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Abstract

The influence of proprioceptive feedback on muscle activity during isometric tasks is the subject of conflicting studies. We per-
formed an isometric knee extension task experiment based on two common clinical tests for mobility and flexibility. The task
was carried out at four preset angles of the knee, and we recorded from five muscles for two different hip positions. We applied
muscle synergy analysis using nonnegative matrix factorization on surface electromyograph recordings to identify patterns in the
data that changed with internal knee angle, suggesting a link between proprioception and muscle activity. We hypothesized that
such patterns arise from the way proprioceptive and cortical signals are integrated in neural circuits of the spinal cord. Using the
MIIND neural simulation platform, we developed a computational model based on current understanding of spinal circuits with
an adjustable afferent input. The model produces the same synergy trends as observed in the data, driven by changes in the
afferent input. To match the activation patterns from each knee angle and position of the experiment, the model predicts the
need for three distinct inputs: two to control a nonlinear bias toward the extensors and against the flexors, and a further input to
control additional inhibition of rectus femoris. The results show that proprioception may be involved in modulating muscle syner-
gies encoded in cortical or spinal neural circuits.

NEW & NOTEWORTHY The role of sensory feedback in motor control when limbs are held in a fixed position is disputed. We
performed a novel experiment involving fixed position tasks based on two common clinical tests. We identified patterns of mus-
cle activity during the tasks that changed with different leg positions and then inferred how sensory feedback might influence
the observations. We developed a computational model that required three distinct inputs to reproduce the activity patterns
observed experimentally. The model provides a neural explanation for how the activity patterns can be changed by sensory
feedback.

isometric knee extension; neural control; population model; proprioception; spinal circuits

INTRODUCTION

The execution of a motor task is achieved through the
integration of simple movement commands that are modu-
lated by sensory feedback from the periphery over time. The
role of proprioceptive feedback in the recruitment of muscle
fibers to counter load during a given task is well understood.
However, its role in control of muscle activity, especially in a
commonly tested static task involving a single joint, is still
poorly understood. For example, in the study of a deaffer-
ented man (1), isometric control was shown to be impaired

in some tasks. However, a report (2) on activation patterns in
muscles of the upper arm during an isometric task, where
the limb is restricted in place, showed no change when the
arm position was altered. Previous studies of isometric knee
extension tasks have recorded a change in muscle activation
when the position of the limb is altered through a change in
the knee or hip angles. However, the neural mechanism re-
sponsible for this change has not been confirmed (3–5). Knee
extensions are also used in a clinical test known as STREAM
(6) to assess recovery of acute stroke patients and in a test to
assess the flexibility of the hip flexors known as the Thomas
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test (7). Though the protocols of these tests are well described,
the potential effect of limb positions on the observed attrib-
utes of the muscle, such as tension and strength, and associ-
atedmechanisms remain poorly examined.

In an isometric task that is performed at different limb posi-
tions, the following mechanical aspects should be considered.
At different positions, all muscle lengths are potentially differ-
ent but remain constant during the task. Themaximum active
force produced by a given muscle could also be different at
each position due to the so-called force-length relationship of
muscle fibers (8). At different limb positions, the component
of muscle force required to produce a torque will also change.
Limb position can, therefore, be expected to affect the activity
of Golgi-tendon organs and muscle spindles, which are sensi-
tive to force and muscle length, respectively. However, identi-
fying which afferents are responsible for an observed change
in activity remains a complex task due to a lack of clarity
around neural circuits in the spinal cord and higher areas of
the central nervous system (CNS). Additional cutaneous affer-
ents, particularly from skin stretch receptors or touch and
pressure receptors, could also be activated differently with
changing limb position (9) and this neural coding of position
might be fed back to themotor units during such tasks.

Isometric tasks can help to disaggregate certain proprio-
ceptive effects. For example, primary and secondary afferent
pathways from muscle spindles have been shown to react to
change in muscle length (10, 11). With the limb held in place,
we can expect less influence from dynamic primary spindle
afferents compared with an unconstrained limb. However,
we cannot eliminate static primary and secondary spindle
afferents because recruitment of muscles in the finger has
been shown to increase their activity even in the absence of
length change (12, 13) perhaps due to gamma motor neuron
activation. Due to a reduced effect from primary spindle
afferents, however, isometric tasks can be used to accentuate
the activity of Ib afferents deriving fromGolgi-tendon organs
(14). Ib afferents are sensitive to both the active and passive
force production of a muscle and are not suppressed by the
limb constraint in an isometric task.

Even knowing the source of proprioceptive activity in a
task may not guarantee a positive identification of potential
pathways and mechanisms involved. There are many possi-
ble targets to which afferent pathways have been shown to
project. Spinal interneurons that were once thought to trans-
mit signals from only one source such as Ia interneurons (15)
have since been shown to be supplied by Ib fibers as well
(16). Group II pathways project to interneurons and motor
neurons beyond local agonists and antagonists and are inci-
dent on so-called Ib interneurons (17–19). Beyond reflexes, it
is clear that proprioceptive feedback is integrated in supra-
spinal neural circuits for maintaining balance and ongoing
motor control tasks (20, 21). However, studies that do not
directly interrogate afferent pathways can still provide a
functional explanation for behavior. In their pioneering
modeling work, McCrea and Rybak (22) proposed a pattern
generator model for locomotion in cats without explicit iden-
tification of the neurons involved.

Muscle synergy analysis is a tool for identifying common
sources of activity from recordings of multiple muscles. The
way in which the results of muscle synergy analysis change
in response to limb position might give further insight into

proprioceptive effects on muscle recruitment. Previous stud-
ies (2, 23) have not identified synergy changes in such cases.
However, positive results may be forthcoming with a simpler
isometric extension task. With respect to synergy analysis,
a muscle synergy is a muscle recruitment pattern, often
derived from electromyographic (EMG) recordings ofmultiple
muscles and described in terms of time. Each muscle is given
a weight value that indicates the amount that the recruitment
pattern contributes to its activity. There is great variation in
the way a motor task can be performed, even at a single joint.
The use of muscle synergies by the CNS to alleviate the
degrees of freedom problem is accepted, but there is still dis-
agreement about the mechanism of their recruitment (24–28).
Similar synergies are reported across species, especially for
routine repetitive tasks like locomotion in vertebrates (29).
Often, synergy analysis is used to identify shared activity
across multiple muscles during a task with the assumption
that muscles that share similar activation patterns must have
some common feature to produce them, be it mechanical or
neural (30–32). As well as providing insight directly, synergy
patterns give a clear summary of the structure of experimen-
tal data and are therefore a good method for identifying
changes and trends due to differing conditions even if the
structure is not representative of a so-called motor module as
suggested by Kutch and Valero-Cuevas (33).

A recent review of muscle synergy analysis (34) recom-
mends the use of neural models to reproduce the observed
synergies to better identify the mechanism responsible for the
results. Ideally, a neural model will also yield predictions to be
later validated or otherwise. With this in mind, the aim of this
study is to first, confirm that there is a modulation of muscle
activity during a static knee extension task with changing limb
position. The task is designed as a restricted form of the
STREAM and Thomas tests with the knee constrained and the
hip supported but not held. Secondly, we will show that
the observed effect on muscle activation can be produced by
well understood spinal circuits with proprioceptive origins (35,
36) by qualitatively matching the muscle synergy patterns
from the task to those from a neural circuit model.

MATERIALS AND METHODS

Ethics

The study was conducted according to the Declaration of
Helsinki, and all experimental protocols were approved by
the University of Leeds Research Ethics Committee (refer-
ence no. BIOSCI 16-004). Healthy subjects (n = 17, female = 8)
with an age range of 18–30 yr (24.4± 2.57 yr) were recruited
to participate in this study. Exclusion criteria included previ-
ous knee or leg injuries, if participants had done exercise
within 48 h before testing, had knee stiffness or self-reported
pain, had used recreational or performance enhancing
drugs, had ingested alcohol in the previous 24 h, or were
unable to provide informed consent. Subjects provided
informed written consent to the study, noting possible risks
associated with the activity.

Data Collection

Surface electromyography (sEMG) was recorded from
seven muscles of the subject’s dominant leg: rectus femoris
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(RF), vastus lateralis (VL), vastus medialis (VM), semitendi-
nosus (ST), biceps femoris (BF), medial gastrocnemius (MG),
and tibialis anterior (TA), of which the MG and TA were dis-
carded from further analysis, due to low signal-to-noise ra-
tio. Data analysis was therefore performed on the five
remaining muscle recordings. The skin was prepared for
electrodes with shaving, cleaning with alcohol wipes and
then application of conductive electrode gel. Data were
sampled at 2 kHz using wireless Delsys Trigno IM electrodes.
Electrodes were placed on the muscle belly, positioned by
landmarks as described in Ref. 37.

Experimental Protocol

Subjects were asked to lay supine on a standardmedical ex-
amination bed. The dominant leg was held in a DonJoy
TROM ADVANCE (DJO UK Ltd.) locking knee brace. The
brace is an adjustable rehabilitation device that surrounds the
thigh and calf and can be locked at 10� intervals between 0�

and 90�. When locked, the brace stops all extension or flexion
of the knee. Subjects were then shown how to perform an iso-
metric knee extension, keeping the foot against the bed. They
were provided the resulting sEMG output recorded from RF
as a feedback to help them learn the performance of the task.
Subjects were asked to perform an isometric knee extension
at maximal voluntary effort for five seconds, attempting to
maximise RF activity. During the task, the activity of RF was
monitored and the position of the limb was observed to
ensure no movement occurred. This was repeated six times
with a 3-min rest between contractions.

Using the brace, the dominant knee was fixed at one of
four angles: 0�, 20�, 60�, and 90�. The angle of the knee was
always measured against the hip joint and the bony promi-
nence on the outside of the ankle. Data were collected in two
different positions and sessions for each subject. A picture of
the two positions is shown in Fig. 1. In position 1, the partici-
pant was supine with both legs flat against the bed. As the in-
ternal knee angle was increased from 0�, the dominant leg
was flexed at the hip as well as the knee in the brace such
that the foot was flat on the bed for 20�, 60�, and 90�. In
position 2, the subject was moved down the bed such that
the knee of the dominant leg was beyond the edge. The
foot was supported by a chair and the contralateral leg was
fully flexed at both the hip and knee so that the contralat-
eral foot was flat against the bed. With increasing internal
knee angle, the foot was lowered below the level of the bed
but still supported by the chair. The position selected for
each subject was randomized for their first session. In the

second session, the subject performed the task in the other
position.

Data Preprocessing

The sEMG time series were rectified and then visually
inspected and segmented into equal sections containing one
burst each. Each single burst series was then low-pass fil-
tered at 4 Hz (second-order Butterworth filter) to produce a
smooth output to encourage the muscle synergy process to
capture differences such as maximal activity and baseline
activity instead of more granular activation patterns.
Nonnegative matrix factorization (NMF) was performed on
each burst series across all sEMG channels. NMF was also
performed after normalizing each burst series to its maxi-
mum value.

Synergy Extraction

We used NMF to identify muscle synergies during the
task. Information theory shows that the dimensionality
reduction performed during NMF reflects latent structure in
the data, which can be interpreted as muscle synergies (38).
In muscle synergy analysis, a synergy refers to a component
of the activity of one or more muscles. If the activity of two
or more muscles contains a significant proportion of the
same synergy, this may indicate that there is a “synergistic”
relationship between the muscles. Here, the use of the term
synergy refers to the components produced by the NMF pro-
cess, not the relationship between muscles. NMF’s chief
advantage compared with other approaches is the constraint
of nonnegativity aligning with muscle activity, i.e., muscle
activation is never negative. It is, therefore, easier to inter-
pret the resulting synergies. NMF is also more effective at
identifying latent structure in the data when compared with
other techniques such as principal component analysis (39).

The five smoothed sEMG time series, for each muscle per
burst, were combined into a matrix D of size 5 � nwhere n is
the length of the time series. We used iterative NMF decom-
position algorithms (38, 40) to reduce D to a combination of
twomatrixes,W and C such that,

D � W C ð1Þ
where C is an N � n matrix where N is the chosen NMF rank
factor, in this case, 2. Each row of C represents some structure
in the time series similar to a principal component analysis
component. W is a 5 � N matrix that, when multiplied by C,
approximates matrix D. Each column of W quantifies the
amount that the corresponding row in C contributes to the

Figure 1. An image of the 2 positions of
the experiment (position 1 on the left and
position 2 on the right) and the leg brace
used to constrain the knee.
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original data in D (38, 41–43). Each synergy, s, is represented
by the corresponding columnW*s and row Cs*. We describe Cs*

as the activation pattern of the synergy as it represents some
underlying structure of the original sEMG time series. We refer
toW*s as themuscle contribution vector of the synergy as each
component magnitude indicates the contribution of the syn-
ergy’s activation pattern to the associatedmuscle activity.

Selection of rank factor is critical to achieving dimensional-
ity reduction such that C has fewer rows than D. Rank factor
was chosen consistent with previous literature (44) such that
rank factor was increased to the minimum required for the
variance accounted for (VAF) by W C compared with D was
greater than 90%. VAF was calculated for each synergy profile
for both the individualmuscle and for all muscles collectively.
If VAFwas below 90%, the resulting synergies were discarded.
The iterative optimization algorithm used was initialized
using singular value decomposition to reduce calculation
time and to ensure a unique and reproducible result (45).
Each row in C and column in W was normalized to its maxi-
mum value. Cosine similarity analysis was used in a pairwise
fashion to determine the similarity between subjects’ synergy
vectors and activation coefficientsW*s and Cs* (46).

Neural Population Modeling

We aimed to create a neural population model such that
applying NMF to the firing rate activity of the motor neuron
populations would yield similar trends in activity and syn-
ergy patterns as those identified from the sEMG data. We did
not attempt to reproduce simulated sEMG traces. Instead,
we assumed that the cumulative activity of multiple motor
units described by the average activity of distinct motor neu-
ron populations would serve as a proxy for sEMG. When
designing the model, we considered rate-based models that
represent a population metric, for example, the average fir-
ing rate (47) or oscillation frequency (48), abstracted from
the underlying individual neurons. Rate-based models are
suitable for reproducing firing rates in neural circuits, but
there is no clear relationship with the state of the underlying
neural substrate. Although not essential for this study, in
light of more detailed spinal models used in the field where
individual neurons are simulated (22), as well as future de-
velopment of the modeling work, we are interested in a tech-
nique that retains a closer relationship with the state of the
spiking neurons that comprise the neural circuit. Population
density techniques (PDTs) provide such a balance: they
retain information about the state of neurons in the circuits
but calculate population-level aggregates directly.

Population Density Techniques

PDTs model neural circuits in terms of homogeneous pop-
ulations of neurons. The individual neurons are described
by a model, in this case, exponential integrate-and-fire. The
model of an individual neuron is characterized by a so-called
state space: the values that determine the state of individual
spiking neurons. For a simple neuron model, this can be its
membrane potential. For more complex models, variables
such as the state of a synapse can be included. PDTs repre-
sent a population by a single density function that indicates
how neurons are distributed across the neuron model’s state
space.

MIIND

MIIND is a neural simulator (49, 50) that implements a ver-
sion of a PDT to simulate multiple interacting populations of
neurons. It can provide a visual representation of the probabil-
ity density function by displaying the density during simula-
tion. Figure 6B shows an example of this visual representation.

A network of populations can be built in MIIND using a
simple XML style code format to list the individual popula-
tions and the connections between them. Populations in the
network interact via their average firing rates, which are
assumed to be Poisson distributed spike trains. For each con-
nection, the firing rate of the source population becomes the
average rate of the Poisson distributed input spikes to the des-
tination population. The connections defined in the XML
code have three parameters: the postsynaptic potential or in-
stantaneous synaptic efficacy, the number of individual con-
nections between source neurons and target neurons, and a
delay that can be used to approximate time taken for spike
propagation and synapse transmission.

The Spinal Circuit Model

We usedMIIND to build a network of populations of expo-
nential integrate-and-fire neurons according to the connec-
tivity diagram in Fig. 2. Table 1 shows the connection
parameters for all populations in the model. All populations
use the same underlying neuronmodel as described in Eq. 2.

s
dv

dt
¼ ðv� vrestÞ þ DTe

v� vthres
DT ð2Þ

where v is the membrane potential, vrest = �70 mV, DT = 1.48,
vthres = �56 mV, and s = 3.3 ms. The parameters were chosen
so that populations could produce a wide range of average fir-
ing rates between 0 and 200 Hz to exhibit typical neuronal
frequencies. We chose to use an exponential integrate-and-
fire model in contrast to more commonly used Hodgkin–
Huxley style neurons. This is because the objective was not to
reproduce the sEMG signals exactly but to provide a concise
explanation for the overall trends. We expected that any par-
ticular description of activation of ion channels (as in a
Hodgkin–Huxley style model) would have no significant
impact on the population level activity or synergy patterns in
this task andwould therefore dilute the power of themodel.

The main structure of the network consists of two neural
populations, named “Extensor Interneurons” and “Flexor
Interneurons,” connected together in a network with five
motor neuron populations named MN-RF, MN-VL, MN VM,
MN-ST, and MN-BF for each respective muscle. The two
interneuron populations are named for the group of popula-
tions ofmotor neurons that they inhibit. They also have exci-
tatory connections to the remaining muscles. Therefore, for
example, the Extensor Interneurons inhibit the knee exten-
sors and excite the knee flexors. The interneuron popula-
tions represent combinations of excitatory and inhibitory
neurons and therefore can project both kinds of connections
to other populations in the network. This “network motif” is
based on the idea of autogenic inhibition (51–54), an Ib affer-
ent mechanism that inhibits the homonymous muscle. More
recent work has shown that autogenic inhibition cannot be
considered a local or self-contained reflex mechanism as
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force-dependent inhibition is part of a more distributed sys-
tem (55). However, we have chosen to use homonymous in-
hibition as a functional network pattern here. An alternative
motif could have been based on reciprocal inhibition as
observed with respect to the stretch reflex (56, 57). In fact,
the model does include reciprocal inhibition between the
interneuron populations. However, from the perspective of
the model, there is no functional difference between these
two mechanisms unless a decision is made about the source
of the afferent signals that are incident on the two inter-
neuron populations, i.e., to simulate autogenic inhibition of
one or more of the extensor motor neuron populations in the
model, afferent input signals can be interpreted as Ib affer-
ents originating from the extensor muscles and incident on
the Extensor Interneuron population. To reproduce the
stretch reflex on the same muscles, afferent signals can be
interpreted as muscle spindle afferents from the extensor
muscles and incident on the Flexor Interneuron population.
These features, including the mutual inhibition between the
two interneuron populations, also appear in the central pat-
tern generator (CPG)model of McCrea and Rybak (22).

Cortical drive.
All supraspinal activity in the model comes from the cortical
drive input and is responsible for the “contraction.” It has
been shown that corticospinal pathways are implicated in
the control of more than just direct activation of motor neu-
rons including gating and control of reflexes and presynaptic
inhibition (54, 58–60). However, for the purposes of this
model, we assume that the pathways necessary to activate
the motor neurons directly are open, that the contraction is
produced by a small but significant increase in activity of
these pathways (61), and that they do not change with limb

position. There is a direct connection to all motor neuron
populations. Each population receives the same level of ac-
tivity from the cortical drive even though, in the task, the
participant is asked to maximise the activity of RF. This is
because direct comparison of the sEMG activity across
muscles is unreliable. For example, if the level of sEMG ac-
tivity of VM is twice that of RF, we cannot say that VM is
twice as active because of differences such as the motor unit
density, thickness, and size of each muscle, and the distance
between each muscle and the electrode. We should, there-
fore, expect that the output from the model does not match
directly to the sEMG recordings across muscles but the same
trends should still be observable. Cortical drive also projects
to the extensor and flexor interneuron population to increase
the excitability of the neurons so that they are more respon-
sive to the afferent input signals. During the simulation, the
input to the two interneuron populations and motor neuron
populations begins at 0 Hz before increasing to 20 Hz over 1
s, then 5 s later, dropping back to 0 Hz over 1 s. A frequency
of 20 Hz was chosen to match the beta frequency range com-
monly identified in voluntary motor control tasks (62). The
average firing rate of each of the five motor neuron popula-
tions was generated at a rate of 10 kHz (corresponding to the
0.1-ms time step of the simulation) and then sampled at 2-
ms intervals. NMF was performed on the resultant time se-
ries as described for the experimental recordings.

Afferent inputs and the InhibRF population.
We hypothesized that the observed synergies are produced
by the connectivity of the spinal neural network, chiefly the
homonymous inhibition and heteronymous excitation.
Furthermore, we expected that changes in afferent input
would exaggerate or diminish the contribution vector values

Figure 2. Schematic of connections between simulated spinal populations. Motor neuron (MN)-vastus lateralis (VL), MN-vastus medialis (VM), MN-rectus
femoris (RF), MN-semitendinosus (ST), and MN-biceps femoris (BF) populations are identified as diamonds although all populations consist of exponen-
tial integrate-and-fire neurons. The Extensor and Flexor Interneuron Populations allow both outgoing excitatory and inhibitory connections. All popula-
tions receive a background level of input producing a baseline activity. Parameters for the network connectivity are provided in Table 1. The InhibRF
population is used to offset the level of bias given to the MN-RF population. Afferent Input senFlInt and senExtInt control the balance of input to the flexor
and extensor interneuron populations, respectively, which influences the agonist/antagonist bias. Afferent Input senInhRF represents an additional input,
activated to reproduce the change in activity of RF in position 2. Connections that exist in other models but that are not required to produce the
observed synergies have been omitted. For example, direct afferent inputs to motor neuron populations. The relative strengths of each connection are
not shown but can be found in the connectivity parameters (Table 1).
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without significantly changing the activation patterns.
External inputs could be made to any populations in the
model including the motor neuron populations. To show
that the trends in the activity patterns can be produced with-
out changes to muscle-specific cortical control, we provided
no afferent feedback above the level of the interneuron pop-
ulations (cortical drive). Additionally, we have excluded
direct external connections to the motor neuron popula-
tions. At the scale we have chosen to observe the muscle
activity, identifying monosynaptic versus oligosynaptic con-
nections is not feasible. Excitatory input to each motor
neuron population can still be provided by either of the
interneuron populations.

As shown in Fig. 2, there are three separate afferent inputs
in the model: senFlInt, senExtInt, and senInhRF. They were
added to the model to specifically match the results of the
experiment and so are discussed the RESULTS. Though not
included in the original model, a further interneuron popu-
lation, InhibRF, was added later to allow for control of the
MN-RF motor neuron population separate from the MN-VM
and MN-VL populations. Shevtsova et al. (63) have previ-
ously used an additional inhibitory population of interneur-
ons to reproduce behavior of the bifunctional muscles,
semitendinosus and rectus femoris, in a cat model. We

believe this to be the first time such a technique has been
applied to modeling in human studies. The function of the
InhibRF population is discussed in further detail in the
RESULTS.

Statistical Analysis

All statistical analysis was performed in Python 3.6.2.
Cosine similarity analysis was used to compare sEMG pro-
files, synergy activation patterns, and muscle contribution
vectors. Cosine similarity analysis is sensitive to differences
in vectors that may have equal variation. Significance
between sEMG burst time series was calculated using a two-
sided t test with P< 0.05 based on themean value of the cen-
tral 4 s of each burst corresponding to the majority of the
“active phase” of the task. Significance between muscle con-
tribution vector components was also calculated using a
two-sided t test with P< 0.05.

Code Accessibility

NMF analysis and cosine similarity analysis was per-
formed using a custom-designed program in Python 3.6.2.
MIIND is available at https://github.com/dekamps/miind,
and the model files and simulation results are accessible at
https://github.com/hugh-osborne/isotask.

Table 1. Parameters relevant to each connection between populations and from inputs in the model

Population Name Source Population Name

Postsynaptic Delta

Efficacy, mV

Average Number of

Incoming Connections

to Each Neuron

Connection Delay

Time, ms

Average Firing Rate

Where Defined, Hz

MN-RF Extensor Interneurons �0.052 20 2
MN-VL Extensor Interneurons �0.052 20 2
MN-VM Extensor Interneurons �0.052 20 2
MN-ST Extensor Interneurons 0.052 70 2
MN-BF Extensor Interneurons 0.052 70 2
MN-RF Flexor Interneurons 0.052 70 2
MN-VL Flexor Interneurons 0.052 70 2
MN-VM Flexor Interneurons 0.052 70 2
MN-ST Flexor Interneurons �0.052 20 2
MN-BF Flexor Interneurons �0.052 20 2
MN-RF InhibRF �0.052 70 2
Extensor Interneurons Flexor Interneurons �0.052 70 2
Flexor Interneurons Extensor Interneurons �0.052 70 2
Extensor Interneurons Background 0.1 100 0 300
Flexor Interneurons Background 0.1 100 0 300
InhibRF Background 0.1 100 0 300
MN-RF Background 0.1 100 0 320
MN-VL Background 0.1 100 0 320
MN-VM Background 0.1 100 0 320
MN-ST Background 0.1 100 0 320
MN-BF Background 0.1 100 0 320
MN-RF Cortical drive 0.1 100 0 20�
MN-VL Cortical drive 0.1 100 0 20
MN-VM Cortical drive 0.1 100 0 20
MN-ST Cortical drive 0.1 100 0 20
MN-BF Cortical drive 0.1 100 0 20
Extensor Interneurons Cortical drive 0.1 100 0 20
Flexor Interneurons Cortical drive 0.1 100 0 20
Extensor Interneurons senExtInt 0.1 100 0 0–15
Flexor Interneurons senFlInt 0.1 100 0 0–150��
InhibRF senInhRF 0.1 100 0 0–50��
Values for input activity are provided in the form of an average firing rate. MN, motor neuron; RF, rectus femoris; VL, vastus lateralis;

VM, vastus medialis; ST, semitendinosus; BF, biceps femoris. �During the task, cortical drive input transitions from 0 Hz to these values
then back to 0 Hz. ��During the task, afferent activity transitions from 0 Hz to values in this range depending on the level of afferent
feedback.
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RESULTS

Surface EMG Activity Changes with Limb Position

We recorded from seven different muscles of the leg, but
only five of these were used for further analysis of activity
patterns as on examination the muscles TA and MG were
always inactive, as expected due to the nature of the task.
Figure 3 shows themean sEMG traces for eachmuscle, angle,
and position. The mean value of the central four seconds of
each sEMG trial was used to indicate the level of activity dur-
ing the contraction. In position 1, there is a significant (P <
0.05) drop in the contraction activity of the quadriceps
muscles RF, VL, and VM from 0� to 20�, and 20� to 60�. In
position 2, the drop only occurs between 0� and 20� and is
significantly greater than in position 1. For ST, there is a sig-
nificant increase in the activity between 0� and 20� for both
positions. Finally, at 20�, 60�, and 90�, RF has a significantly
higher contraction activity in position 1 than position 2.

NMF Identified TwoMuscle Synergies from the
Normalized sEMG Activity

To identify synergies appropriate for experiment-model
comparison, NMF was performed on the sEMG recordings,
each normalized to its peak value, with a range of rank val-
ues. The appropriate rank to use was chosen as the number
required to raise the VAF above 90% (Fig. 4). In this case,
rank two raised VAF above this threshold. Although 90% is
an arbitrary threshold, and there are other methods for
choosing appropriate rank, patterns identified by three or
more synergies were less consistent across participants. As
described in Data Preprocessing, each synergy consists of a
column of matrix W with length five (one value per muscle)
and a row of matrix C representing a time series describing
some underlying structure of the original data. For each
muscle, the corresponding component of W*s multiplied by
Cs*, gives the contribution of synergy, s, to that muscle’s

sEMG. Cosine similarity analysis was performed on the syn-
ergy rows and columns across participants for each position,
synergy, and angle. There is high correlation between syn-
ergy 1 results among the participants, regardless of position
and internal knee angle (table in Fig. 4). Though not as high
as synergy 1, there is also high correlation between partici-
pants for synergy 2. Despite some variation, there is a com-
mon pattern of muscle synergy recruitment across all
participants.

Synergy 1 Shows the Coordinated Recruitment of All
Five Muscles

The NMF process generates, for each of the two synergies,
a time series activation pattern and a vector of five values,
one for each muscle. Figure 5 shows the vector and time se-
ries of synergy 1 (Fig. 5A) and 2 (Fig. 5B) for both positions
across different internal knee angles generated from the nor-
malized sEMG recordings. The activation patterns (line
plots) should be considered in conjunction with the five
value muscle contribution vectors shown in the bar charts.
Synergy 1 represents coactivation of all muscles and contrib-
utes to the majority of the observed sEMG activity. Because
of this, the activation pattern closely matches the overall
profile observed in the rectified and smoothed sEMG data
(the transition from low to high to low activity during the
contraction). The highmuscle contribution values for all five
muscles indicates that this activation pattern is present in all
five sEMG recordings. Both the activation pattern and mus-
cle contribution weights are well conserved across all angles,
positions, andmuscle groups.

Changing the Internal Knee Angle Alters the
Contribution Vector Values of Synergy 2

Normalizing the sEMG data before performing NMF has
the effect of setting the maximum activity level of each trial
to 1 and scaling the remaining activity accordingly. This has

Figure 3. Mean surface EMG traces for
each muscle (columns), angle (rows), and
position (bright red for position 1 and dark
blue for position 2). Significance between
plots with P < 0.05 was calculated based
on a two-sided t test of the mean of the
central 4 s of each sEMG trace to compare
the activity of the contraction. �Signifi-
cance between angles in position 1.

†Significance between angles in position
2. #Significance between position 1 and
position 2 for the same angle; n = 17 (male:
9; female: 8). RF, rectus femoris; VL, vastus
lateralis; VM, vastus medialis; ST, semite-
ndinosus; BF, biceps femoris.
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the appearance of scaling the baseline activity of each trial,
which will be different across muscles, angles, and positions
because of either, a difference in themaximal activity or a dif-
ference in the original nonnormalized baseline. NMF chooses
this feature for synergy 2, which explains the shape of the acti-
vation pattern. The contribution vector becomes an inverse
measure of the difference between the baseline activity and
the maximal activity and, as shown in Fig. 5B, the values
change for different knee angles and positions. In position 1 as
the internal knee angle of the recorded leg is increased, the
contribution vector value for ST reduces from a value far
above those corresponding to the agonist muscles. A trend is
less clear for the other antagonist muscle, BF, although the
drop from 0� is still observable. The contribution vector val-
ues of RF, VL, and VM all increase with increasing angle.
Overall, there is a flattening from the extreme differences at
0� as the internal angle approaches 90�. At 90�, magnitudes
are similar for all muscles with neither an antagonist nor ago-
nist bias. There is high variability in the contribution vectors
at this angle, and there appears to be no preference for any
muscles in contrast to the lower angles.

Synergy 1 from the Nonnormalized sEMG Suggests an
Increase in the Contraction Activity of ST

We also extracted two muscle synergies from the rectified
and smoothed but not normalized sEMGs. As with the nor-
malized version, the first synergy accounts for the change in
activity due to the contraction of all muscles. The contribu-
tion vectors, however, now show similar trends observed in
the rectified and smoothed sEMGs. The second synergy has
no common activation pattern between the angles or posi-
tions, and this is true for any chosen rank. However, the con-
tribution vector values for ST in position 1 at 20�, 60�, and
90� are higher than the other muscles, which corresponds to
the raised baseline activity visible in the smoothed sEMG
recordings of Fig. 3. With this variance in ST isolated in
another synergy, the first synergy shows a significant
increase in the contribution vector values for ST for position
1 from 0� to 20�, and 20� to 60�.

The Model with Changes to the Afferent Input Can
Reproduce Trends in the sEMG Recordings

The experimental observations above were used to design
the spinal neural model presented in Fig. 2. The following

results demonstrate the main behavioral features of the
model and how they are influenced by the afferent inputs.
During each MIIND simulation, the cortical drive input was
changed from a low to high activity to simulate the contrac-
tion behavior. The three afferent inputs could be changed to
produce different effects on the output of the model. All pop-
ulations produced average firing rates that were either
passed to connected populations in the network or recorded
for analysis. The activity of the five motor neuron popula-
tions, MN-RF, MN-VL, MN-VM, MN-ST, and MN-BF, was an-
alyzed. The firing rate output from these populations is
shown in Fig. 6A for a range of values of afferent inputs
senFlInt and senExtInt that were chosen to produce firing
rate outputs that qualitatively match the experimental sEMG
traces. The blue dashed plots represent the firing rate output
of each population chosen to match position 2. For example,
Fig. 6A, bottom row, is produced by the model with senFlInt
set to 0 Hz and senInhRF set to 50 Hz. The solid red plots are
matched to position 1. Figure 6A, top row, is identical in both
positions as both have senFlInt set to 150 Hz and senInhRF
set to 0 Hz. Afferent input senExtInt was held constant at 0
Hz as it is not required to simulate the observed trends. The
need for senExtInt is discussed later. The output is much
smoother than the sEMG recording data due toMIIND’s sim-
ulation technique and the lack of many of the experimental
sources of noise. There is undoubtedly a great deal more in-
formation available in the sEMG traces, but the model is
designed only to explain the trends and significant observa-
tions from the experiment. In position 1, to produce a similar
trend in the firing rate activities of the motor neuron popula-
tions to that of the sEMG traces with increasing internal
knee angle, senFlInt must reduce nonlinearly from 150 Hz to
75 Hz to 38 Hz to 0 Hz. For position 2, senFlInt must be
reduced at a higher rate, immediately dropping from 150 Hz
to 38 Hz to match the change from 0� to 20� in the experi-
mental results. An alternative method for producing the
trends without nonlinear input is to use two or more func-
tionally separate but linear afferent inputs. This is discussed
inWhat Is the Source of the Afferent Input in the Model?

Afferent input senInhRF changes the contraction
activity of RF to match positions 1 and 2.
To generate the difference in the contraction activity of RF
between positions 1 and 2, as observed in the rectified and

Figure 4. Average variance accounted for (VAF) screen plot for rank 1 to 5 nonnegative matrix factorization (NMF) dimensionality reduction across all
angles and both positions of the static knee extension task. The 90% VAF threshold indicates that 2 is the appropriate rank to use and therefore the
number of synergies to extract. Error bars show SE. In the table, synergy rows (activation patterns) and columns (contribution vectors as defined in Data
Preprocessing) were compared across all pairs of participants using cosine similarity analysis giving a value between 0 (uncorrelated) and 1 (highly corre-
lated). For both positions (activating or inactivating the contralateral hip flexors) and for all internal knee angles, there is high correlation between sub-
jects indicating that, during the task, the same synergy patterns are being recruited by the majority of subjects; n = 17 (male: 9; female: 8).

SPINAL NEURAL MODEL MODULATES SYNERGIES WITH AFFERENT INPUT

180 J Neurophysiol � doi:10.1152/jn.00208.2021 � www.jn.org
Downloaded from journals.physiology.org/journal/jn (005.068.183.015) on January 17, 2022.

http://www.jn.org


smoothed sEMGs of Fig. 3, an additional inhibitory popula-
tion was added to the model. The new population, InhibRF,
inhibits only the MN-RF population and is facilitated by a
separate afferent input, senInhRF. To match the reduced
contraction activity of RF in position 2, senInhRF is set
slightly greater than in position 1 for 20�, 60�, and 90�, as
shown in Fig. 6.

Interpreting the MIIND simulation results.
The heat plots in Fig. 6B show examples of the probability
density functions produced byMIIND for each population in
the network. As described in Population Density Techniques,
the density function shows the likelihood of finding a neu-
ron from the population with a given membrane potential.
Figure 6B, top, shows the state of the MN-RF population dur-
ing the period before the contraction begins. Figure 6B, bot-
tom, shows the state when the input is maximal. In Fig. 6B,
bottom, there is a higher probability of finding neurons at
the threshold (�51 mV) indicating that the average firing rate
of that population is higher. The population transitions to
the top density once again after the cortical drive returns to

zero. These transitions are also visible in the probability den-
sity functions of the other motor neuron populations due to
the excitation from cortical drive. The behavior of the corti-
cal drive was designed to produce a similar activity pattern
to the observed sEMG signals: an increase to a high level of
activity followed by a decrease to rest.

The activation patterns and synergy 1 contribution
vectors qualitatively match those derived from the
experiment.
In the same manner as the sEMG recordings, rank 2 NMF
was performed on the normalized time series of average fir-
ing rates of the motor neuron populations in the model pro-
ducing a five-value muscle contribution vector and time
series activation pattern for both synergies. The comparison
was made with the NMF synergies derived from normalized
sEMG. In the model, the average contraction activity of each
motor neuron population is identical in the absence of affer-
ent input. As explained in Cortical drive, the sEMG contrac-
tion activity is different between muscles. By normalizing
the sEMG data, the differences between muscles are shifted

Figure 5.Muscle synergies extracted using
rank two nonnegative matrix factorization
(NMF) from a static knee extension task at 4
internal angles of the knee (0�, 20�, 60�,
and 90�) [n = 17, mixed gender, female = 8,
age range of 18–30 yr (24.4±2.57 yr)].
Subjects performed 6 contractions of 5 s
with the subject being asked to maximize
rectus femoris activity. NMF was performed
on the normalized surface EMG (sEMG) of
each subject’s 6 contractions. The experi-
ment was repeated across2 positions inac-
tivating (red values) or activating (blue)
contralateral hip flexors. Line charts are
activation patterns identified by NMF as
underlying structure in the original sEMG
time series. Filled areas show SD. Bar
charts show the contribution of the associ-
ated activation pattern to the activity of
each of the 5 muscles in arbitrary units.
Error bars represent SD. A: synergy 1 dem-
onstrates the coordinated contraction
across muscle groups in line with what is
observed in the rectified and smoothed
sEMG data. B: synergy 2 captures the
inverse of the range of sEMG activity in
each muscle. For both positions, at 0�, the
antagonist muscles have significantly less
activity than the agonists, which results in a
high values for the antagonists. RF, rectus
femoris; VL, vastus lateralis; VM, vastus
medialis; ST, semitendinosus; BF, biceps
femoris.
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from synergy 1 to synergy 2where the trends due to changing
internal knee angle can be seen more clearly although they
are inverted. This is also true for normalized output from the
model where the trends are only caused by changes in affer-
ent inputs. For each trial, the maximal activity value for the
afferent input senFlInt was altered and the results were com-
pared with those of the isometric task. Figure 7 shows the
results from the NMF process. For synergy 1 (Fig. 7A), the
activation pattern matches the shape of the descending
input pattern from the cortical drive input (5 s of maximal
activity with a 1-s ramp up and down). The five muscle con-
tribution values are all well above zero indicating that the
activation pattern is a component in the activity of all the
motor neuron populations. This is in good agreement with
the synergy 1 pattern observed from the sEMG data. The
shape of the synergy 2 activation pattern in Fig. 7B also
appears qualitatively similar to that of the sEMG indicating
that the same feature is being captured.

Changing afferent inputs senFlInt or senExtInt
reproduces the bias in synergy 2 between agonist and
antagonist motor neuron populations.
The degree to which the synergy 2 activation pattern contrib-
utes to each motor neuron population’s activity changes
with the different combinations of afferent inputs. Figure 7B
shows the trend in the synergy 2 contribution vector and
activation pattern with decreasing senFlInt from left to right.
When senExtInt is held at 0 Hz and isenFlInt is greater than
0 Hz, the synergy 2 activation pattern contributes to the knee
flexor motor neuron populations significantly more than the
extensors as was observed in the experimental results with
lower internal knee angles. Figure 7B, rightmost column,
shows the synergies when senFlInt is held at 0 Hz and
senExtInt is raised. The bias in the contribution vector

values of synergy 2 is flipped. An example of this flipped pat-
tern can be seen in the synergy 2 contribution vector for posi-
tion 2 at 20� (Fig. 5). In the model, when both senFlInt and
senExtInt are raised above 0 Hz, the bias is dependent on
which input has higher activity. An additional excitation
from senFlInt over senExtInt causes an imbalance in activity
between the extensor interneuron population and flexor
interneuron population. The resultant higher firing rate of
the flexor interneuron population causes additional inhibi-
tion of MN-ST and MN-BF and excitation of MN-RF, MN-VL,
and MN-VM. Therefore, during the contraction, the extensor
motor neuron populations have a higher maximal firing rate
than the flexor populations. The same pattern can be seen in
the sEMG traces of Fig. 3 at 0�. This mechanism is how bias
in the synergy pattern to either the extensors or flexors is
controlled. When the two inputs are equal, the contribution
of the activation pattern is eliminated across all five
populations.

DISCUSSION
The major findings of this study show howmuscle recruit-

ment in static tasks changes with limb position. The
observed trend in the recorded quadriceps, a nonlinear
increase in maximal activity as the internal knee angle
approaches full extension, can be reproduced by a neural
population model integrating afferent feedback. A separate
effect on the maximal activity of RF was observed between
the two positions.

Differences between the Model Synergies and
Experimental Synergies

The synergy 2 contribution vectors from the sEMG show a
decrease in the values for the knee flexor muscles and an

Figure 6. A: output firing rates of the 5
simulated motor neuron (MN) populations
for different levels of afferent input. The
significant differences observed in the sur-
face EMG data have been reproduced
here with a nonlinear reduction in activity
of afferent input senFlInt and with a change
in afferent input senInhRF between posi-
tions. Red solid lines represent approxima-
tions for position 1. Blue dashed lines
represent approximations for position 2.
RF, rectus femoris; VL, vastus lateralis; VM,
vastus medialis; ST, semitendinosus; BF,
biceps femoris. B: the probability density
function of the MN-RF population in the
model before input from cortical drive (top)
and during the contraction (bottom). Color
brightness indicates the probability of a
neuron in the population having the indi-
cated membrane potential. The y-axis of
the plots represents an arbitrary value for
simple exponential integrate-and-fire neu-
rons. A higher probability at the threshold
of�51 mV indicates a higher average firing
rate for the population.
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increase in the values for the extensor muscles between 0�

and 90�. 90� shows a common mean value for all muscles
with high variability (Fig. 5). This is possibly because, in
each trial at 90�, it was equally likely that NMF would find
one or more muscles with a lower range of activity than the
others. This is backed up by the mean sEMG data that show
a common mean level of activity across muscles at 90�. In
the model, such variation does not occur. Therefore, the vec-
tor values of synergy 2 for the extensor motor neuron popula-
tions remain at zero and, as senFlInt reduces to zero (with
senExtInt at 0 Hz) so do the vector values for the flexor
motor neuron populations.

What Is the Source of the Afferent Input in the Model?

As mentioned, the model is somewhat agnostic about the
source of the afferent inputs because there aremany possible
sources and mechanisms that could be inferred from the
data. Afferent input senFlInt in themodel could be produced
by some cutaneous signal, perhaps pressure from the brace
or the skin touching the bed. This cannot be ruled out.
However, thinking about the mechanical aspects of the task,
the participant works to maintain the leg position while
“maximizing activity of RF.” Therefore, at all angles and
positions, the aim is to keep the muscle-evoked forces in bal-
ance so that the leg does not lift off the bed. A neural mecha-
nism for achieving this could be cortical, spinal, or
distributed but it would still require proprioceptive feed-
back. We know of two well-understood spinal reflex

mechanisms that can perform this function: the stretch
reflex and autogenic inhibition and these were used to build
themodel.

Making the assumption, that proprioception is responsi-
ble for the trends observed in the data, we can eliminate
the dynamic Ia stretch response from the list of possible
sources. During the contraction task, there are no changes
in muscle length that would elicit the dynamic response
(12, 57). It is possible, however, that the static response of
both primary and secondary spindle afferents might
change with internal knee angle. In that case, we would
expect higher afferent activity from muscles that are
stretched further. In the design of the model, the decision
was made to exclude excitatory monosynaptic afferent
connections to homonymous motor neurons. If these had
been included, the model would have produced the oppo-
site trend (increased activation of the quadriceps with
increasing internal knee angle) to what was observed.
Instead of or in addition to muscle length, if tendon force
is the source of the proprioceptive signal, we would again
expect higher afferent activity from stretched muscle due
to the force-length relationship (8). In other isometric
extension tasks, it might be expected that the passive
force-length relationship would be overpowered by the
response to active force from the muscle. However, in this
task, the muscle activity appears to be low across all
muscles including RF compared with sEMG recordings of
the same muscles in similar tasks from other studies (5,

Figure 7.Muscle synergy features extracted
using rank 2 nonnegative matrix factoriza-
tion (NMF) applied to the normalized aver-
age firing rates of the 5 motor neuron
populations in the model for different levels
of afferent senFlInt and senExtInt (Fig. 2). As
with the experimental results, line plots indi-
cate the activation pattern for each synergy
and bar charts indicate that pattern’s contri-
bution to each motor neuron population’s
activity. The contribution vector values are
labeled with the muscle names that corre-
spond to the motor neuron population
names. BF, biceps femoris; RF, rectus femo-
ris; ST, semitendinosus; VL, vastus lateralis;
VM, vastus medialis. A: synergy 1. The con-
tribution vector is the same for all muscles
across all levels of afferent activity. There is
a small increase in the baseline of the acti-
vation pattern but the shape, caused by the
cortical drive, appears at all angles. B: syn-
ergy 2. The high contribution vector values
for the knee flexor populations are high
when senFlInt is 150 Hz. The values reduce
with afferent senFlInt, and at 0 Hz, there is
effectively no synergy 2. When senExtInt is
raised above senFlInt, the trend flips to an
agonist bias.
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64). Furthermore, at 0� and 20�, the hamstrings will be sig-
nificantly stretched, enhancing the effect of passive force.

At 0�, is the greater activity in the quadriceps compared
with the hamstrings a result of increased facilitation or
decreased inhibition? We have made the simplest assump-
tion, that there is additional activation of the quadriceps at
0� rather than supposing a common inhibitory signal across
all muscles and angles, which is itself inhibited in the quad-
riceps at 0�. This final assumption, combined with that of a
proprioceptive signal that gets stronger with increasing mus-
cle length, is supported by the model we have presented
here. As the internal knee angle decreases, the length of the
hamstrings increases, which produces a stronger propriocep-
tive signal exciting the quadriceps and inhibiting the ham-
strings. Though our model implicates the well-known Ib
autogenic inhibitory circuit, it is the heteronymous facilita-
tion that is strongest. We only see increasing inhibition with
decreasing angle in ST, not BF, so we cannot be sure that
another pathway and possibly another proprioceptive source
is responsible.

With the above considerations, it is difficult to deduce the
source of afferent input senInhRF, which affects the contrac-
tion activity of RF differently in the two positions. It could
be the case that the hip is slightly lowered in position 2, due
to the flexion of the contralateral knee and hip. This was not
measured in the experiment but could affect the length of
RF in the two positions.Wemight expect a different hip posi-
tion to also affect ST and that there is a visible difference in
the contraction activities between the two positions but we
cannot show significance at the same angles. We also cannot
rule out a heteronymous interaction from a muscle that
changed in the two positions but was not recorded.

In choosing values of activity for senFlInt, we required a
nonlinear scale to match the trend in the sEMG and synergy
2 vector values from the experiment. Figure 6A and Fig. 7
show how senFlInt must reduce exponentially to match the
equivalent trends with increasing knee angle from the
experiment. Though the change in internal knee angle in
the experiment is itself nonlinear (the 20� angle would need
to be replaced with 30�) it still appears likely that the afferent
input does not scale proportionally with the change in inter-
nal knee angle. An alternative possibility is that there are
two or more functionally separate inputs that sum to pro-
duce a nonlinear effect on the resultant activity. For exam-
ple, it is possible that one input might produce a common
high contraction activity in both positions at 0� but not 20�,
and another may cause higher activity at 20� only in position
1. However, a nonlinear signal that applies to both positions
is the simpler explanation, which is why it was chosen for
themodel.

What Are the Muscle Synergies?

Performing NMF on the normalized sEMG data yielded
two separate activation patterns that were common across
all internal knee angles. Normalizing the data beforehand
made for an easier comparison of the contribution vectors
with the synergies from the model output. An important dis-
tinction between these results and the results of other syn-
ergy analysis studies (65, 66) is that the contribution vector
values are not disjoint across synergies here. ST and BF have

high contribution vector values in both synergies at 0� indi-
cating that both activation patterns contribute to the overall
sEMG activity of the hamstrings. However, when the sEMG
recordings are not normalized, the common activation pat-
tern of the second synergy disappears. This casts doubt that
synergy 2 is representative of a motor module: a common
activation pattern produced by multiple muscles to alleviate
the degrees of freedom problem. Synergies are often derived
from much more than five muscles and for more complex
tasks such as locomotion. More muscles and greater task
complexity increase the need for simplifyingmotormodules.
However, even in this simple task, there is redundancy in
the level of activation of the opposing agonist and antagonist
muscles. Synergy 1 cannot, therefore, be similarly discounted
as a motormodule. Some studies (28, 67, 68) have found syn-
ergies or motor modules encoded in the spinal cord. The
cortical involvement in synergy encoding also cannot be
ruled out (27, 69), but our results suggest that motor modules
might be modulated by proprioceptive input at the level of
the spinal cord. This is in agreement with recent work by
Cheung et al. (70) and Santuz et al. (71) who showed signifi-
cant differences in synergy activation patterns and contribu-
tion vectors in the absence of key proprioceptive signals.

Differences to Other Isometric Knee Extension Tasks

In the experiment, the knee is held in a brace and the leg
is supported in both positions. However, the brace itself is
not constrained and so the hip can be flexed. While the
instruction is explicitly given to maximize the activity of RF,
with visual feedback provided from the RF sEMG, there is an
implicit instruction for the foot to be kept on the bed, i.e., for
the hip angle to be held constant. These instructions are in
conflict but adherence to the second instruction was moni-
tored during the experiment and an increase in the activity
of RF during the contraction indicated that, if not maximal,
some effort was being made to contract RF. The results show
a lower level of muscle activity and a decrease in maximal
sEMG activity with increasing internal knee angle, which is
the opposite trend to other isometric knee extension studies
(3, 72, 73). Additionally, all recorded quadriceps and ham-
string muscles were engaged instead of just the quadriceps,
most likely to keep the hip at a constant angle.

The experimental protocol was designed to mimic the
limb positions formed in the STREAM and Thomas tests.
The benefit of recording from two positions was that we
could identify differences in muscle activation for the same
internal knee angles but different hip angles. In the Thomas
test, the patient lies supine with their contralateral knee and
hip maximally flexed and the foot of the observed leg sup-
ported by the bed. The observed knee and hip are relaxed
and the resting knee angle is recorded. The modified
Thomas test is performed similarly but with the observed
leg unsupported over the edge of the bed. Our findings
show that there is a difference in quadriceps activation
when the internal knee angle is close to 0� and when it is
closer to 90� so a different afferent response should be
expected between the test and its modified version. Our
findings further suggest that these tests, if combined with
sEMG recording, could be used to monitor changes in pro-
priospinal pathways.
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Multiple studies have shown that Parkinson’s disease
affects proprioception, reducing the ability to accurately
sense limb position (74–76). While there appears to be little
effect from Parkinson’s disease on the muscle spindles or
afferent pathways at the level of the spinal cord, the source
of the effect in the brain remains unknown. A candidate area
in the brain is the supplementary motor area (77). By com-
bining a neural model of this area with the spinal model pro-
posed here, a better prediction about the influence of
Parkinson’s disease on proprioception could be made in the
future.

The Use of MIIND

Instead of using the traditional technique of direct simula-
tion of individual neurons, we have demonstrated the use of
the MIIND simulation package, a software environment
allowing easy modeling of populations of neurons. MIIND
requires only the definition of connectivity at the population
level,making it easy to setupandadjust apopulationnetwork
during development. Parameter tweaking is an inevitable
part of the modeling process requiring cycles of adjustment
followedby simulation. Reducing theneed for adjustments to
the neuronmodel itself was one reasonwhywe used the sim-
ple exponential integrate-and-fire instead of a more complex
Hodgkin–Huxley style neuron.Wewere able to reproduce the
desired synergy patterns without the need for such complex-
ity.While building the networkmodel, we experimentedwith
different connection configurations between populations.
MIIND’s XML style code, used to describe the network, made
it simple to add, remove or adjust connections, as well as to
add further populations for the RF and ST bias. For one-
dimensional neuron models, MIIND can simulate a popula-
tion network with much greater speed than direct methods
and this allowed simulations to be run on a local machine
without the need for high-performance computing, signifi-
cantly improving the turnaround timebetween changing and
testing themodel. Fromour experience here, we advocate the
use of simple neuron models where appropriate, i.e., reduce
the dimensionality of the neural model as far as possible.
First, this increases simulation speed and second, this forces
thinking about which are the essential neuronalmechanisms
before simulation starts.

One way to evaluate the success of a model is to consider
how it might be integrated into larger models to answer dif-
ferent research questions. CPG models are constructed from
mutually inhibiting populations of bursting neurons to pro-
duce an oscillating pattern of activity for driving rhythmic
behaviors in many species and areas of the body. The cir-
cuitry of motor neurons and interneurons below the two
layer CPG model for driving fictive locomotion in cats (22)
has many similarities to the model proposed here. Both
include mutually inhibiting populations of interneurons,
with a proprioceptive input. The use of separate inhibitory
populations for controlling bifunctional muscles was also
first demonstrated by Shevtsova et al. (63). Integrating our
model would require a decision about whether the cortical
drive should bemediated by the CPG or if it should bypass it.
Answering this question would give insight into how volun-
tary movements and cycling (CPG controlled) movements
are performed by the same set of neural circuits.

Conclusion

In conclusion, there is a level of disagreement in the litera-
ture about the effect of proprioception on muscle activity in
isometric tasks and about the effect of proprioception on
synergies derived from recorded muscle activity. The syn-
ergy analysis and analysis of the sEMG data from our experi-
ment clearly show that there is an effect caused by a change
in limb position, which we attribute to proprioceptive sig-
nals. In a static knee extension task, as the internal knee
angle approaches 0� at maximal extension, the activity of
the agonist muscles during contraction increases in a nonlin-
ear fashion. In two different positions, but with the same in-
ternal knee angle, rectus femoris displays an increased level
of activity during contraction with the contralateral leg
straightened. By performing muscle synergy analysis on the
sEMG data, we identified a possible additional trend in sem-
itendinosus and used the generated synergy patterns to
design a neural model. We more easily compared the output
of the model, which produces average motor neuron popula-
tion firing rates, with the sEMG results by normalizing before
performing NMF. Though this yielded two clear synergy pat-
terns, the second is unlikely to be representative of a so-
called motor module used to solve the degrees of freedom
problem. When building neural models for comparison with
sEMG, we recommend the use of simple neuronmodels such
as exponential integrate-and-fire where ion channel dynam-
ics are not required to explain observations. Finally, the
model we have demonstrated here should be integrated into
larger models of motor control to add the observed influence
of proprioception at the spinal cord level.
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