are the corresponding loss weighting factors.

3.3. Network Architectures

Fig. 2 shows the detailed architecture of our proposed approach. Most deep

stereo matching networks, such as PSM-Net [4], GA-Net [5] and AA-Net [6], can

be adopted as backbone stereo matching network and easily integrated with our

proposed approach. In these stereo matching networks [4, 5, 6], given a stereo

image pair, siamese networks with shared weights are used to extract features
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and cost aggregation module is used to aggregate feature to form a feature vol-

ume. Our proposed method keeps the feature extraction and aggregation parts

unchanged. Additionally, the proposed method has four output branches, one for

each of the hyperparameters of the NIG evidential distribution.

The first branch estimates disparity values (the parameter γ). For each pixel,

we firstly calculate the classification probability for D candidate disparity val-

ues (1, 2, ..., 192) and then use softargmax operation to obtain the final disparity,

which is defined as:

softargmax :=
D∑

1

d ∗ δ(pd) (15)

where d ∈ [1, D] is candidate disprity value, δ(·) is the softmax operation, and

pd is the normalized classification probability on disparity d. The parameters β, α

and v are obtained via the remaining three branches, respectively. For each pa-

rameter, analogous to the first branch, we learn D hypotheses from the aggregated

features, each corresponding to a candidate disparity. Note that the classification

probability distribution after softmax denotes the probability that a certainty dis-

parity candidate would be chosen, we use it as a hypotheses selector to select

the most likely parameter. Since the argmax operation is not differentiable, we

use the weighted sum of parameter hypotheses where the weight is given by the

probability distribution.

4. Experimental Results

In this section, we evaluate our proposed approach. Firstly, we introduce im-

plementation details of both training and evaluation procedures to ensure full re-

producibility. Stereo matching and uncertainty estimation results are then ana-

lyzed. We also conduct two ablation studies.
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Figure 3: (a) Left stereo image. (b) Estimated disparity through our proposed approach. (c)

Disparity error map. (d) Aleatoric uncertainty. (e) Epistemic uncertainty.

4.1. Implementation Details

Datasets. Three benchmark stereo matching datasets are employed for all ex-

periments in this work. Sceneflow [32] is a large-scale synthetic dataset for the

evaluation of stereo methods. It contains over 26k stereo image pairs which are

split into two parts: 22k image pairs for training and 4k image pairs for testing.

Sceneflow contains sub-pixel level dense ground truth disparity maps, with also

a high diversity of different scenes. The maximal disparity of each image ranges

from 20 to over 1000. During training, we filter out pixels whose ground truth

disparity is greater than 192 and only calculate losses for the rest of the pixels.

KITTI [33, 34] is a real scene stereo dataset captured by vehicle-mounted stereo

cameras and annotated by LiDAR mounted behind the left camera. Different from

the synthetic dataset, it only provides sparse disparity maps with about 30% pixels
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Figure 4: (a) Left stereo image. (b) Ground Truth Disparity. (c) Estimated disparity through our

proposed approach. (d) Aleatoric uncertainty. (e) Epistemic uncertainty.

annotated for each image. Containing various real street scenes, this dataset raises

significant challenges for stereo matching algorithms. KITTI contains two ver-

sions of datasets: KITTI2012 and KITTI2015. In this work, we mix all training

images of KITTI2012 and 120 training images of KITTI2015 as the training set.

We use the rest 80 training images of KITTI2015 for evaluation. InStereo2K [35]

is a real dataset for stereo matching in indoor scenes. It contains 2000 pairs of

stereo images for training and 50 pairs of stereo images for testing. Each pair of

images corresponds to high accuracy disparity map.

Training Procedure. As our proposed approach is suitable for most stereo

matching methods, we choose PSM-Net [4], GA-Net [5] and AA-Net [6] as the
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Figure 5: (a) Left stereo image. (b) Estimated disparity through the original PSM-Net. (c) Esti-

mated disparity through our proposed method. (d) Disparity error map. (e) Aleatoric Uncertainty.

(f) Epistemic Uncertainty.

base model. The source code is implemented using PyTorch framework. For all

experiments, stereo image pairs are randomly cropped and fed into the network

during training. The size of cropped image is consistent with the number in the

original paper of the base model. Using a batch size of 1, the network is trained

on 4 NVIDIA 2080TI GPUs. The weight parameters of the network are initialized

using a uniform distribution and optimized using the Adam algorithm. We pre-

trained the network on the Sceneflow dataset for 15 epochs. The initial learning

rate is set as 0.001 when training with Sceneflow dataset and decreased by a factor

of 10 after 10 epochs. The network is fine-tuned on KITTI dataset for 200 epochs.

We set the initial learning rate as 0.001 and decrease it to 0.0001 after 100 epochs.

By tuning the balance parameters in training loss, the final values are identified as

λsup = 1, λpred = 1, λsmooth = 0.1.

Evaluation Metrics. We use mean absolute error (MAE) as the metric to

evaluate the average deviation of the estimated disparity from the ground truth.
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Figure 6: Sparsification plots. The red, blue and green lines means random plot, oracle plot

and uncertainty plot. From tow to bottom are the sparsification plots of our proposed method,

Bayesian deep learning method and bootstrapped method. From left to right are Aleatoric uncer-

tainty sparsification plot under 3 pixel error metric, Aleatoric uncertainty sparsification plot under

mean average error metric, Epistemic uncertainty sparsification plot under 3 pixel error metric and

Epistemic uncertainty sparsification plot under mean average error metric.

Moreover, we also adopt the percentage of “bad” pixels with different thresholds

2, 3,5 as usually reported in the literature [22].

To evaluate the quality of estimated uncertainties, we adopt commonly used

sparsification plots. All pixels in the disparity map are sorted in order of de-

scending uncertainty. Then, the pixels with the highest uncertainty are removed

gradually and the disparity metrics are calculated on the remaining pixels. If the

estimated uncertainty properly represents the errors in the disparity map, the curve

should be decreasing. The best sparsification plot is obtained by ranking pixels

according to the true errors. We call this curve oracle sparsification. In contrast,

a random uncertainty estimation leads to a flat curve because it offers no use-
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Figure 7: (a) Left stereo image. (b) Estimated disparity under normal settings. (c) Epistemic un-

certainty under normal settings. (d) Left stereo image with overexposure or blurring. (e) Estimated

disparity under settings(d). (f) Epistemic uncertainty under settings(d).

ful information about which pixels are bad. We adopt two quantitative metrics:

Area Under the Sparsification Error (AUSE) and Area Under the Random Gain

(AURG). AUSE means the difference between estimated and oracle sparsification,

thus lower is better. AURG is obtained by subtracting estimated sparsification

from a random one, so higher is better.

4.2. Disparity Estimation results

We evaluate the performance of our proposed methods on stereo matching.

PSM-Net [4], GA-Net [5] and AA-Net [6] are used as the backbone model. We

design Three kinds of training and testing splits. The first one trains and tests

the models only on Sceneflow dataset. The second one pre-trains the models

on Sceneflow dataset and fine-tune it on KITTI dataset.The models are tested on

KITTI dataset. The third one pre-trains the models on Sceneflow dataset and

fine-tune it on Instereo dataset. The models are tested on Instereo2K dataset. We

compare the stereo matching performance of our proposed approach with the orig-
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Figure 8: (a) Left stereo image. (b) Ground truth disparity. (c) Estimated disparity. (d) Epistemic

Uncertainty. Even through the synthetic image has the similar street scene as KITTI dataset, the

model still assigns high epistemic uncertainty.

inal stereo matching models. Table 1 shows that modeling aleatoric and epistemic

uncertainties via our proposed method can improve the stereo matching perfor-

mance. In stereo matching, some ill-posed regions, such as occlusion and reflec-

tion, are hard to match. Modeling uncertainties can reduce the negative effect of

the ill-posed regions with the implied attenuation during training. In Eq. 6, the

network tends to predict smaller alpha values which correspond to high uncertain-

ties. A small alpha will reduce the negative effect of ill-posed regions. On KITTI

dataset, the improvement is a little more pronounced. Fig. 3, Fig. 4 and Fig. 5

show the visualized results of stereo matching and uncertainty estimation. Fig. 5

(b) is the disparity estimated from the original PSM-Net. Fig. 5 (c) is the disparity

estimated through our proposed approach. Some regions are hard to match, such

as sky, object boundaries, and thin objects. Our proposed method performs better

in these regions. We also observe that high uncertainties are assigned on dis-
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Table 1: Quantitative results of disparity estimation.“≥2 px”, “≥3 px” and “≥5 px” show the

percentage of pixels that have more than two, three and five pixels disparity error respectively.

Method Training Datasets Test Datasets Error(%) Mean Error

/ KITTI ≥2 px ≥ 3 px ≥ 5px

PSM-Net SceneFlow SceneFlow 5.23 3.83 2.45 0.88

PSM-Net SceneFlow+KITTI KITTI 3.86 2.47 1.87 0.64

PSM-Net SceneFlow+Instereo2K Instereo2K 4.32 3.41 2.28 0.77

PSM-Net-un SceneFlow SceneFlow 5.11 3.43 2.31 0.82

PSM-Net-un SceneFlow+KITTI KITTI 3.78 2.17 1.75 0.59

PSM-Net-un SceneFlow+Instereo2K Instero2K 4.26 3.35 2.19 0.73

GA-Net SceneFlow SceneFlow 5.45 3.75 2.31 0.84

GA-Net SceneFlow+KITTI KITTI 3.91 2.54 1.86 0.65

GA-Net SceneFlow+Instereo2K Instereo2K 4.37 3.48 2.21 0.79

GA-Net-un SceneFlow SceneFlow 5.12 3.43 2.23 0.80

GA-Net-un SceneFlow+KITTI KITTI 3.84 2.34 1.72 0.62

GA-Net-un SceneFlow+Instereo2K Instero2K 4.31 3.39 2.15 0.74

AA-Net SceneFlow SceneFlow 5.67 3.80 2.39 0.87

AA-Net SceneFlow+KITTI KITTI 3.98 2.60 1.88 0.68

AA-Net SceneFlow+Instereo2K Instereo2K 4.26 3.29 2.21 0.73

AA-Net-un SceneFlow SceneFlow 5.56 3.67 2.28 0.85

AA-Net-un SceneFlow+KITTI KITTI 3.87 2.36 1.78 0.64

AA-Net-un SceneFlow+Instereo2K Instero2K 4.14 3.16 2.03 0.70

tant objects and on object boundaries which have a high probability to get wrong

predictions. Modeling uncertainty in stereo matching can be used to learn loss

attenuation and thus improve the accuracy.

The estimated uncertainty can be used to rectify the ”uncertainty” region. We

applied two kinds of ”refinement mechanisms”. First, we add a CNN-based re-

finement network that takes disparity map and uncertainty map as input. The

output is considered as residual disparity and added to the original disparity. We

use PSM-Net as backbone and evaluate the performance on SceneFlow dataset.
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Table 2: Quantitative results of uncertainty estimation. AUSE means Area Under the sparsification

error (lower is better). AURG means Area Under the Random Gain (higher is better). Mean Error

and “≥3 px” are adopted disparity evaluation metrics.

Method PSM-Net GA-Net

/ Mean Error ≥ 3 px Mean Error ≥ 3 px

/ AUSE AURG AUSE AURG AUSE AURG AUSE AURG

Bayesian 0.182 0.267 0.00119 0.0173 0.178 0.276 0.00116 0.0174

Ensembel 0.179 0.271 0.00117 0.0176 0.176 0.278 0.00115 0.0172

Ours 0.174 0.278 0.00114 0.0183 0.173 0.281 0.00113 0.0176

Table 3: Quantitative results of architecture estimation.

Method Disparity Uncertainty

/ Mean Error ≥ 3px Mean Error ≥ 3px

/ / / AUSE AURG AUSE AURG

PSM-Net-re 0.68 2.57 0.1823 0.2713 0.001201 0.0178

PSM-Net-un 0.59 2.17 0.1739 0.2782 0.001137 0.0183

GA-Net-re 0.69 2.64 0.1789 0.2767 0.001189 0.0193

GA-Net-un 0.62 2.34 0.1728 0.2814 0.001130 0.0179

AA-Net-re 0.72 2.64 0.1802 0.2865 0.001278 0.0172

AA-Net-un 0.64 2.36 0.1765 0.2912 0.001204 0.0180

The mean error dropped from 0.88 to 0.85. Second, we consider the uncertainty

as a mask and replace the disparity with high uncertainty using disparity of sur-

rounding pixel with lower uncertainty. The mean error dropped from 0.88 to 0.86.

4.3. Uncertainty Estimation results

We compared with two state-of-the-art uncertainty estimation methods. Boot-

strapped ensemble methods train an ensemble of N randomly initialized neural

networks. During the inference time, they combined all model predictions to cal-

26



Table 4: Quantitative results of loss estimation.

Method Disparity Uncertainty

/ Mean Error ≥ 3px Mean Error ≥ 3px

/ / / AUSE AURG AUSE AURG

loss-1 0.63 2.40 0.1801 0.2734 0.001181 0.0180

loss-2 0.61 2.24 0.1768 0.2746 0.001154 0.0181

loss-3 0.02 2.25 0.1778 0.2743 0.001163 0.0181

loss-4 0.59 2.17 0.1739 0.2782 0.001137 0.0183

culate the epistemic uncertainty. Bayesian deep learning-based uncertainty quan-

tification methods use dropout strategy to estimation uncertainty. Table 2 sum-

marizes the results of the estimated uncertainties. PSM-Net [4] and GA-Net [5]

with uncertainty estimation are trained on Sceneflow dataset at first and fine-tuned

on KITTI. We evaluate the results on KITTI dataset. Table 2 shows AUSE and

AURG measures of these methods. Our proposed method obtains the highest per-

formance. Our proposed method trains the network in an end-to-end way and

predict the disparity and uncertainty parameters in one forward pass during in-

ference. Our method efficiently reduce the time and computation consumption.

Fig. 6 visualizes the sparsification plots. By removing pixels with large uncer-

tainty, the model performance improves. It shows that the aleatoric and epistemic

uncertainties can be well-calibrated with wrong predictions.

We also evaluate the ability of our proposed uncertainty estimation method to

capture increased epistemic uncertainty on out-of-distribution data. We choose

three representative situations, including blurring, overexposure, and dataset vari-

ation. We use Gaussian kernel to blur the stereo images. Gamma operation is used

to simulate different light conditions. As our model is trained on KITTI dataset,
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we also test it on synthetic street scenes. Fig. 7 shows the disparity and epistemic

uncertainty estimation results. Under strong light or image blurring, the quality

of stereo matching decreases. The epistemic uncertainty values have increased

correspondingly. In autonomous driving cases, it is significant to capture these

special circumstances and give warning information. Fig. 8 shows the dispar-

ity and epistemic uncertainty estimation results on synthetic street scenes. Since

they have the same street scenes with KITTI dataset, the performance of disparity

estimation does not degrade too much. Our proposed method still assigns high

epistemic uncertainties to show that they are out-of-distribution samples.

We compared with three confidence estimation methods [36, 26, 27]. We use

a well-trained PSM-Net to obtain the raw cost volume and disparity map as the

input of confidence estimation models, and then train the confidence estimation

model. We evaluate the performance of confidence estimation using AUSE and

AURG measures under 3 pixels error rates on Sceneflow database. We com-

pare the aleatoric estimation results with these confidence prediction methods.

The AUSE and AURG values of these three confidence estimation methods are

0.00117/0.0180, 0.00116/0.0181, 0.00115/0.0181. The AUSE and AURG values

of our proposed methods are 0.00114/0.0183. These methods have comparable

performance. However, our proposed method aims to predict different uncertain-

ties and is an end-to-end way to estimate both disparity and uncertainty. It has

some advantages over the confidence estimation methods.

4.4. Ablation Study

Architecture. We compare two kinds of network architectures to estimate the

parameters of the evidential distribution. The first one uses convolution to directly

regress v, α, and β from the output of the cost aggregation module. The matching
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Figure 9: Learning curves of loss functions.

probability is not used. We use PSM-Net-re, GA-Net-re and AA-Net-re to rep-

resent them. The second one is our proposed approach. Uncertainty parameters

are predicted for each potential disparity at first. The matching probability is used

as the guidance to obtain output evidence through a weighted average operation.

Table 3 shows that the first architecture performs worse on uncertainty estima-

tion. Moreover, it reduces the accuracy of stereo matching, which is not what we

wanted. In the absence of matching probabilities as a guide, the same convolution

kernel for all pixels cannot distinguish evidence on different disparities. By use-

ing matching probability as the guidance, the uncertainty effectively reflects the

difficulties of stereo matching.

Loss. We propose to train the model using a hybrid loss function, consisting

of evidential learning loss and two regularization terms. Here, we demonstrate

the effectiveness of two proposed regularization terms. Table 4 shows the quan-

titative results of models trained using different loss functions. The evidential

learning loss is the original loss without any regularization (loss-1). The regular-
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ization term based on predictions minimizes the evidence v and α on erroneous

regions (loss-2). The regularization term based on disparity agreement smooths

the evidence on the regions with disparity agreement (loss-3). The combination

of these two regularization terms ensures the constraints on all pixels (loss-4) and

achieves the highest performance. The learning curves of loss functions are shown

in Figure 9. Loss total is the whole loss function. Loss data is the evidential

deep learning loss, which is calculated using annotated pixels. Loss pred regu-

larizes the uncertainty parameters, especially the annotated pixels. Loss smooth

leverages the information from annotated pixels and penalizes surrounding unan-

notated pixels. The loss pred and loss smooth make it possible to constrain all

positions in the stereo image, obtaining better uncertainty estimation results.

5. Conclusion

In this paper, we introduce a deep evidential learning-based approach for

stereo matching and uncertainty estimation. By considering learning as an evi-

dence acquisition process and estimating the parameters of NIG distribution, our

proposed approach can obtain disparity, aleatoric and epistemic uncertainty in an

end-to-end way. It effectively reduces the time and computation consumption

when estimating uncertainty. The proposed two loss terms propagate the supervi-

sory signal so that the network can be trained well even with only sparse disparity

annotations. The current approach also has two main weaknesses. Firstly, ground

truth disparity annotations are still needed, which is not conducive to training on

large-scale datasets. We will study a completely self-supervised uncertainty esti-

mation method. Secondly, there is currently no demonstrable mechanism for us-

ing uncertainty to improve stereo matching results. In particular, epistemic uncer-
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tainty can capture out-of-distribution data, which has the potential to solve domain

adaptation problems. In the future, we will concentrate on these two problems.
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