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Abstract

Power curves capture the relationship between wind speed and output power

for a specific wind turbine. Accurate regression models of this function

prove useful in monitoring, maintenance, design, and planning. In practice,

however, the measurements do not always correspond to the ideal curve:

power curtailments will appear as (additional) functional components. Such

multivalued relationships cannot be modelled by conventional regression, and

the associated data are usually removed during pre-processing. The current

work suggests an alternative method to infer multivalued relationships in

curtailed power data. Using a population-based approach, an overlapping

mixture of probabilistic regression models is applied to signals recorded from

turbines within an operational wind farm. The model is shown to provide an

accurate representation of practical power data across the population.
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Figure 1: Data that represent an ideal power curve. Measurements from three turbines

over a period of three weeks.

1. Introduction

Given an increased demand for renewable energy, accurate predictive

models are essential to justify, manage, and monitor wind turbine power

generation. In particular, accurate predictions of the power output (under

uncertainty) enable reliable forecasting of the expected income for a complete

wind farm – as well as individual turbines – to support the expansion of

wind-based energy [1]. Robust models of the power output have potential ap-

plications in performance monitoring and operator control, to ensure optimal

use in situ [2, 3].

Power curves capture the relationship between wind speed and turbine

output power [2] – the associated function can be used as a key indicator of

performance [4]. A regression can be inferred to approximate the relationship

given operational measurements (training data) – typically recorded using

Supervisor Control and Sensory Data Acquisition (SCADA) systems [3]. An

example of SCADA data is presented in Figure 1; a regression of these data

should generalise to future measurements given optimal operation of the wind

turbine.

Various techniques have been proposed to model training data that cor-
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Figure 2: Data including power curtailments – corresponding to (a) the ideal power curve

(b) ≈50%-limited output, and (c) zero-limited output. Measurements from seven turbines

over nine weeks.

respond to ideal operation [5–7]. In practice, however, only a subset of

measurements will typically represent this relationship. In particular, power

curtailments will appear as additional functional components; these usually

correspond to the output power being controlled (or limited) by the operator.

Reasons to limit power include: requirements of the electrical grid [8, 9], the

mitigation of loading/wake effects [10], and restrictions enforced by planning

regulations.

An example of operational data including curtailments is shown in Fig-

ure 2. The emergent space is multivalued, differing significantly from the

archetypal curve in Figure 1 (additionally, it cannot be modelled by con-

ventional regression). Typically, the curtailment data are removed during

pre-processing via engineering judgement [2], alongside filtering [11, 12] and

outlier analysis [13, 14] (see Section 2.1 for details).

Disregarding curtailment data is logical when modelling the ideal curve,

corresponding to optimal operation [4]; despite this fact, curtailed observations

are expected in practice. Therefore, a representation of in situ measurements

should model these data, rather than filtering them out, particularly in

monitoring or forecasting applications (outlined in Section 2.1).
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The current work suggests an overlapping mixture of probabilistic regres-

sion models [15] (i.e. Gaussian processes [16]) to infer multivalued power

curves – such as those in Figure 2. The statistical method can represent

operational power data, including curtailments, while negating requirements

for user annotation of the observed data – i.e. categorisation of curtailments is

unsupervised. As a result, the model can represent observations that might be

recorded from in-situ turbines in operation (rather than the ideal case only),

without the need for extensive outlier analysis, filtering, or pre-processing.

2. Related Work

This work relates to existing literature (e.g. [2, 3, 14]) concerning per-

formance monitoring and prediction via wind turbine power curves. As

aforementioned, numerous data-based models have been investigated, many

of which have been summarised in review papers [5–7]. A brief summary is

provided.

Parametric methods fit parametrised functions to power curve data; some

examples include polynomials and sigmoid (tanh/logistic) functions [1, 7, 13].

Parametric models are desirable – sigmoid-type functions in particular – as

properties that appear inherent to power curves can be included; for example:

the cut-in/cut-out wind speeds, bounded power above and below these values,

as well as near-linear behaviour within the bounds. Unfortunately, over-

simplified functions can prove restrictive when approximating the wind-power

relationship, while overly complex models (e.g. high-order polynomials) are

susceptible to overtraining, and require validation procedures to ensure good

generalisation to new data [4].

Alternative methods consider the data alone, and, in general, do not

incorporate prior engineering knowledge. Some examples include multilayer

perceptions [11], random forests [17], and support vector machines [18]. While

these tools have proved effective in various machine learning tasks, many

require stringent validation procedures, as the flexibility of the algorithms

can easily lead to over-parametrised models in wind turbine applications – as

discussed in [4].

To combat the issues of overtraining, one option considers Gaussian

Process (GP) regression [2, 4, 14, 16]. GPs relieve the need for validation
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as they are naturally self-regularising through the Bayesian Occam’s razor

[19]; that is, training/optimisation will find the minimally-complex model

given the observations in the training set. While GPs are typically referred

to as nonparametric, a parametrised mean function (e.g. a sigmoid function)

can be defined in the prior of the model. In general terms, the Bayesian

formulation allows for the natural inclusion of engineering knowledge of the

expected functions, without the need to specify the function directly [16]. As

a result, GP regression can be viewed as a middle ground between purely

data-based methods, and those that are based on engineering knowledge.

2.1. Power-curtailments

There is an established literature concerning power curtailments in wind

energy; for example, [8–10, 20, 21]. Generally, the literature considers physics-

based simulation techniques for prediction, or control procedures to enforce

curtailment – as opposed to data-driven models of wind-power measurements.

For example, Hur and Leithead [9] present a wind farm controller to adjust

the power generated by turbines while considering the requirements of the grid

(for a simulated wind farm). It is shown that, by considering the entire wind

farm in a control system, the output-power can be curtailed more effectively,

such that turbines with high wind-speeds compensate for those with lower

wind-speeds. Bontekoning et al. [10] present an algorithm to determine the

available power of a wind farm during curtailment, when considering the

reduced wake-effect. This phenomenon occurs when a turbine is curtailed,

leading to a reduced wake for downstream turbines; in turn, this leads to

an apparent increase in the available power. A physics-based model is used

to adjust calculations of the available power during curtailment interactions.

A number of papers (e.g. Fan et al. [20], Luo et al. [21]) have analysed the

history of power-curtailments for wind energy in China, to establish potential

solutions and improve the utilisation of the available resources. A range of

technical, planning, and policy-making strategies are proposed, highlighting

the importance of understanding the expected curtailments when planning

wind farm projects.

For data-driven power curve models, the curtailment data are typically

considered as outliers, and removed during pre-processing; this is because the
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typical concern is to characterise ideal operation. While the removal of these

data makes a regression model simpler, the outlier analysis is non-trivial;

for example, Manobel et al. [11] flag and remove outliers using a threshold

based on a Gaussian Process regression, while Marvuglia and Messineo [12]

de-noise the data using kernel principal component analysis. Alternatively,

Marc̆iukaitis et al. [13] use the quartile/interquartile range over windowed

inputs to detect and remove outliers, while Papatheou et al. [14] use labels

for weekly subsets of data, provided by an expert, to remove measurements

that do not correspond to ideal operation.

2.2. Why model power-curtailments?

While it is logical to remove curtailment data when modelling an ideal

wind-power relationship, it is desirable to consider these ‘outliers’ in critical

applications – namely, monitoring, and forecasting. In data-driven monitoring

[22], the model should approximate all the variations of the permitted normal

condition to inform reliable novelty detection. If the model represents ideal

operation only, measurements corresponding to acceptable curtailments (via

control interactions) will be flagged as abnormal. Such a monitoring regime

would lead to a large number of false positives; a recognised issue in the

turbine monitoring literature [3]. On the other hand, accurate curtailment

modelling should prove useful within reliable forecasting frameworks. That

is, if a model considers all of the expected measurements in-situ, it should be

more informative than a model of ideal-operation only; i.e. power predictions

prove more conservative if curtailment data are considered. It should be

noted, however, that the proposed model can only approximate curtailments

that have been previously observed.

Finally, if curtailment data are modelled rather than removed, they can

be naturally separated using the model itself, instead of a separate outlier

analysis procedure. As discussed, the process of outlier removal proves far

from trivial [11–14].

3. Contribution

A novel algorithm is proposed to model curtailments in wind turbine

power curves. The method offers an alternative to the conventional approach,
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which filters out the associated data. The algorithm expands on previous work

concerning Gaussian processes (GP) [2, 4, 14] by inferring an overlapping

mixture-model of GP components – introduced by Lázaro-Gredilla et al.

[15]. An alternative (parametrised) mean function is suggested (for the GPs)

that is scalable, and therefore suited to represent the expected functions

for curtailed data. This choice of mean function allows for the inclusion of

prior engineering knowledge and leads to interpretable hyperparameters. For

each component (i.e. power curve) in the mixture of regression models, input-

dependent (heteroscedastic) noise is approximated (according to Kersting

et al. [23]), an important consideration for probabilistic models of wind turbine

power data [4].

3.1. Layout

Section 4 introduces the SCADA dataset and the issues associated with

modelling operational (curtailed) measurements. Section 5 summarises conven-

tional Gaussian process regression for power curve modelling and introduces a

novel parametrised mean function, as well as methods to approximate input-

dependent noise for curtailment data. Section 6 describes the Overlapping

Mixture of Gaussian Processes (OMGP) for power curve modelling, combined

with ideas from Section 5. Section 7 applies the model to in situ operational

SCADA data, and proposes methods for population-based monitoring with

the OMGP. Section 8 offers concluding remarks.

4. Operational Wind Farm Data: Population-based Monitoring

This work considers a SCADA dataset, recorded from an operational wind

farm owned by Vattenfall, originally presented in [2]. For confidentiality

reasons, information regarding the specific type, location, and number of

turbines cannot be disclosed. The data were recorded from a farm containing

the same model of turbine, over a period of 125 weeks [2, 14]. Observations

consists of the mean power produced and measured wind speed over ten

minute intervals. Sub-samples of this dataset are shown in Figures 1 and 2.

Primarily, the suggested method considers a population-based approach to

performance monitoring – associated with population-based structural health

monitoring (PBSHM) [24–26]. That is, data from a population (the wind
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farm) are considered to infer a model (the power curve) that is representative

of the group – this general model is referred to as the form in PBSHM [24]. To

reiterate: robust and accurate models of in situ population data are required

to monitor the wind farm.

4.1. Dataset details

For the SCADA data analysed in this work, the observations are unla-

belled ; i.e. records of the operational, environmental, or damage condition

are not available. Considering Figure 2, this fact implies that there is no

ground truth to indicate which underlying function generated each sample:

(i) normal operation, (ii) ≈ 50% curtailment, (iii) or zero-power1. As such,

when modelling the curtailments, labels to associate data with wind-power re-

lationships (i - iii) are unobserved and must be represented as latent variables.

It is important to note: if labels were available (in a control log, for example)

they should be observed variables in the model. In the absence of labelling

for functions (i-iii), the model must allocate observations in an unsupervised

manner, which proves non-trivial (consider outlier analysis procedures from

previous work [11–14]).

To clarify, weekly subsets of data are presented in Figure 3; notice that

each set can be associated with more than one operational condition (i-iii).

While separate trends are visually clear, manually labelling each point with

the ground-truth is infeasible. For example, it is clear that data represent

normal (i) and 50% curtailment (ii) in the left of Figure 3; however, it becomes

difficult to assign measurements to functions as they overlap. Likewise, while

certain data clearly correspond to zero-power (iii) in the right of Figure 3, it

is unclear if the remaining data correspond to 50% curtailment (ii) or normal

operation (i).

Conveniently, the labels can be modelled as a latent random variable.

In turn, a predictive distribution can associate ‘soft-labels’ with the data,

such that a (non-zero) likelihood associates measurements with each of the

underlying functions (i-iii).

1While the zero-power trend is not a typical curtailment, is it considered here as a

function whose data are typically filtered out before modelling. Additionally, the data are

interesting to consider, as they differ functionally from other trends in the measurements.
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Figure 3: Examples of weekly data subsets, measured from individual turbines.

4.2. Data selection

While this work aims to represent more realistic measurements from an

operational wind farm, it should be clarified that preprocessing steps are still

required. The study here primarily considers data from a subset of seven

turbines over a period of nine weeks (as well as four alternative turbines over

seven weeks, for validation). Very sparse outliers are removed via a standard

K-nearest-neighbour approach [27]. The subsets of data were selected as

they contain three trends of data (i-iii). It is acknowledged, however, that

alternative curtailments can occur, relating to different levels of limited

power. Some examples of alternative functions from different turbines are

demonstrated in Section 7.1.

5. Gaussian Processes to Model Curtailed Power Curves

Before introducing the overlapping mixture model (as well as heteroscedas-

tic updates) it is useful to summarise conventional GP regression. In this

application, wind speed measurements correspond to the inputs xi, while

power measurements correspond to the outputs yi. Given a set of N train-

ing data, D = {xi, yi}
N

i=1 = {x,y}, the predictive distribution of the power

output y∗ for a new measurement of wind speed x∗ is inferred. Following a
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probabilistic approach, the power curve is modelled by some noiseless latent

function f(xi), plus an independent noise term ǫi,

yi = f(xi) + ǫi (1)

Rather than inferring the parameters of a function f (as with conventional

parametric regression) a GP prior is placed over the functions directly. A

Gaussian prior is also assumed for the noise term ǫi (the other latent variable).

Using a Bayesian framework, a posterior distribution over the expected

functions can be obtained, once training data D have been observed. The GP

prior is defined by its mean m(xi) and covariance function k(xi, xj); while

the Gaussian prior is parametrised by σ,

f(xi) ∼ GP (m (xi) , k (xi, xj)) (2)

ǫi ∼ N (0, σ2) (3)

Over a finite and arbitrary set of inputs x = {x1, . . . , xN}, the GP is a (joint)

multivariate Gaussian [27],

p(f | x) = N (m,Kxx) (4)

where m = {m(xi), . . . ,m(xN)} and f = {f(xi), . . . , f(xN)}, while Kxx is

the covariance matrix, such that Kxx[i, j] = k(xi, xj) ∀i, j ∈ {1, . . . , N}.

Note: square brackets are used to index matrices and vectors when subscripts

become cluttered.

Importantly, via the mean m(xi) and covariance k(xi, xj), the GP prior

can be used to encode knowledge of the expected functions given engineering

judgement (before data are observed). The covariance function determines

the correlation between outputs yi and yj – it determines properties such

as the process variance, and smoothness [15]. A popular (and relatively

interpretable) choice of k(·) is the squared-exponential function (which is

used here),
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k(xi, xj) = σ2
f exp

{

−
1

2l2
(xi − xj)

2

}

(5)

where σf is the process variance, defining variance of the expected functions

about the mean, and l is the length scale, which determines the rate at which

the correlation between outputs decays across the input space (smoothness).

Since the GP is flexible enough to model arbitrary trends [27], a zero-mean

function is typically assumed [15, 16] such that m(xi) = 0; this is usually

(somewhat) justified by subtracting the sample mean and standard deviation

from the outputs y. However, if knowledge of the expected functions can

be encoded via an explicit/parametrised mean (even approximately) this

should be included [24]2. With an explicit mean, the resulting algorithm can

be considered semi-parametric [27], such that the GP models the residuals

between the data and some parametrised function m(xi) (i.e. the prior mean).

5.1. Prior knowledge of the expected functions

As aforementioned, sigmoid functions can be used to approximate the

expected power curve relationship: they exhibit a near-linear relationship

within bounds (cut-in cut-out wind speeds) and horizontal asymptotes (re.

min/max power) for high and low inputs (xi → ±∞). Sigmoids have been

applied to power curves in the past – for parametric regression, e.g. [1, 7, 13],

as well as within GPs [4]. A scaled version of the soft-clip (SC) function,

presented by Klimek and Perelstein [28], is suggested as an alternative for

this application,

m(xi ; β,α) =
α1

β
log

{

1 + eβv

1 + eβ(v−1)

}

(6)

v , α2xi + α3

α , {α1, α2, α2} (7)

2It is acknowledged, however, that a poor choice of prior can lead to inferior predications.
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Relating to power curves, the hyperparameters {β,α} are interpretable.

α1 determines the value of the horizontal (non-zero) asymptote, which corre-

sponds to the maximum (or limited) power. β controls the rate at which the

near-linear section tends to the asymptotic values (around the cut-in/cut-out

wind speed). Finally, α2 scales and α3 translates the function with respect to

the xi axis.

Figure 4 illustrates the effects of {β,α}. Importantly, control of the

convergence rate via β is particularly useful for curtailed data. Consider

the ≈50% limited trend in Figure 2: a sigmoid approximation would need

to be scaled, such that α1 ≈ 0.5, while β must also increase to define

sharper asymptotic behaviour. It is acknowledged that the zero-power trend

(visible in Figure 2) does not resemble a soft-clip function. In fact, a linear

regression would approximate these data – a suitable component is introduced

in Section 6.

5.2. Prediction and optimisation

The collected hyperparameters of the model (associated with the mean

and kernel functions) are θ = {β,α, σf , l, σ}. Keeping these values fixed,

the joint distribution between the training data D = {x,y} = {xi, yi}
N

i=1

and some previously unseen observations {x∗,y∗} = {x∗[i],y∗[i]}
M

i=1 (with

additive noise) is multivariate Gaussian,

[

y

y∗

]

∼ N

([

m

m∗

]

,

[

Kxx +R Kxx∗

Kx∗x Kx∗x∗
+R∗

])

. (8)

R , σ2IN

R∗ , σ2IM (9)

where {R,R∗} define the noise kernels, such that IN denotes an N × N

identity matrix, and IM denotes an M ×M identity matrix. Continuing

similar notation, m∗ = {m (x∗[i])}
M

i=1 denotes the mean vector for the new

observations.

According to the standard identity for conditioning a joint Gaussian

distribution [16, 27], the predictive equations can be defined,
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Figure 4: Effects of the hyperparameters on the mean function of the prior m(xi;β,α)
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p (y∗ | x∗,D) = N (µ∗,Σ∗) (10)

µ∗ , m∗ +Kx∗x (Kxx +R)−1 (y −m)

Σ∗ , Kx∗x∗
−Kx∗x (Kxx +R)−1

Kxx∗
+R∗

i.e. the mean of the posterior predictive function is E [y∗] = µ∗, and the

variance about that mean is V [y∗] = diag(Σ∗) (ignoring cross-terms).

Until this point, the hyperparameters θ = {β,α, σf , l, σ} have been fixed.

In practice, these are (typically) optimised through empirical Bayes [27], i.e.

a type-II maximum likelihood [16], see Appendix A for details.

5.3. Heteroscedastic updates: Estimating input-dependent noise

Currently, the noise term ǫi in equation (1) has been governed by a single

hyperparameter σ. When squared, σ defines the noise variance; in turn, this

defines the noise kernel R (equation (9)). This setup enforces the assumption

that the noise variance is constant across the input domain, leading to a

homoscedastatic GP – that is, the noise variance does not change over xi. To

demonstrate, Figure 5 depicts the homoscedastic GP learnt from the ideal

data (in Figure 1). The model behaves as expected: the mean function of the

prior approximates the relationship as far as possible, while the GP models

the residual between this prior and the data. To highlight this effect, the

residual modelled by the GP can be visualised in the zero-mean transformed

space, that is [yi −m(xi)], Figure 5.

While the expected function E[y∗] is representative of the general trend, the

noise variance is poorly approximated when σ is constant. This is particularly

apparent in the transformed space (yi −m (xi)), where the noise (represented

by the shaded area) is significantly overestimated at high/low wind speeds

(towards the asymptotes) and underestimated in the near-linear (central)

regions. In consequence, as proposed in [4], it is necessary to model power

curve data with input-dependent noise, via heteroscedastic regression [29].

Specifically, the variance of the noise terms is now some function of the inputs

xi, such that,

14



Figure 5: Homoscedastic GP regression of the ideal power curve. The model in the data

space (top) and the zero-mean transformed space (bottom). The black line shows the

prior mean m, the red line shows the predictive mean E[y
∗
], and the shaded region shows

three-sigma of the predictive variance V[y
∗
].
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ǫi ∼ N (0, σ2
i ) (11)

σ2
i = r(xi) (12)

The GP equations remain the same, other than (9), which defined a ho-

moscedastic noise kernel. For a heteroscedastic process, the diagonal of the

noise kernel is now defined by r(xi), rather than a constant, such that,

R , diag ({r(x1), . . . , r(xN)})

R∗ , diag ({r(x∗1), . . . , r(x∗M)}) (13)

where the off-diagonal elements are zero, R is an N ×N matrix, and R∗ is

an M ×M matrix.

Rather than specifying a functional form for the noise variance, an ad-

ditional independent GP is used to infer the function r(xi). As σ must be

strictly positive, the GP models the log-noise levels, denoted g(xi), such that,

log(r(xi)) = g(xi) ∼ GP (µg, kg(xi, xj)) (14)

i.e. a GP prior with constant mean µg and a squared-exponential kernel.

The kernel has the same form as equation (5), with a distinct length scale

and process variance, such that the hyperparameters of the noise-process are

ζ = {µg, σg, lg}.

The training points for the g-process can have arbitrary locations; in

this case, it is convenient that they coincide with the f -process, such that

g = {g(xi), . . . , g(xN)}. Since the noise process has been introduced as addi-

tional (conditionally-independent) latent variables g, the predictive distribu-

tion for y∗ (previously equation (10)) is extended to [23],

p (y∗ | x∗,D) =

∫ ∫

p (y∗ | x∗,g,g∗,D) p(g,g∗ | x∗,D)dgdg∗ (15)

Fixing {g,g∗}, the predictive distribution p (y∗ | x∗,g,g∗,D) is the same as

before – with equation (13) defining the noise kernel R.
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Unfortunately, the term p(g,g∗ | x∗,D) is problematic, as the integral

is intractable. Various approximations of the integral can be implemented;

including Monte-Carlo approximations, as well as variational inference [4, 30,

31]. A simple (and computationally-inexpensive) point-wise approximation

of g is utilised here. This approach is convenient, since input-dependent

noise can be implemented as an update step following inference of the OMGP

(outlined in Section 6). In this case, the approximation was found to be

representative of input-dependent noise for the power curve data.

Specifically, according to Kersting et al. [23], the most likely estimate of

the target noise levels is assumed for the g-process, such that,

p (y∗ | x∗,D) ≈ p (y∗ | x∗, ĝ, ĝ∗,D) (16)

{ĝ, ĝ∗} , argmax
{ĝ,ĝ

∗
}

{p(g,g∗ | x∗,D)} (17)

i.e. most (all) of the density of p(g,g∗ | x∗,D) is assumed to be concentrated

around the mode {ĝ, ĝ∗} [23].

5.3.1. Optimisation of the noise process

To obtain point-wise estimates of g, a homoscedastatic process is initially

learnt by type-II ML – denoted G1 – with hyperparamters θ. (R is a constant

noise kernel, as in equation (9).) Given G1, an empirical estimate of the

most likely noise variance can be calculated for each training observation

{xi, yi} ∈ D, by considering a sample ỹ
(j)
i from the predictive distribution of

G1. If yi and ỹ
(j)
i are viewed as two independent observations from the same

underlying distribution, their arithmetic mean 0.5
(

yi − ỹ
(j)
i

)2

is shown to be

a valid approximation of the noise variance at xi [23]. This can be improved

by taking an expectation w.r.t. the predictive distribution, such that [23],

log {V [yi, G1(xi,D)]} ≈ g′i (18)

= log

{

1

s

s
∑

j=1

0.5
(

yi − ỹ
(j)
i

)2
}

(19)
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here, s is the sample size from the predictive distribution of G1. A suit-

ably large value of s should lead to reasonable estimates: Kersting et al.

[23] recommend s ≥ 100, thus, in this case, s = 100. Having calculated

g′ = {g′1, . . . , g
′
N}, the noise process can be learnt – denoted G2 – by type-II

ML (given {g′,x}) with distinct hyperparameters ζ. Then, conditioning a

joint multivariate Gaussian (as before) the distribution p(g∗ | x∗,x,g
′) can

be used to predict the (logarithmic) noise variance across the input space; in

turn, defining r(xi).

The heteroscedastic GP – denoted G3 – combines G1 and G2; i.e. G2

models the input-dependent noise kernel according to equation (13) for the G1

process. At this point, G1 is set to G3 (G1 ← G3) and each step is repeated

until convergence in the marginal likelihood (of the heteroscedastic process

G3). The optimisation procedure is summarised in Appendix B. Learning

g in this way effectively minimises the average distance between the target

output yi and the predictive distribution of the (heteroscedastic) process G3

at the training inputs [23].

5.4. Heteroscedastic regression of the ideal power curve

The optimised heteroscedastic process for the ideal data is shown in

Figure 6. Unlike the homoscedastic example (Figure 5) the model is represen-

tative of input-dependent noise; to highlight this, the lower sub-plots illustrate

the changing variance (shaded regions) and associated noise-levels over the

inputs (blue line). As expected, a lower variance is associated with the tails

of the sigmoid and a larger variance at the centre. To quantify improvements,

the joint-log-likelihood of the training and test data under the model can be

monitored – this increases from 2.31 × 103 to 3.31 × 103, highlighting that

input-dependant noise better approximates the variance in the data.

The results so far, however, have shown a regression of the ideal observa-

tions only, similar to [4]. The OMGP is now introduced to model curtailed

data, such as those in Figures 2 and 3.

6. An Overlapping Mixture of Gaussian Processes

The overlapping mixture of Gaussian processes (OMGP) model [15, 32]

is introduced to infer regression functions given curtailed power curve data.
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Figure 6: Heteroscedastic GP regression of the ideal power curve. The model in the original

space (top), the zero-mean transformed space (middle), and the expectation of the noise

function σi = E

[

√

r(xi)
]

(bottom). The black line shows the prior mean m, the red line

shows the predictive mean E[y
∗
] = µ

∗
, and the shaded region shows three-sigma of the

predictive variance V[y
∗
] = diag(Σ∗).
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Here, the notation follows that of Lázaro-Gredilla et al. [15]. Rather than a

single GP, the OMGP assumes multiple latent functions to describe the data,

such that,

y
(k)
i =

{

f (k)(xi) + ǫi
}K

k=1
(20)

i.e. each observation is found by evaluating one of K latent functions, with

additive noise: for now, each process is homoscedastic. As discussed, labels

to assign observations to functions are unknown. In consequence, a latent

variable is introduced to the model, Z – this is a binary indicator matrix,

such that Z[i, k] 6= 0 indicates that observation i was generated by function

k. There is only one non-zero entry per row in Z (each observation is found

by evaluating one function only).

The likelihood of the OMGP is, therefore [15],

p

(

y |
{

f (k)
}K

k=1
,Z,x

)

=

N,K
∏

i,k=1

p
(

yi | f
(k)(xi)

)Z[i,k]
(21)

As with the conventional GP, prior distributions are placed over the latent

functions and variables,

P (Z) =

N,K
∏

i,k=1

Π[i, k]Z[i,k] (22)

f (k)(xi) ∼ GP
(

m(k) (xi) , k
(k) (xi, xj)

)

(23)

ǫ
(k)
i ∼ N (0, σ2) (24)

where equation (22) is the prior over the indicator matrix, such that Π[i, :] is a

histogram over theK components for the ith observation, and
∑K

k=1 Π[i, k] = 1.

(Note, colon notation is used to index all columns or rows in a matrix.) The

terms in equation (23) are independent GP priors over each latent function

f (k) with distinct mean/kernel functions
(

m(k) (xi) , k
(k) (xi, xj)

)

. To reduce

the number of latent variables, the prior over the noise variances is defined
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by a shared hyperparameter σ (this is modified later, in the heteroscedastic

updates).

The collected hyperparamters for the model are
{

{θk}
K

k=1 ,Π
}

. The

notation θk denotes a distinct set of mean/kernel function hyperparameters

for the kth component (including the noise kernel). Referring back to the

curtailed data in Figure 2, it is now possible to encode prior engineering

knowledge of the expected functions through the covariance, mean, and

hyperparameters. Here, it is argued that the following are known, given prior

knowledge of wind turbine power curves:

• given the training data (and possibly prior knowledge of the opera-

tional conditions) it should be clear that three latent functions will be

representative of the data, such that3 K = 3;

• for the zero-power relationship, a linear regression (with a constant

kernel) should be representative;

• for the remaining functions (ideal and curtailed data) the soft-clip

equation (6) appropriately describes the expected relationships.

In this setting, while K = 3, the prior includes two independent GPs with a

soft-clip mean (equation (6)) and squared-exponential kernel (equation (5))

function. These priors correspond to the ideal and curtailed curves. For the

final component, a constant kernel is selected k(3)(xi, xj) = c; this reduces

the latent function to a (zero-gradient) linear regression, to approximate the

zero-power data. To summarise, the hyperparameters (of the prior) of the

model are: θk = {βk,αk, σ
(k)
f , lk, σ}

2
k=1 and θ3 = {c, σ}.

6.1. A note on model assumptions

It is important to clarify the modelling assumptions. While the OGMP

infers labels Z, to associate measurements to functions in an unsupervised

manner, the number of functional components (K) and their priors must be

3While it is assumed K = 3, the point-wise classification of each datum remains

unknown.
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defined in advance. (This concept is somewhat analogous to unsupervised

learning with Gaussian Mixture models [27].) As such, while an engineer is

not required to label the data, they are required to predefine an appropriate

number of functions. Here, it is assumed that this can be determined by

inspecting the static training-set (i.e. Figure 2) in an offline sense. In certain

scenarios, however, predefining K and the prior distributions is less trivial;

incremental/online learning, for example. There are several options in this

setting. One can select an appropriate number of components via cross-

validation, considering quantities such as the Bayesian Information Criterion

(BIC) or Bayes factors [27] – an example of cross-validation is provided in

Section 7.1 and Appendix D. Alternatively, K could be considered as an

additional latent variable, and its estimation could be included in the inference.

Unsurprisingly inferring K in this way is more involved, as presented by Ross

and Dy [33].

It is reiterated that the training-data consider a subset of possible curtail-

ments (described in Section 4.2). This consideration should not be an issue

in practice, as the model is flexible in the power curves it can represent. To

demonstrate, the OMGP is learnt for another set of curtailments, measured

from four alternative turbines in the wind farm – the results are presented

in Section 7. It should be acknowledged, of course, that inference will slow

down as more data (or components) are included – a typical caveat when

learning from data. In the context of Gaussian processes, there are a number

of options; for example, sparse approximations could be explored [34].

6.2. Variational approximation

Due to the latent variables
{

f (k)
}

and Z, computation of the posterior

p

(

{

f (k)
}K

k=1
,Z | x,y

)

is now intractable; thus, variational inference (VI)

[31] is implemented. Specifically, VI involves specifying an approximate

density family q(a) ∈ Q over the target conditional p(a | b). The best

candidate q̂(a) can be viewed as q(a) ∈ Q that is closest to the (unknown)

target p(a | b) in terms of the KL-divergence,
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q̂(a) = argmin
q(a)∈Q

KL (q(a) || p(a | b)) (25)

Once found, q̂(a) is the best approximation of p(a | b) within the family

Q [31]. (In this case, a ,

{{

f (k)
}

,Z
}

and b , {y}.) The KL divergence for

equation (25) is defined,

KL (q(a) || p(a | b)) = Eq(a)[log q(a)]− Eq(a)[log p(a | b)] (26)

= Eq(a)[log q(a)]− Eq(a)[log p(a,b)] + log p(b) (27)

(Steps (26) to (27) uses log rules while expanding the conditional.) equa-

tion (27) reveals the dependence on p(b), which is intractable, and why VI

is needed in the first place [31]. Therefore, rather than the KL divergence

(27), an alternative object is optimised that is equivalent to the (negative)

KL divergence up to the term log p(b), which is a constant with respect to

q(z); that is,

Lb(a) = Eq(a)[log p(a,b)]− Eq(a)[log q(a)] (28)

=

∫

q(a) log
p(a,b)

q(a)
d a (29)

This quantity is the referred to as the evidence lower bound (elbo). From (27),

it can be seen that maximising this object will minimise the KL divergence

between q(a) and p(a | b).

Conveniently, equation (29) can be used to construct a lower bound on

the marginal likelihood p(b): i.e. rearranging equation (27) and substituting

in (28) leads to,

log p(b) = KL (q (a) ‖ p (a | b)) + Lb (30)

Since KL(·) ≥ 0 [35], it follows that the evidence is lower-bounded by the elbo,

in other words log p(b) ≥ Lb. This inequality is useful, as Lb can be used to
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monitor the marginal likelihood during inference/optimisation (as with the

conventional GP, equation (A.3)). Substituting notation a ,

{{

f (k)
}

,Z
}

and b , {y} in (29), leads to (32),

log p(y | x) = log

∫ ∫

p
({

f (k)
}

,Z,y,x
)

p
({

f (k)
})

p (Z) d
{

f (k)
}

dZ (31)

≥ Lb =

∫ ∫

q
({

f (k)
}

,Z
)

log
p
({

f (k)
}

,Z,y,x
)

q
({

f (k)
}

,Z
) d

{

f (k)
}

dZ

=

∫ ∫

q
({

f (k)
}

,Z
)

log
p
(

y |
{

f (k)
}

,Z,x
)

p(Z)
∏K

k=1 p
(

f (k) | x
)

q
({

f (k)
}

,Z
) d

{

f (k)
}

dZ

(32)

A family of variational distributions q ∈ Q is now chosen to approximate

p
({

f (k)
}

,Z | x,y
)

such that a mean field assumption is implemented: i.e. q

factorises, q
({

f (k)
}

,Z
)

= q
({

f (k)
})

q (Z). In consequence, due to conju-

gacy, it is possible to analytically update each latent variable in turn (while

keeping the others fixed) such that the bound Lb is maximised (with respect

to that variable). Updates for each factor are iterated until convergence in

the lower bound Lb.
4

6.2.1. Mean-field updates

Firstly, assuming q
({

f (k)
})

is known – and therefore the marginals for

each component q
(

f (k)
)

= N
(

µ(k),Σ(k)
)

– it is possible to analytically

maximise Lb with respect to q(Z), by setting the derivative of the bound to

zero, and constraining q to be a probability density [15],

4At this stage in the inference, the hyperparameters of the model
{

{θk}
K

k=1 ,Π
}

are

fixed – they will be optimised later.

24



q(Z) =

N,K
∏

i=1,k=1

Π̂[i, k]Z[i,k], s.t. Π̂[i, k] ∝ Π[i, k] exp (aik) (33)

aik , −
1

2σ2

(

(

yi − µ
(k)
i

)2

+Σ(k)[i, i]

)

−
1

2
log
(

2πσ2
)

where equation (33) implies the approximated distribution q(Z) is factorised

for each sample [15].

Conversely, assuming q(Z) is known, Lb can maximised with respect to

each latent function q
({

f (k)
})

,

q
(

f (k)
)

= N
(

f (k) | µ(k),Σ(k)
)

(34)

Σ(k) ,

(

K−1(k)
xx +B(k)

)−1

µ(k) , m(k) +Σ(k)B(k)
(

y −m(k)
)

where B(k) is a N ×N diagonal matrix (off-diagonals are zero) with elements,

B(k) = diag

({

Π̂[1, k]

σ2
, . . . ,

[Π̂[N, k]

σ2

})

(35)

To find a candidate q̂ that is closest to the true posterior, q(Z) and q
({

f (k)
})

are initialised from their priors, and they are iteratively updated by alternating

equations (33) and (34). Both updates are optimal with respect to the

distribution that they compute; therefore, they are guaranteed to increase

the (lower bound) on the log-marginal-likelihood [15], equation (32).

6.2.2. Monitoring convergence: An improved lower bound

As in [30], an improved bound is used to monitor convergence, introduced

by King and Lawrence [36]. This object, denoted Lbc, also lower-bounds

the marginal likelihood, while being an upper-bound on the standard vari-

ational bound Lb (equation (32)). (That is, if Lb is subtracted from the
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improved bound, the result is a KL divergence – as KL(·) ≥ 0, this im-

plies that Lbc upper-bounds Lb.) The bound can be defined when the term

log
∫

p
({

f (k)
}

,Z,y,x
)

p (Z) dZ – in the true marginal likelihood, equa-

tion (31) – is replaced with
∫

q(Z) log
p({f (k)},Z,y,x)p(Z)

q(Z)
dZ. Following substi-

tution, it is possible to integrate out p
({

f (k)
})

analytically. Alternatively,

Lázaro-Gredilla and Titsias [30] show that it is possible to obtain the cor-

rected bound by optimally removing p
({

f (k)
})

from the standard bound.

The (implementation friendly) expression for Lbc is as follows [30],

log p(y | x) ≥ Lbc

=
K
∑

k=1

(

−
1

2

∥

∥R(k)⊤\
(

B(k) 1
2

(

y −m(k)
)

)

∥

∥

2
−

N
∑

i=1

logR(k)[i, i]

)

. . .

−KL
(

q (Z)
∥

∥ p (Z)
)

−
1

2

N,K
∑

i=1,k=1

Π̂[i, k] log
(

2πσ
2
)

(36)

R(k) , chol
(

I+B(k) 1
2 K(k)

xx B(k) 1
2

)

KL
(

q (Z)
∥

∥ p (Z)
)

,

K,N
∑

i=1,k=1

Π̂[i, k] log
Π[i, k]

Π̂[i, k]

where chol(·) is the Cholesky decomposition and the backslash operator A\B

solves the systems of linear equations Ac = B for c. The improved, tighter

bound is independent of p
({

f (k)
})

– hence it can be referred to as the

marginalised variational bound [30]. In words, this implies that Lb is the same

as Lbc – for a given q(Z) – when an optimal choice for p
({

f (k)
})

is made

[15]. In consequence, the bound is more stable over different hyperparameter

values [36], and it is more efficient when optimising
{

{θk}
K

k=1 ,Π
}

through

type-II ML (the optimisation scheme is outlined below).
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6.2.3. Optimisation of hyperparameters

A variational inference and Expectation Maximisation (EM) scheme is im-

plemented [31]. The strategy iteratively updates the approximate (factorised)

posterior and then optimises the hyperparameters of the model, while the

(improved) lower bound Lbc on the marginal likelihood is maximised. The

EM steps are repeated until convergence:

1. E-step: mean field updates – iterate equations (33) and (34) until

convergence in Lbc (or Lb), hyperparameters are fixed.

2. M-step: optimise the lower bound Lbc w.r.t. all hyperparameters until

convergence,
{

ˆ{θk}
K

k=1, Π̂
}

= argmax
{{θk}

K

k=1,Π}

{

Lbc

}

the distribution q(Z) is kept fixed.

Having initialised each component from the prior, steps 1 and 2 are iterated

until convergence in Lbc (of the M-step).

6.2.4. Predictive equations

Having learnt the OMGP, it can be used to estimate the latent variables

and functions. These predications are critical in the context of performance

monitoring: i.e. for a given measurement of wind speed xi, the OMGP

can predict the power output yi, and classify the trend (or curtailment)

k ∈ {1, . . . , K}. The posterior predictive likelihood given the unseen inputs

x∗ is,

p(y∗ | x∗,D) ≈
K
∑

k=1

Π[∗, k]

∫

p
(

y∗ | f
(k),x∗,D

)

q
(

f (k) | D
)

d f (k) (37)

=
K
∑

k=1

Π[∗, k] N
(

y∗ | µ
(k)
∗ ,Σ(k)

∗

)

(38)

µ(k)
∗ , m(k)

∗ +K(k)
x∗x

(

K(k)
xx +B(k)−1

)−1
(

y −m(k)
)

Σ(k)
∗ , K(k)

x∗x∗

−K(k)
x∗x

(

K(k)
xx +B(k)−1

)−1

K(k)
xx∗

+R(k)
∗

R(k)
∗ , σ2 IM (39)
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The prior mixing proportion for new observations Π[∗, k] is a fixed hyperpa-

rameter, weighting each component equally a priori, such that Π[∗, k] = 1/K.

Interestingly, the predictive equations for the OMGP are similar to the con-

ventional GP (equation (10)), however, the noise component for the training

data (B(k)−1) is scaled according to Π̂[i, k]−1 [15]. Thus, the noise component

effectively weights the contribution of each observation in D to its posterior

predictive component in the mixture.

Another useful prediction categorises observations according to the most

likely component k. For the training data D, this is simply the maximum a

posteriori (MAP) estimate, given the approximated posterior (33),

k̂i = argmax
k

{

Π̂[i, k]
}

(40)

For the test-data (i.e. weekly wind-power data {x∗,y∗}) the posterior predic-

tive class component k∗ is,

p(k∗ | x∗,y∗,D) =
p(y∗ | x∗, k,D)Π[∗, k]

p(y∗ | x∗,D)
(41)

where the denominator (evidence) was defined in (38), and the numerator is,

p(y∗ | x∗, k∗,D) p(k∗) , N
(

y∗ | µ
(k)
∗ ,Σ(k)

∗

)

Π[∗, k] (42)

the MAP class component k̂∗ can then be defined,

k̂∗ = argmax
k∗

{p(k∗ | x∗,y∗,D)} (43)

Note, classifying new data according to k̂∗ is only possible when both x∗ and

y∗ have been observed. This implies that predictions using equation (43)

should be used in certain monitoring applications (as demonstrated in the

results).
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6.2.5. Input dependent noise approximations for the OMGP

At this stage, it is possible to apply heteroscedastic updates to the OMGP,

according to the method in Section 5.3. In this case, for each kth component,

the noise variance is now considered a function of the inputs,

σ
(k)2

i = r(k)(xi) (44)

log r(k)(xi) = g(k)(xi) ∼ GP (µ(k)
g , k(k)

g (xi, xj)) (45)

i.e. there are K GPs (with hyperparameters ζk = {µ(k)
g , σ

(k)
g , l

(k)
g }) to describe

input-dependent noise for each function in the mixture – rather than a single,

shared hyperparameter σ.

Again, the predictive equation (38) remains similar, where the noise kernels

are updated. In this case, B(k) (from equation (35)) becomes,

B(k) = diag

({

Π̂[I(k)1 , k]

r(k)(x
I
(k)
1
)
, . . . ,

[Π̂[I(k)N , k]

r(k)(x
I
(k)
N

)

})

(46)

where the indices Ik = {I(k)1 , . . . I(k)N } correspond to observations in D whose

MAP label is k. Formally, {xi, yi}i∈Ik
∈ D, where k̂i∈Ik

= k. Additionally,

R(k)
∗ from equation (39) is updated,

R(k)
∗ , diag

({

r(k)(x∗1), . . . , r
(k)(x∗M)

})

(47)

In summary, to approximate the noise-process for each component, the

training data are split into K subsets, according to the MAP classification

(43) given the homoscedastic OMGP and the training data. That is, the

noise-processes are approximated for each component, given the training data

that are associated with that component (according to k̂i) and the framework

outlined in Section 5.3.

7. Results

In total, 8900 observations were sampled from the wind farm data, corre-

sponding to a (selected) subset of seven operational turbines over nine weeks.
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As aforementioned, three trends are present in these data; additional curtail-

ments may be observed in practical data, and can be included in the OMGP

if necessary – an alternative example is provided in Section 7.1. The data

are shown in Figures 2 and 3. Approximately 1/3 (N = 2980 observations)

were using for training here, and the remaining data (M = 5920 observations)

were used as an independent test-set.

OMGP regression of the curtailed data is shown in Figure 7. Given

the training observations (larger • markers), the model has inferred the

multivalued behaviour in an unsupervised manner, including the ideal curve

(orange), ≈ 50% curtailment (green), and the zero-power behaviour (purple).

Visually, the model is representative of the underlying functions, and it

appears to generalise to the test data (smaller · markers). Importantly, the

GP successfully models the residual between prior engineering knowledge

(encoded in the parametrised mean, shown by the black lines in Figure 7)

and the data. Generally, the heteroscedastic updates are representative. The

noise levels are (perhaps) overestimated towards the asymptotes of the power

curves (high and low wind speeds). Additionally, the noise for the zero-power

trend (purple) is overestimated, as it captures some of the data associated

with the ideal/curtailed data – around negative 0.5 normalised wind speed.

Smaller length scales l
(k)
g in the noise-processes g(k) might prove appropriate,

as there is no guarantee that the parameter set
{

{θk, ζk}
K

k=1 ,Π
}

represents

the global minimum of the log-marginal-likelihood. However, following several

initialisations, this realisation was the most representative (and repeatable).

To quantify performance, the normalised mean squared-error (NMSE)

and Mahalanobis squared-distance (MSD) are provided. As the OMGP is a

mixture, each test observation is assessed against its most likely component k̂∗.

In other words, NMSE and (normalised) MSD are assessed for each function

with respect to their most likely data – the corresponding subsets are shown

for each component in the (lower) plots of Figure 7.

ˆNMSE =
100

Mσ2
y
∗

(

µ(k̂∗)
∗ − y∗

)⊤ (

µ(k̂∗)
∗ − y∗

)

(48)
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Figure 7: Heteroscedastic OMGP regression of curtailed power curve data. The mixture

model in the original space (top), and each component in the zero-mean transformed space,

i.e. ȳi = yi −m(k)(xi) (bottom three plots). Black lines show the mean functions of the

prior m(k). The green, orange, and purple lines show the predictive mean µ
(k)
∗ , and shaded

regions show three-sigma of the predictive variance diag(Σ(k)
∗

). Small · markers show

the test set, and larger • markers show the training set. For each component, the data

correspond to their MAP function, according to k̂i and k̂∗.

31



Conventional regression Mixture of regressions

RVM GP OMGP Het-OMGP

NMSE 47.13 46.97 0.26 0.26

MSD 1.01 1.02 1.00 0.73

Table 1: Model performance metrics for the curtailed power curve data.

Similarly, the MSD is,

ˆMSD =
1

M

M
∑

i=1

(

µ
(k̂∗)
∗ [i]− y∗[i]

)2

Σ(k̂∗)[i, i]
(49)

Table 1 quantifies significant improvements in representing the curtailed

power data with a heteroscedastic OMGP. For reference, an alternative

probabilistic regression is included, previously applied in the literature [37],

the Relevance Vector Machine (RVM); implementation details are provided

in Appendix C. It is reiterated, however: the focus is to show improvements

of a mixture of regressions, rather than improvements between conventional

regression models.

The NMSE shows a marked advantage in representing the data with mul-

tiple latent functions. Nonetheless, the NMSE does not highlight advantages

of heteroscedastic updates, since the metric (48) does not consider the predic-

tive variance Σ(k)
∗ . Therefore, the (normalised) MSD in Table 1 highlights

improvements when modelling input-dependent noise for the mixture5.

As discussed, certain hyperparamters can be interpreted. α
(k)
1 corresponds

to the maximum (normalised) power in the prior, and βk determines the rate

of convergence (of the asymptote) for priors with sigmoidal mean functions.

As expected, for the ideal curve (k = 1) the mean of the prior tends to

α
(1)
1 = 1.021. For k = 2 the asymptote tends to α

(2)
1 = 0.4623; this provides a

more accurate estimate of the maximum curtailed output (46.23% rather than

≈ 50%). As expected, the rate of convergence is greater for the curtailment

5It is acknowledged that the MSD is less useful when assessing the fit of the OMGP, as

the error is scaled by the predictive variance Σ(k)
∗

; thus, the MSD is used only to assess

the predictive variance Σ(k)
∗

.
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Conventional regression Mixture of regressions

RVM GP OMGP Het-OMGP

NMSE 10.46 10.19 0.15 0.15

MSD 0.98 0.98 0.70 0.66

Table 2: Model performance metrics when K = 4, including 80% curtailed data.

data (β2 = 28.8) and lower for the ideal data (β1 = 11.4); this can be visualised

in the plots of the prior mean functions (black lines) Figure 7.

7.1. Validation: more turbines and curtailments

To demonstrate the flexibility of the model it is used to infer K > 3 latent

functions, associated with a separate group of turbines in the wind farm.

As before, the turbines exhibit normal, 50% curtailment, and zero-power

relationships; however, an 80% curtailment is also observed. The priors of

the OMGP are defined as in Section 6, with an additional soft-clip mean

function component, such that K = 4. The number of components is verified

via cross-validation in Appendix D. A total of 9973 observations are sampled

from the data, corresponding to a (selected) subset of four turbines over

seven weeks. Approximately 1/3 of the data are used for training and 2/3 for

testing. A representative model is learnt for the alternative latent functions,

visualised in Figure 8. The same metrics are presented in Table 2 to highlight

improvements. Again, the hyperparameters of the OMGP are interpretable: in

particular, for the new curtailment α
(k)
1 = 0.81, corresponding approximately

to 80%.

The validation experiments with four components (K = 4) highlight that

the OMGP can be used to represent a variety of curtailment relationships,

supporting modelling and monitoring procedures for a wide range of data

that should be expected in practice.

7.2. Towards population-based monitoring: entropy measures

Considering applications of monitoring in situ, the OMGP can be used

to inform novelty detection and classification across the wind farm. Novel

observations of wind speed and power (from the full 125 week monitoring

period) can be compared to the OMGP. This approach to performance
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Figure 8: Heteroscedastic OMGP of curtailed data from an alternative group of turbines,

also exhibiting 80% curtailment. Black lines show the mean functions of the prior m(k).

The green, orange, purple, and pink lines show the predictive mean µ
(k)
∗ , and shaded

regions show three-sigma of the predictive variance diag(Σ(k)
∗

). Small · markers show the

test set, and larger • markers show the training set.

monitoring is an approach in population-based SHM, whereby a general

model, referred to as the form [24], is used to represent the behaviour of

members within a population. In this case, the form is the OMGP and the

population is the wind farm.

When monitoring via the power curve, the error given the predicted

output (e.g. equations (48) and (49)) can be used for novelty detection, as

in [2, 14, 24]. Alternatively, with the OMGP, given wind speed and power

observations, measurements can be classified using k̂∗ (43). Additionally, the

distribution p(k∗ | x∗,y∗,D) = P (k∗ | x∗,y∗,D) (41) is informative from a

monitoring perspective; this is the probability that {x∗,y∗} were generated

by component f (k) in the mixture. In other words, the probability that new

data correspond to:

• the normal curve (k∗ = 1),

• 50 % curtailment (k∗ = 2),

• or zero-power (k∗ = 3).
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Figure 9: The simplex (grey triangle) associated with the distribution P (k∗ | x∗,y∗
,D).

Points on the simplex represents observations of wind speed and power. Blue ◦ markers

highlight low entropy points, red ◦ markers highlight high entropy points.

As k∗ ∈ {1, 2, 3}, and
∑K

k∗
P (k∗ | x∗,y∗,D) = 1 ∀{x∗,y∗}, it is possible to

view power curve data as points on a 3D simplex, associated with the multi-

nomial distribution p(k∗ | x∗,y∗,D). The grey triangle in Figure 9 visualises

the simplex where points are observations from the test set (concerning the

50% curtailment data). Although initially abstract, the plot is insightful

from a monitoring perspective. It indicates that classes one and two (ideal

and curtailed trends) are regularly confused, while class three (zero power) is

equally confused with the others. This makes sense when inspecting Figure 7:

the ideal and curtailed trends are similar up to a normalised wind speed of

zero, while the zero-power trend is indistinguishable from k = 1 and k = 2 at

low wind speeds.

Given this distribution, the Shannon-entropy can be used as a measure of

uncertainty to indicate if it is likely that new data were generated by latent

functions within the OMGP,
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H(k∗) = −
K
∑

j=1

P (k∗ = j | x∗,y∗,D) logP (k∗ = j | x∗,y∗,D) (50)

With regard to the simplex in Figure 9, each corner of the triangle relates

to low entropy, corresponding to data that are classified with certainty (as

k∗ = 1, k∗ = 2, or k∗ = 3). On the other hand, the centre corresponds to high

entropy, i.e. observations for which each component is equally likely (or none

at all). During monitoring, high entropy data can be investigated, as it is

unclear which component generated them. Examples of high and low entropy

data given the test set are shown by red and blue markers respectively in

Figure 9. Following investigation, if it appears that new data correspond to

an additional latent function (not yet included in the form of the wind farm)

the mixture can be updated accordingly by adding a component, such that

K ← K + 1. Ideas behind modelling and updating the form for a wind farm

population (and subsequent monitoring) are the focus of future work.

8. Conclusions

A novel data-driven model for wind turbine power data has been proposed.

Critically, the method is capable of representing wind/power measurements

including both curtailed and ideal operation. This is an alternative to the

conventional approach, which filters out (and removes) the curtailed (SCADA)

data. Consequently, the model should be representative of in situ behaviour,

rather than ideal operation only.

A mixture of Gaussian processes infers multivalued wind-power relation-

ships without labels to associate data to functions. Each function corresponds

to a different operational condition (power curve) for a wind farm popula-

tion. The algorithm is unsupervised, as labels to define which trend (ideal,

curtailed, etc.) generated each each of the measurements are not required;

this information was not available in the experiments here. For each function

in the mixture, input dependent noise is considered, a critical consideration

when modelling power curve data. The model is applied to measurements

from an operational wind farm, and it is shown to generalise well, representing
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future measurements from the population for various sets of turbines and

curtailments. Finally, ideas for population-based power curve monitoring

procedures (considering entropy measures) are introduced and discussed.
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Appendix A. Type-II Maximum Likelihood

Gaussian process hyperparameters, θ = {β,α, σf , l, σ}, are (typically)

optimised through empirical Bayes. This involves maximising the marginal

likelihood of the model,

p(y | x ; θ) =

∫

p(y | x, f)p(f | x) df

= N (y ; m, Kxx +R) (A.1)

By marginalising (integrating) out the latent function values f , this moves a

level up the Bayesian hierarchy – mitigating issues of overtraining through

the Bayesian Occam’s razor [19]. An optimisation of this objective should

lead to a minimally-complex model given the observed training data; for

convenience and numerical stability, this is implemented as a minimisation of

the negative-log-marginal-likelihood w.r.t θ,

θ̂ = argmin
θ

{− log p (y | x ; θ)} (A.2)

− log p (y | x ; θ) , − logN (y |m, Kxx +R)

=
1

2
(y −m)⊤ (Kxx +R)−1 (y −m) . . .

+
1

2
log |Kxx +R|+

N

2
log 2π (A.3)
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The terms in equation (A.3) have an interpretable meaning: the first is a

data fit (or error) term, the second is a model complexity term, and the last

is a constant [27].

Appendix B. Noise-Process Optimisation

Summarised from [23]:

1. given D, learn an initial homoscedastic GP: G1 with hyperparameters θ

2. given G1, estimate the empirical (log) input-dependent noise g′ at the

inputs x using equation (19)

3. given {g′,x}, learn the noise process: G2 with hyperparamters ζ

4. given D, estimate the heteroscedastic GP G3, using G2 to define r(xi)

for the noise kernel

5. if not converged, set G1 ← G3, and go to step 2.

Appendix C. RVM Benchmark

The Relevance Vector Machine (RVM) follows the implementation of

Tipping [38], with a radial-basis function kernel,

k(xi, xj) = exp
{

−γ(xi − xj)
2
}

The hyperparameter γ of the kernel is determined by 5-fold cross-validation [27].

In the first (50% curtailed) experiments, an optimal value was γ = 2, while

in the second experiments (80% curtailed) γ = 1.6.

Appendix D. Example Cross-Validation

The corrected lower bound (36) can be monitored to indicate an appropri-

ate number of components for the OMGP. This is shown in Figure D.10 for

the model in Section 7.1. The maximum value of the lower bound corresponds

to a mixture with four components (K = 4) – in correspondence with the

prior intuition.
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Figure D.10: Monitoring the corrected lower bound (Lbc) on the marginal likelihood while

the number of components increases. The solid line represents the mean and the dashed

line shows three-sigma standard deviation (12 repeats).
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