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Background: Cell-surface proteins have been widely used as diagnostic and prognostic

markers in cancer research and as targets for the development of anticancer agents. So far,

very few attempts have been made to characterize the surfaceome of patients with breast

cancer, particularly in relation with the current molecular breast cancer (BRCA) classification.

In this view, we developed a new computational method to infer cell-surface protein activities

from transcriptomics data, termed ‘SURFACER’.

Methods: Gene expression data from GTEx were used to build a normal breast network

model as input to infer differential cell-surface proteins activity in BRCA tissue samples re-

trieved from TCGA versus normal samples. Data were stratified according to the PAM50

transcriptional subtypes (Luminal A, Luminal B, HER2 and Basal), while unsupervised clus-

tering techniques were applied to define BRCA subtypes according to cell-surface proteins

activity.

Results: Our approach led to the identification of 213 PAM50 subtypes-specific deregu-

lated surface genes and the definition of five BRCA subtypes, whose prognostic value was

assessed by survival analysis, identifying a cell-surface activity configuration at increased

risk. The value of the SURFACER method in BRCA genotyping was tested by evaluating the

performance of 11 different machine learning classification algorithms.

Conclusions: BRCA patients can be stratified into five surface activity-specific groups hav-

ing the potential to identify subtype-specific actionable targets to design tailored targeted

therapies or for diagnostic purposes. SURFACER-defined subtypes show also a prognostic

value, identifying surface-activity profiles at higher risk.

Introduction
While advances in therapeutic options and diagnostic tools have significantly improved breast cancer
(BRCA) survival, BRCA incidence has continuously increased over the years, especially in high-income
countries [1,2]. It is expected that almost 3.2 million women will be diagnosed with BRCA by 2040,
counting about 1 million new deaths [3]. Clinically, the classification of BRCA relies on histopatho-
logical appearance and expression of hormone and growth factors receptors. Transcriptome profiling of
BRCA patients based on the expression levels of 50 selected genes (PAM50) led to the definition of five
clinically relevant BRCA intrinsic molecular subtypes, namely Luminal A (LumA), Luminal B (LumB),
HER2-enriched (HER2+), Basal (Basal) and Normal-like (Normal) [4–7]. However, the PAM50 intrinsic
subtype classification did not identify claudin-low tumors [7]. Identifying new cancer subtype-specific
biomarkers will provide a more rapid diagnosis and finely tuned classification of BRCA patients to im-
prove disease management.

© 2021 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
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For decades, surface antigens have been frequently adopted for diagnostic and classification purposes in oncol-
ogy. Surface antigens are usually optimal biomarker candidates because they are accessible for both antibody-based
diagnostic and pharmacological interventions [8]. Surface antigens can also be frequently detected from blood sam-
ples for diagnosis and to monitor response to therapy, for example, CA 15-3 or carcinoembryonic antigen (CEA)
[9]. Testing expression levels of HER2 has been a well-established method to identify endocrine-sensitive BRCA pa-
tients or to select patients that would benefit from anti-HER2 therapy, respectively [10]. Human proteins exposed
on the cell-surface represent an important determinant of the complex interface regulating interactions between the
intracellular and the extracellular space, and collectively form the surface proteome or ‘surfaceome’ [11]. Surface
proteins are ideal candidate nodes in cellular networks due to four properties: (1) accessibility: they can be targeted
by drugs and molecular detectors without crossing the plasma membrane [12], (2) pleiotropicity: every human cell
possesses surface proteins [11], (3) precedence: surface receptors often act as the trigger of signaling cascades [13]
and (4) specificity: cell surface markers are frequently associated with specific cell lineages and differentiation states,
both in normal development and diseases such as cancer [14]. Therefore, a focused analysis on cell-surface protein
expression and relationships has the potential to improve molecular characterization of distinct BRCA subtypes to
sustain disease management. For example, it has been recently demonstrated that expression of genes encoding for
cell-surface proteins can distinguish between twodifferentmolecular and histologic prostate cancer subtypes, prostate
adenocarcinoma and neuroendocrine prostate cancer [15]. While mass spectrometry-based proteomics techniques
are far from being implemented in routine clinical settings, RNA-seq has successfully entered clinical diagnostic pro-
tocols as demonstrated with the PAM50 classification [5,6]. However, individual gene expression profiles are often
not sufficient at predicting actual surface protein abundance [16]. Therefore, we have developed a novel method,
called ‘SURFace marker Assessment from Combined Expression analysis in R’ (SURFACER), to infer surface pro-
tein abundance from RNA-Seq data on a sample-by-sample basis. SURFACER is a direct extension of experimentally
validated algorithms to accurately predict protein activity in cancer using weighted aggregation of gene expression
profiles [17,18]. The SURFACER method relies on the interrogation of a context-specific surface protein network
to successfully predict driver genes (also known as ‘Master Regulators’) explaining the observed phenotype [17,19].
This approach, usually applied to the identification of transcription factors driving specific disease states, has been ex-
tended to identify surface proteins acting as master regulators. Thus, SURFACER can define transcriptional modules
linked to a subset of surface proteins expression that can be furtherly used asmodels to stratify BRCA subtypes on the
basis of cell-surface protein expression patterns. This approach is an extension of our previously validated method to
infer surface protein activity accurately in response to plant toxins in leukemia cells [20].

The aim of the present study is to analyze and integrate clinical and transcriptomic data of BRCA tumor samples
from The Cancer Genome Atlas (TCGA) database [6], to identify clinically relevant BRCA surface-specific subtypes
and to validate our findings on tumor samples froman independent cohort, theMolecular Taxonomyof Breast Cancer
International Consortium (METABRIC) database [21]. Relationships between surface-specific BRCA subtypes and
PAM50 molecular subtypes will be highlighted.

Materials and methods
Datasets information
Three independent datasets were used in the present study: the TCGA breast cancer dataset, the GTEx normal breast
dataset and the METABRIC breast cancer dataset. Data from both the TCGA and GTEx cohorts were download
following the recount pipeline, which is designed to remove batch effects present in the two large human datasets
[22]. First, we analyzed 909 cancer samples from 909 patients from the TCGA BRCA cohort, including only patients
with survival clinical information, from the Firehose web portal (https://gdac.broadinstitute.org/). In order to have a
consistent normal tissue reference of similar size, we extracted transcriptional data from 212 healthy breast samples
from the GTEx database (https://gtexportal.org/home/datasets). As a second breast cancer dataset, we downloaded
data fromMETABRIC, including 1980 primary breast cancer gene expression (microarray) samples, via the European
Genome-phenome Archive (EGA) portal [21]. Associated clinical data were downloaded from cBioPortal (https:
//www.cbioportal.org/study/summary?id=brca metabric) on 22 February 2021.

SURFACER Pipeline
The full code to reproduce our analysis is given at the following GitHub URL: github.com/N0toriou5/SURFACER.
All computational steps were performed on aWindows 10 Pro 64 bit workstation with a eight cores i7 processor (3.0
GhZ), 64 GB of RAM. Briefly, the SURFACER pipeline is divided into the following major steps:

• Network analysis to infer the context-specific surface proteins activity network.

2 © 2021 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution

License 4.0 (CC BY).
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• Cluster Analysis for SURFACER subtypes definition.

• Combined Differential Gene Expression/ Master Regulator Analysis to prioritize surface markers.

Below, a description of each major part of the pipeline.

Coexpression-based normal breast surface activity network
We applied a recently developed coexpression-based gene network inference and interrogation algorithm, corto
[18], to build a normal breast network model considering relationships between surface protein-encoding genes
and the whole human transcriptome. Normal breast gene expression data were retrieved from GTEx breast tissue
dataset (n=212). A list of 3088 unique identifiers corresponding to human surface-protein encoding genes was
obtained by manual curation of a larger list obtained by intersection of the terms ‘cell surface’ (GO:0009986), ‘an-
chored component of external side of plasma membrane’ (GO:0031362), ‘apical plasma membrane’ (GO:0016324),
‘external side of plasma membrane’ (GO:0009897), ‘extrinsic component of external side of plasma membrane’
(GO:0031232), ‘intrinsic component of external side of plasmamembrane’ (GO:0031233), ‘plasmamembrane protein
complex’ (GO:0098797), ‘plasma membrane signaling receptor complex’ (GO:0098802), ‘plasma membrane region’
(GO:0098590) and the in silico human surfaceome [11]. This manually curated list of surface proteins, expressed as
gene symbols and NCBI gene ids, is available as Supplementary File S1.
All surface proteins were used as potential hubs (‘centroids’) to run the corto function, in order to build surface

protein-centered coexpression networks. We used the following arguments: nbootstraps = 1000, P=10−10, nthreads
= 8. The network was used as input to infer differential surface protein activity in tumor samples versus normal sam-
ples by using themra-Corto function included in the corto package with the following settings: regulon= the normal
reference surface network built with the corto function corto, minsize = 15, nperm = 1000. The mra-Corto func-
tion performs Master Regulator Analysis (MRA), an algorithm aiming at inferring protein activity by interrogating a
regulon with specific transcriptional signatures [17,18]. MRA can be performed between sample groups (e.g. cancer
versus non-cancer) or on a sample-by-sample basis, providing protein activity relative to the median of the dataset
[23]. A surface activity matrix calculating surface proteins activity on a single-patient basis was therefore obtained
by running the mra-Corto algorithm on the Variance-Stabilizing-Transformed (VST) [24] TCGA-BRCA expression
matrix. For every surface protein subnetwork, genes are ranked according to themaximums of their correlation scores
with the network centroid (i.e. the surface gene of interest), then the mra-Corto function calculates an enrichment
score to reflect the enrichment of a given surface gene’s targets toward the top of the corresponding gene ranking
generated, that is a positive value if target genes are up-regulated in the dataset, or a negative value if target genes are
down-regulated. Then, a normalized enrichment score (NES) is obtained for a particular subnetwork, considering
the size of the subnetwork itself.

Differential gene expression analysis
Weused EdgeR Bioconductor Package [25] to perform differential gene expression analysis on raw counts data tumor
versus normal samples. PAM50 subtype classification was performed through the pamr package [26]. For differential
expression, false discovery rate (FDR) values were obtained by Benjamini and Hochberg method [27]. If not differ-
ently stated, differentially expressed genes (DEG) where defined as showing a |log2FC| > 1 and an FDR ≤ 0.05. To
define critical surface markers, DEGs were filtered for genes showing an absolute NES > 2 (FDR ≤ 0.05) calculated
by MRA tumor versus healthy tissue (i.e. TCGA versus GTEx). Enrichment analysis was performed on Enrichr web
server [28]. Limma Bioconductor package [29] was used to perform differential expression analysis on gene expres-
sion data from the METABRIC cohort versus normal samples from the GTEx cohort.

Heatmap construction and cluster analysis
VST expressionmatrices of 909 patients from the TCGA cohort were used to calculate a single-patient surface protein
activity heatmap through the mra-Corto function as described above. The rows (proteins) and columns (samples)
were then ordered based on a hierarchical cluster by applyingWard’s method [30] with average linkage and Pearson’s
correlation distance. According to elbow method, which suggested an optimal number of clusters between 4 and 6
(Supplementary Figure S1), patients were grouped into five clusters, renamed for similarity with PAM50 classification
as follows: Basal-like, Lum1, Lum2, Lum3 and Mixed.

PAM50 and SURFACER subtype classifications
The expression levels of the PAM50 panel genes from each of the 909 tumor samples from TCGA were used to carry
out the intrinsic subtype classification of tumors by using the pamr R package. SURFACER network transcriptional

© 2021 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution

License 4.0 (CC BY).

3

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
://p

o
rtla

n
d
p
re

s
s
.c

o
m

/b
io

s
c
ire

p
/a

rtic
le

-p
d
f/4

1
/1

2
/B

S
R

2
0
2
1
2
2
1
8
/9

2
5
7
8
2
/b

s
r-2

0
2
1
-2

2
1
8
.p

d
f b

y
 U

K
 u

s
e
r o

n
 0

8
 D

e
c
e
m

b
e
r 2

0
2
1



Bioscience Reports (2021) 41 BSR20212218

https://doi.org/10.1042/BSR20212218

models were generated, and assignment ofMETABRIC patients to the most likely SURFACER subtypes was obtained
by Pearson correlation following the nearest shrunken centroids classifier method [26].

SURFACER genotyping validation
To explore the accuracy of SURFACER in BRCA patient samples genotyping, TCGA dataset was divided into a train-
ing and a validation set (80–20%, respectively). The performance and accuracy of the following classification algo-
rithms from the caret R package (v 6.0-90) [31] were assessed using 10-fold Cross-Validation: Support Vector Ma-
chines with Radial Basis Function Kernel (svm), Stochastic Gradient Boosting (gbm), Random Forest (rf), k-Nearest
Neighbors (knn), Nearest Shrunken Centroids (pam), Greedy Prototype Selection (protoclass), Multi-Layer Percep-
tron (mlp), Linear Discriminant Analysis (lda), Bayesian Generalized LinearModel (bgm), Stabilized Nearest Neigh-
bor Classifier (snn) and Neural Networks with Feature Extraction (pcan). The performance of the different ML algo-
rithms was tested using the following two parameters: accuracy and the Cohen’s Kappa statistics.

Survival model
Survival analysis was performed using the survival and survminer R CRAN packages. The effect of each selected
surface gene on survival was estimated using a univariate Cox proportional hazard model with the survival informa-
tion of the 909 patients of the TCGA cohort. Kaplan–Meier curves for each group were generated, and the survival
distributions were compared using Log-Rank test. The same approach was followed with METABRIC data.

Results
The surfaceome of PAM50 subtypes
Batch-corrected raw counts data fromTCGA-BRCA andGTEx breast tissue patients weremerged together in a single
raw gene expression countsmatrix. In total, 954 tumor samples from the TCGA-BRCA dataset and 212 normal breast
tissue reference counts from GTEx were kept in our analysis. Forty-five patients from TCGA lacking overall survival
status information were discarded, leaving a total of 909 BRCA patients expression data. Single patients were assigned
to histological groups using PAM50 gene markers [4,6,26] and differential expression analysis BRCA–TCGA versus
normal breast tissue reference was performed on the whole cohort and on a subtype-specific basis. The complete
transcriptome wide differential expression analysis is available in Supplementary Table S1 for the global breast cancer
(TCGA) versus normal breast (GTEX) contrast, and for individual breast cancer subtypes versus normal breast in
Supplementary Table S2 (PAM50 subtypes) and Supplementary Table S3 (SURFACER subtypes). Differential expres-
sion analysis results were furtherly filtered to focus on surface protein coding genes; this was attained by filtering
differential expression results for the 3088 surface proteins included in the SURFACER curated list (Supplementary
File S1). A normalized enrichment score for each surface protein was obtained by applying the mra-Corto algorithm,
as explained in Materials and Methods. A total of 32 surface genes were found to be critically altered in BRCA ver-
sus normal tissue, 144 of which showed up-regulation at both mRNA expression, and inferred protein activity level
(Figure 1A).
We then investigated differential activity of surface proteins for each intrinsic subtype versus normal reference.

A total of 581 surface coding genes are differentially expressed in all PAM50 intrinsic subtypes versus normal ref-
erence tissue expression, while a subset of surface genes shows restricted differential expression characterizing each
subtype: 111 genes are differentially expressed in basal patients only, 22 in luminal A, 31 genes in luminal B and 49
in HER2+ patients (Figure 1B). The surface protein HER2 (encoded by the ERBB2 gene) is in fact up-regulated in all
subtypes when compared with normal breast tissue, however showing great differences in fold changes. In fact, while
a log2FC = 5.5 can be detected in HER2+ patients versus normal reference, 2.2 and 3.4 log2FC characterized LumA
and LumB samples, respectively. Basal samples showed the smallest difference, with an up-regulation of 1.5 versus
normal samples. Differential expression values of all significant surface targets for each intrinsic subtype are given in
Supplementary Table S1.
The 213 PAM50 subtype-specific surface genes are showed in Figure 2. As previously reported [32], up-regulation

of Folate Receptor alpha (FOLR1) is characterizing the basal subtype, together with programmed death ligand 1
(PD-L1, CD274) [33], while the discovery of many other targets that are readily suitable for immunotargeted therapy
can be enhanced by the SURFACER approach. Among these genes, a total of 35 differentially expressed surface genes
were found to be significantly associated with overall survival in BRCA patients. Thirteen genes out of the 111 genes
characterizing the basal subtype-restricted surface signature showed a prognostic value: an increased risk is expected
for patients expressing high levels of FFAR2, IGSF9B, L1CAM, MPZL3, PTPRH and SLC20A2 (sodium-dependent
phosphate transporter 2, PiT-2), while a protective effect was observed for ADORA1, CXCL16, FZD7, HLA-A,

4 © 2021 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution

License 4.0 (CC BY).
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Figure 1. Up-regulated surface genes in BRCA

(A) EdgeR logFC versus average log Counts Per Million (CPM) plot. In red, critically up-regulated surface proteins are highlighted.

Top 10 critically enhanced BRCA surface markers are labeled. (B) Venn diagram showing the intersection between significant

critically altered surface proteins in PAM50 intrinsic subtypes versus normal reference tissue from GTEx.

© 2021 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution

License 4.0 (CC BY).
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Figure 2. Heatmap of 213 PAM50 subtype-specific significant surface markers

Association of surface markers with prognosis was evaluated by univariate Cox’s regression model coefficients, with positives

coefficients indicating a poor prognosis (pink side bars), and negative coefficients indicating good prognosis (green-blue side

bars). A black box corresponding to FDR value for Cox’s coefficients < 0.05 was indicated.

HLA-B, SMO and TSPAN15. Among the 8 genes mostly characterizing the HER2+ subtype, an increased risk was de-
tected for SCARB2 and SPPL2Aonly, while the remaining (ANO9,CLCNKB, SGCE,CRB2, ICAM3andKLRB1)were
associated with an increased risk when down-regulated. Luminal subtypes showed a total of 14 genes significantly
associated with overall survival, 6 in subtype A and 8 in subtype B. Increased risk was detected for ABCC5, SCN8A
(another sodium channel) and SLC33A1. Indeed, sodium homeostasis is frequently altered in cancer, possibly due to
the misexpression of key sodium channels and transporters like those identified by our study [34]. Down-regulation
is associated with an increased risk for ATP13A2, CD1D, FCER1A, IL4R, KCNK17, LPHN2, LRRC4, MR1, SIP4R,
SORCS and TNFRSF1. Surface genes were annotated to four functional classes, namely enzymes, receptors, trans-
porters and structural molecules, and color labeled accordingly in Figure 2.

6 © 2021 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
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TCGA breast cancer patients clustering according to surface protein

activity
The mra-Corto algorithm was run in sample-by-sample mode to obtain a single-patient surface activity score for
each surface protein coding gene in the SURFACER list. This way, we obtained a dataset-wide readout of normalized
surface activity scores across patients that we used to group patients into clusters showing similar patterns of surface
protein activities: sample-to-sample distance was determined as 1-Pearson correlation coefficient, and hierarchical
clustering was performed by Ward’s method [30]. Elbow method suggested 5 as the optimal number of clusters to
subdivide TCGA patients according to surface proteins inferred activity (Supplementary Figure S1). Relationships
between SURFACER subtypes and PAM50 classification are shown in Figure 3A: TCGA patients belonging to the
basal PAM50 intrinsic subtype (red bar) were similarly clustered to the SURFACER subtype indicated in light pink,
and therefore named ‘basal-like’. A small cluster mainly composed by PAM50 HER2+ and luminal samples, therefore
renamed as ‘mixed’ subtype, was labelled by a khaki green bar. PAM50 Luminal A and B patients were represented
by three different SURFACER clusters that we named as Lum1-3. To note, most of the TCGA cohort was assigned
to the Luminal A subtype that may introduce a potential source of bias in the fine classification of luminal breast
cancers according to surface proteins expression data. However, the current PAM50 classification is considered by
several authors to be insufficient to fully recapitulate BRCA complexity. In fact, the PAM50 panel and intrinsic sub-
types gene signature prototypes were obtained from bulk tissue data, and this can introduce a bias due to sampling
procedures, as also discussed in [35]. Furthermore, one has to take into account that currently available large expres-
sion sets are poorly able to reflect BRCA at the population level [36]; thus, larger curated datasets will be required
to refine predictions. In Supplementary Figure S2, the relative abundance of each SURFACER subtype into classic
PAM50-assigned patients clusters is showed. To note, while few patients would be assigned to the normal-like sub-
type by PAM50 classification, our method identifies those samples as mostly basal-enriched samples. The advantage
of SURFACER subtypes classification is, however, the possibility to identify subtype-specific actionable markers on
the basis of protein activity at network level. Other BRCA classifications do exist, such as [37], but none is specifically
surfaceome-oriented.

Identification of the top markers of SURFACER subtypes
The surfaceome of the five SURFACER clusters was then investigated following the same approach used to character-
ize PAM50 subtypes-specific surfaceomes. Raw differential expression tables containing the differential expression
analysis versus normal reference for each SURFACER subtype is given in Supplementary Table S1, while a selection of
all significant surfacemarkers is given in Supplementary Table S2. Venn diagram showed that 491 surface protein cod-
ing genes are commonly deregulated in all SURFACER subtypes when compared with normal reference tissue gene
expression, while few genes specifically characterize each subtype (Figure 3B). A 106 proteins signature defines the
basal-enriched subtype (Figure 4A). Many genes that were showed to characterize PAM50 basal subtype are included
in this signature, like FOLR1, CD274, and all markers also showing a significant prognostic value, as discussed above.
Enrichment analysis was performed by uploading up-regulated and down-regulated basal-enriched genes into En-
richer web server separately and interrogating the WikiPathways gene sets. While no significant positive enrichment
for any pathway was detected, a significant negative enrichment of the ACE Inhibitor Pathway (FDR= 0.006379) was
observed in basal-enriched subtype-restricted down-regulated surface markers. The Lum1 subtype was mostly char-
acterized by down-regulation of 45 surfacemarkers. By uploading these 45 genes into Enrichr web server, a significant
enrichment of the followingWikiPathwayswas observed: Platelet-mediated interactionswith vascular and circulating
cells, Small Ligand GPCRs, ApoptosisModulation byHSP70 (FDR= 0.021). The Lum2 subtype was characterized by
a small signature of nine genes. Three genes (MembraneMetalloendopeptidase Like 1 [MMEL1], Sphingolipid Trans-
porter 3 [SPNS3] and Intercellular AdhesionMolecule 3 [ICAM3]) were found to be significantly up-regulated in this
subtype, which makes these genes ideal candidates for Lum2-specific targeting. Among these, ICAM3 up-regulation
was previously shown to be correlated with tumor staging and tomediate tumormetastasis [38]. No relevant pathway
enrichment was detected for the Lum2 subtype. Up-regulation of canonical and non-canonical Notch signaling (FDR
= 0.020) was observed in Lum3, while a positive enrichment of RalA downstream regulated genes (FDR = 0.029)
was observed in the mixed subtype.

Validation of the SURFACER method in BRCA genotyping
The accuracy of SURFACER in breast cancer genotyping was tested by estimating the performance of 11 different
machine learning (ML) algorithms on assigning patients to the correct SURFACER subtype. The 10-fold cross val-
idation procedure was performed to test accuracy, sensitivity and specificity of ML predictions. The TCGA dataset

© 2021 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution

License 4.0 (CC BY).
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Figure 3. BRCA patients subtyping according to surface protein network activity

(A) Surface protein network activity heatmap of the TCGA BRCA cohort. Patients were clustered together for surface proteins

inferred activity, and relationships with PAM50 classification were indicated by PAM50 side bar (column). Rowside colors were

added to label surface markers for functional class: enzymes (dark gray), receptors (dark red), structural molecules (yellow) and

transporters (green). Few key surface markers are highlighted. (B) Venn diagram showing the intersection between significant

critically altered surface proteins in SURFACER clusters versus normal reference tissue from GTEx.

8 © 2021 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
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Figure 4. SURFACER subtypes-specific altered genes

Heatmaps showing genes whose activity was differentially altered only in (A) Basal-enriched, (B–D) Lum1-3 and (E) mixed SUR-

FACER subtypes.

© 2021 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution

License 4.0 (CC BY).
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was randomly splitted into two datasets, a training set and a validation set, with a 80–20% split. Thus, the 909 samples
in the TCGA cohort were allocated as follows: 638 samples in the training set, 271 samples in the validation set. A
very good balance in class representation was achieved between training and validation (Basal-enriched, 15.3–15.0%;
Lum1, 28.7–28.9%; Lum2, 17.6–17.8%; Lum3, 22.5–22.2%; Mixed, 15.9–16.1%, respectively). Accuracy and Cohen’s
Kappa were used to estimate the performance of both linear and non-linear ML classification algorithms. Figure
5A shows the results of the analysis: among top performers, Support Vector Machines with Radial Basis Function
Kernel (svm), Stochastic Gradient Boosting (gbm) and Random Forest (rf) showed the highest accuracy (over 0.8),
while k-Nearest Neighbors (knn), Nearest Shrunken Centroids (pam), Greedy Prototype Selection (protoclass) and
Multi-Layer Perceptron (mlp) showed good performances, with accuracy values near 0.8. Worst performances were
showed by Bayesian Generalized Linear Model (bgm), Stabilized Nearest Neighbor Classifier (snn) and Neural Net-
works with Feature Extraction (pcan) algorithms. The svm algorithm was found to be the best performer, showing
an overall accuracy of 0.833 in predicting the correct class in the validation set (confidence interval = 0.777 < 0.833
< 0.8846, P<2.2e-16) and a Cohen’s Kappa = 0.788. The svm predictor showed a 99% accuracy in predicting the
Basal-enriched class (Sensitivity = 1.00, Specificity = 0.99), a 86% accuracy in predicting the Lum1 class (Sensitivity
= 0.79, Specificity = 0.92), a 87% accuracy in predicting the Lum2 class (Sensitivity = 0.78, Specificity = 0.97), a
91% accuracy in predicting the Lum3 class (Sensitivity = 0.90, Specificity = 0.93), and a 85% accuracy in predicting
the Mixed class (Sensitivity = 0.72, Specificity = 0.97).

Since the svm algorithm was found to be the best predictor to classify BRCA patients according to SURFACER
genotyping, we used this algorithm trained on the entire TCGA dataset to classify samples in theMETABRIC cohort.
Subsequently, a differential expression analysis comparing METABRIC samples to GTEx normal reference samples
was performed using limma’s empirical bayes statistics, considering that no rawcounts data but only expression data
for the METABRIC samples were available. We then compared the log2 fold changes characterizing the differential
expression of surface genes of each SURFACER-defined subtype in METABRIC versus the TCGA analysis discussed
above measuring the strength of association by Pearson’s correlation coefficient. A good significant correlation be-
tween the two analyses was detected in every contrast, as showed in Figure 5B–F.
As a proof of concept, we tested the activity of SLC9A1 (NHE1), a well-known Na+/H+ Exchanger known to be

involved in breast cancer metastasis, especially in basal breast cancer subtypes (Supplementary File S2) [39,40] .

The prognostic value of SURFACER subtypes
To investigate clinical relevance of SURFACER clusters, we performed survival analysis taking the overall survival
of TCGA patients as outcome variable (Figure 6A). Overall survival (OS) analysis at 5 years (∼2000 days) revealed
that patients belonging to the mixed subtype experience significantly worse outcomes compared with the other sub-
types. A significant worst prognosis at 11 years follow-up (∼4000 days) is showed by patients belonging to the mixed
phenotype, while better outcomes are observed for basal-enriched patients. However, Kaplan–Meier curves beyond
2000 days are less reliable due to low number of events recorded during long-term follow-ups. To investigate clinical
relevance of SURFACER subtypes on similarly large dataset, we obtained gene expression and clinical data from the
METABRIC Consortium. SURFACER subtypes-specific surface activity signatures were defined by nearest shrunken
centroids classifier method, and patients assigned to the most correlated surface activity subtype by Pearson cor-
relation, as described in materials and methods. As showed in Figure 6B, at 5 years both mixed and basal-enriched
subtypes show the worst prognosis, while at 11 years basal-enrichedOSwas significantly better compared withmixed
subtype patients. Similar OS were observed for Lum1-3 at 5 years, while better outcomes are observed for Lum3 pa-
tients at 11 years. At longer follow-ups, both Lum3 and basal-enriched patients showed better prognosis, while mixed
subtype patients were the ones showing worst outcomes.
Most of the differences showed between TCGA and METABRIC cohorts KM curves may be in part dependent to

the difference in both sample composition and the completeness of associated clinical data. In fact, it was previously
observed that molecular subtypes composition between TCGA and METABRIC datasets is variable, and it does not
adequately capture BRCA real subtype distribution at the population level [36].

Discussion
The availability of relevant biomarkers used for BRCA patients’ classification, diagnosis and prognosis, and thera-
peutic options have increased significantly over the last decade [41]. Recent advances on next-generation sequenc-
ing (NGS) techniques, together with the decrease of NGS associated costs, have tremendously expanded the use of
RNA-seq in clinical practice, leading to the production of a large amount of expression datasets whose information
has still only in part decoded.

10 © 2021 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
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Figure 5. SURFACER genotyping validation

(A) Estimation of the performance of several ML algorithm on sample classification. Accuracy and Cohen’s Kappa of the following

ML algorithms were plotted (confidence level: 0.95): Support Vector Machines with Radial Basis Function Kernel (svm), Stochastic

Gradient Boosting (gbm), Random Forest (rf), k-Nearest Neighbors (knn), Nearest Shrunken Centroids (pam), Greedy Prototype

Selection (protoclass), Multi-Layer Perceptron (mlp), Linear Discriminant Analysis (lda), Bayesian Generalized Linear Model (bgm),

Stabilized Nearest Neighbor Classifier (snn) and Neural Networks with Feature Extraction (pcan). (B–D) Scatterplots showing the

Log2 fold changes of differential expression analysis in TCGA (x-axis) and METABRIC (y-axis) samples versus normal breast tissue

reference samples. Pearson correlation coefficients (R) and significance of each analysis are reported.
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Figure 6. Survival analysis

Overall survival of SURFACER clusters. Kaplan–Meier curves corresponding to the 5 SURFACER clusters were analyzed in both

the (A) TCGA and (B) METABRIC cohorts. Statistical significance was evaluated by Log-Rank test.

BRCA molecular subtype classification, defined by PAM50, was originally proposed to add prognostic/predictive
value to invasive BRCAmolecular characterization. However, most of the relevant information about tumor intrinsic
biology can be masked by bulk sequencing, and some specific properties for the PAM50 subtypes reflect changes
in the patients’ tumor microenvironment (TME) instead of specific molecular changes occurring in cancer cells.
Considering that BRCA can be seen as a disease shaped through the complex relationship between cancer cells and the
local environment, and that this relationship can be partly investigated by focusing on cell surface proteins, which are
the directmediators ofmost of the exchanges occurring between cancer cells and the TME,we developed SURFACER,
a bioinformatics approach to infer cell-surface protein activity fromcontext-specific gene regulatory networks [18,42].
One of the major advantages of our approach is that it may infer protein abundance from gene expression data, by
overcoming known limitations in predicting actual surface protein abundance by applying weighted aggregation of
gene expression profiles and gene network analysis to rank all differential surface protein activities in tumor samples
versus healthy tissues [17,18,42].
We showed that each PAM50 intrinsic subtype can be described by a specific surface protein activity signature,

which includes both known surface markers (like e.g. FOLR1 up-regulation in the basal subtype [32]) and less char-
acterized proteins that may be studied for subtype-specific diagnostic or therapeutic purposes (e.g. targeted therapy).
Since no clearmembrane proteinmarkers have been described so far for LumA, LumB and TNBC subtypes, our novel
approach opened the possibility to identify such markers also for these subtypes, raising the possibility to target them
in a subtype-specific manner.
BRCA patients can be stratified into five surface activity-specific groups, showing some similarities with PAM50

intrinsic subtypes, but having the potential to identify subtype-specific actionable targets to design tailored tar-
geted therapies, or for diagnostic purposes. SURFACER-defined subtypes show also a prognostic value, identifying
surface-activity profiles at higher risk. Themixed phenotype, the one showing the worst prognosis, is characterized by
the restricted deregulation of 15 genes at network level, including some motility/metastatic potential related genes,
like G-protein RalA (RALA) [43], T-cell lymphoma invasion and metastasis-inducing protein (TIAM1) [39], and
NaV 1.6 channels, encoded by the SCN8A gene [40], which may cooperate in shaping an aggressive behavior.

12 © 2021 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
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The identification of optimal surface markers for both diagnostic and therapeutic purposes is a known challenge
in the development of clinically relevant cancer-targeting therapies [44]. While most of the quantitative proteomic
techniques to identify protein markers are currently far from being implemented in routine clinical settings, expres-
sion data are increasingly available from large patients cohorts, along with clinical information. A previous attempt
to investigate BRCA surfaceome was performed by da Cunha in [45], where the authors identified targets to be vali-
dated for diagnostic or therapeutic purposes. However, the advantage of our approach is that it not only relies on gene
expression profiles but also can predict surface protein abundance by inference from coexpression network data, thus
identifying potential targets having a functional relevance in the specific disease. Here, we showed that our network
activity approachmay identify functional alterations whereas the only differential expression information is not suffi-
cient to identify relevant cell-surfacemarkers, and that BRCA genotyping according to the surfaceome can be achived
by our pipeline with a good reproducibility. The availability of large-scale -omics datasets, in this case the TCGA and
METABRIC breast cancer datasets, combined by the development of specific pipelines like SURFACER, is pivotal in
identifying future cancer biomarkers.
Together with transcriptional regulators, surface proteins act as checkpoint modules [46] for tumor-sustaining

signal transduction, and as obvious subjects for future molecular and translational cancer research. Their convenient
accessibility makes them also ideal biomarkers and biotargets for diagnostic tests and personalized therapeutical
strategies, both for traditional pharmacology [47] and for T-cell-mediated immunotherapy [48].

By analyzing patients’ transcriptomes and associated clinical data, SURFACER is able to predict tissue-specific
cell-surface markers showing altered activity in pathological states, also making it possible to stratify patients ac-
cording to clinically relevant specific molecular subtypes. The SURFACER approach can be extended to every cancer
type, and an integrated pan-cancer approach will help defining critical surface markers beyond canonical cancer type
borders [49]. SURFACER is fully generalizable to other human pathologies as well, which may benefit from the char-
acterization of specific biomarkers, such as autoimmune syndromes [50], genetic diseases [51] and virus-mediated
neuroinflammation, where central nervous systems cells are presenting peculiar surfaceomes upon infection [52].
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