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Genome-wide association studies (GWAS) have been very successful at identifying
genetic variants influencing a large number of traits. Although the great majority of
these studies have been performed in European-descent individuals, it has been
recognised that including populations with differing ancestries enhances the potential
for identifying causal SNPs due to their differing patterns of linkage disequilibrium.
However, when individuals from distinct ethnicities are included in a GWAS, it is
necessary to implement a number of control steps to ensure that the identified
associations are real genotype-phenotype relationships. In this Review, we discuss the
analyses that are required when performing multi-ethnic studies, including methods for
determining ancestry at the global and local level for sample exclusion, controlling for
ancestry in association testing, and post-GWAS interrogation methods such as genomic
control and meta-analysis. We hope that this overview provides a primer for those
researchers interested in including distinct populations in their studies.
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1 INTRODUCTION

Genome-wide association studies (GWAS) aim to identify genetic variants (usually single-nucleotide
polymorphisms or SNPs) that are associated with a phenotype of interest. GWAS have been highly
successful at identifying genetic variants influencing a large number of traits, with nearly 5,000
publications and more than 250,000 variant-phenotype associations included in the GWAS Catalog
(Buniello et al., 2019). Not only have GWAS improved our understanding of the aetiology of complex
traits, identifying potential new biological pathways influencing phenotypes, but they are also of
potential clinical value in assessing an individual’s risk of developing particular phenotypes (e.g.,
Manolio (2013); Khera et al. (2018); Lambert et al. (2019)).

However, focusing only on participants of European descent, a characteristic of many published
studies, restricts extrapolation to those of non-European ancestry (most notably for individual risk
prediction (Mills and Rahal, 2019)) and limits available samples for traits common to multiple
ancestries. By including populations with differing ancestries, the potential is enhanced for
identifying causal SNPs or haplotypes because of the differing patterns of linkage disequilibrium
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(LD) across subpopulations. Driven by the need to identify SNPs
with even more modest effect sizes to further elucidate genetic
architecture, GWAS sample sizes have necessarily increased;
therefore, studies of a wider range of populations are
warranted. In recognition of this, the proportion of studies
including individuals of non-European descent has increased
in recent years (Gurdasani et al., 2019). Such adaptations of
study design require re-assessment of analytical approaches;
when individuals from multiple distinct genetic ancestries are
included in a study, it is necessary to implement a number of
control steps to ensure that the associations identified are not
detecting ancestry-driven rather than trait-related genetic effects.

One of the challenges of performing association tests on
genomic data is that demographic history influences the
genomic structure of the population being analysed. If this is
not properly controlled for, any genotype-phenotype association
found in the study may be a consequence of this structure, rather
than genuine trait association. The source of this potential bias is
known as population stratification, where different trait
distributions within genetically distinct subpopulations will
result in those markers associated with the ancestry of the
subpopulation to be also apparently associated with the trait.
As an illustrative example, Choudhry et al. (2006) analysed the
relationship between ancestry-informative markers (SNPs with
considerably different allele frequencies between Native
American, African, and European ancestral populations) and
asthma. They found that three of the 44 tested markers
appeared to be related to the disease in Mexicans, but none of
these associations persisted when ancestry was controlled for
suggesting that the association is driven at least in part by
ancestry. Therefore, it is of utmost importance to ensure that
either all the individuals in a study are from the same ancestry
prior to performing a GWAS or that this ancestry is appropriately
taken into account in the analysis.

Depending on the populations being studied, analysis may not
be as simple as identifying subpopulations in the samples, since
each individual may be descended from multiple subpopulations
tracing back to a mixture event (or admix event) between them.
One of the ways in which we can express this mixing in an
individual is as a function of ancestral populations; that is,
populations that have been isolated from each other in the
past (e.g., European and African). If the combination of these
ancestral populations has been recent, then we expect to observe
longer LD tracts; but these will decay over time (Montana and
Pritchard, 2004), thus adding to the complexity of finding
significant relationships. However, the more diverse linkage
disequilibrium structure also gives the possibility of finding
more nuanced, ancestry-specific signals in a GWAS. The
purpose of this review is to discuss the main approaches that
are used in order to account for population structure in admixed
individuals in a GWAS to select data to include, control for its
influence on findings, and compare or aggregate results across
populations.

In order to provide an understanding of the methods used for
the analysis of admixed populations, we will first review the steps
involved in performing a GWAS. Secondly, we will discuss some
of the methods used in recent years to study admixed

populations, and the way in which each methodology has been
applied. Here, we will both explain the rationale behind each
methodology and give some examples of applications in recent
studies.

2 CONTROLLING FOR POPULATION
STRUCTURE IN GENOME-WIDE
ASSOCIATION STUDIES
For the purposes of this review, we will divide a GWAS into three
steps:

1) Quality control. (QC). This first, critical step involves filtering
poor quality germline DNA samples and inconsistently
performing SNPs from further consideration. This consists
on applying specific filtering criteria to samples and/or SNPs
before proceeding.

2) Association testing. Once QC has been completed, a statistical
test is performed with the aim of detecting association
between variants in the genome and the trait under
consideration.

3) Post-GWAS interrogation. Once candidate SNPs have been
identified, other types of analyses are performed to ensure the
integrity of the association testing including that the influence
of genetic structure has been well controlled for and to explore
the characteristics of the SNPs identified including for
instance biological processes implicated.

In steps 2 and 3, there are ways in which population structure
can be taken into account, but it is important to note that we can
use more than one technique on a single GWAS; in fact, they are
often combined to avoid spurious associations.

In order to illustrate the use of these methods, we sampled data
using the 1,000 Genomes Project (Consortium, 2015) dataset. We
decided to use this dataset because of the self-reported ancestry
label of the samples; these are useful for visualizing and
comparing different methods.

3 ESTIMATING POPULATION STRUCTURE

The next subsection will cover two methods that are helpful in
investigating the ancestry for each of the individuals in our data.
These methods will be present throughout the review and will
become useful for both quality control and genotype-phenotype
association testing. The first one is admixture analysis, which
assumes the existence of discrete ancestral populations from
which the current population is derived. The second is
principal component analysis, which generates explanatory
variables from the genotype data that summarise the sources
of variation among the samples and helps visualise and interpret
the genetic structure of the samples.

3.1 Ancestry Estimation
Ancestry estimation aims to divide an individual’s genome
between multiple ancestral populations from which it is
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hypothesised to have descended. Most methods used here
follow a clustering approach, where each allele is assumed
to have a probability of coming from one of the ancestral
populations; these methods involve assessment of a large
number of SNPs to estimate the contributions of each
ancestral population. It is important to differentiate
between two distinct forms of ancestry estimation: global
and local (Thornton and Bermejo, 2014). Local ancestry is
based on the fact that genetically adjacent regions form
haplotypes whose ancestry can be probabilistically aligned
to each population. There are local ancestry methods based
on a model of recent admixture, and others that can infer gene
flow from ancient hominids (Sankararaman et al., 2016;
Durvasula and Sankararaman, 2019; Hubisz et al., 2020).
The aim of global ancestry is to estimate the contribution,
overall, of the genome from each ancestral population rather
than each precise genomic region.

3.1.1 Global Ancestry
Themain assumption for this estimation is that a given individual
is descended from ancestors drawn from distinct ethnic groups.
The result of an analysis of this kind is an estimation of the
proportion of each individual’s genome that comes from each of
the ancestral populations.

The two most popular algorithms for global ancestry
calculation are STRUCTURE (Pritchard et al. (2000); Falush
et al. (2003); Porras-Hurtado et al. (2013)) and ADMIXTURE
(Alexander et al., 2009). Both of these algorithms require
choosing the number of ancestral populations a priori and
modeling the probability of membership to each ancestral
population. STRUCTURE assumes a Bayesian model that
accounts for linkage disequilibrium within each ancestral
population, whereas ADMIXTURE assumes linkage
equilibrium and uses the unlinked SNPs to apportion ancestry;
this is a practical observation since an extra step will be required
to run ADMIXTURE by thinning the SNPs to create this set of
“independent” SNPs. The results can be visualized in an
admixture plot, which shows the percentage of each
subpopulation (given by the cluster) that the model assigns to
each individual in the sample (Figure 1, and Figure 2A). While
these methods return “estimates” of ancestry, care must be taken
not to overinterpret these results in terms of alignment with
population history.

3.1.2 Local Ancestry
Although global ancestry uses unsupervised methods such as
clustering, local ancestry is more restricted as it requires a locally
recruited reference panel, enabling the estimation of the locus-

FIGURE 1 | Individuals from 1,000 Genomes Project are plotted according to their labeled self-reported ancestry (AFR, African; AMR, Ad Mixed American; EAS,
East Asian; EUR, European; SAS, South Asian). (A) Results from an ADMIXTURE analysis with K � 5 (number of clusters). The colors represent the clusters inferred from
the data. In this figure, we can infer that c1 corresponds to South Asian ancestry, c3 to East Asian ancestry, c4 to European ancestry, and c5 to African ancestry. The
Admixed American population appears as the most varied across clusters and has an exclusive cluster (c2), which suggests that there is a mix of native ancestry
and influx from Africa and Europe. (B) By running ADMIXTURE with K � 6 we can appreciate similar results. The extra cluster indicates further structure within the African
population, which could be either from admixture or the existence of subpopulations in the African samples, but the rest remains unchanged.
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specific likelihood of ancestry. In other words, for each SNP, the
ancestral population from which it has most probably been
inherited is calculated (Figure 2B). If the estimation is correct,
this analysis achieves global ancestry estimation too.

Although there are several packages to infer local ancestry,
there are two that are most commonly used. The first one is

RFMix (Maples et al., 2013), which adjusts samples to a reference
panel of known ancestries through a random forest procedure.
The second algorithm is implemented in the software LAMP-LD
(Baran et al., 2012), which uses Hidden Markov Models to relate
the linkage disequilibrium in the population to a set of reference
haplotypes.

FIGURE 2 | Differences between global and local ancestry analysis. (A)Global ancestry analysis infers the proportion of each individual’s genome that comes from
each ancestral population (represented as clusters identified in an unsupervised manner). (B) In contrast to global ancestry analysis, local ancestry inference uses a
reference panel to attribute each physical segment of the genome to a specific ancestry reported in the panel.

FIGURE 3 | The first three components from a Principal Component Analysis on data from the 1000Genomes Project. A clear separation is observedwhen plotting
the individuals by their components. (A) First vs second components. (B) First vs third components.
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3.2 Principal Component Analysis
Principal Component Analysis (PCA) is a dimensionality
reduction method that finds the directions in the variable
space under study that explain the most variance; these
directions are called the components. In the case of genotype
data, each SNP can be represented with values 0, 1 or 2 depending
on the dosage of the alternative allele (aa, Aa, AA respectively,
with “a” referring to the reference allele and “A” to the
alternative). In this way, a data matrix can be created that has
individuals in rows and SNPs in columns. From this matrix, we
can compute the components. Each component is orthogonal to
the others so they can be used, for example, to visualize the highly
dimensional genotype data used in GWAS.

It has been observed that the first few principal components
from genotype data are related to population structure
(Figure 3). The advantage of using this method over
admixture analysis is that PCA results in a more nuanced
view of the genetic structure of the sample, given that there is
no need to specify the number of ancestral populations. A
number of distinguishing characteristics can be appreciated
when 1,000 Genomes data are plotted in this way; for example,
the admixed American population overlaps with other
populations in the first two principal components; this
illustrates the admixture in those individuals (Figure 3A).
But if further components are examined (Figure 3B), there is a
clear separation of the American population from others.

PCA is a widely used method in different disciplines, so its
implementations are abundant. Some of the more popular
software for genotype data are the PLINK (Purcell et al., 2007)
--pca method, EIGENSOFT (Price et al., 2006), and the
SNPRelate (Zheng et al., 2012) package for the R
programming language. Results from different PCA
implementations should not differ; however, given the
complexity and size of genetic data, specialized bioinformatic
software such as PLINK is usually preferable to more generic
statistical software.

4 QUALITY CONTROL

In addition to estimating structure within the samples in our
study, we also need to identify the individuals and genomic
markers that are appropriate for our study. The first set of
criteria that we can use to select our data corresponds to the
task of spotting genotyping errors. These criteria are discussed in
more depth in several reviews, as well as in original published
research, and include missingness (applied to SNPs and samples),
case-control differential missingness and tests for heterozygosity
and Hardy-Weinberg equilibrium, and strand alignment checks
when multiple datasets are involved (Turner et al., 2011; Medina-
Gomez et al., 2015). Quality control is of particular importance
when combining data from several sources in order to avoid
confounding batch effects. However, there are some caveats that
need to be considered when applying these criteria, because even
though they are standard in homogeneous randomly mating
populations they may not be appropriate in structured
populations.

• Missingness. This includes removing SNPs that may give
misleading results due to genotyping errors across many
samples, or samples that have an excess of errors in the
genotyping process and too few high-quality SNP.

• Strand alignment. Since DNA is double stranded, it is
important to report (and compare) equivalent strands in
the data; this can be a problem when merging data from
different sources since there can be discrepancies in the
reported strand. For example, the Illumina platform differs
in definition on the concept of strand from the standard
human genome reference (Zhao et al., 2018). It is important
then to align the samples to the same strand. This becomes
specially difficult in circumstances such as when the strands
have complementary alleles (AT/CG). If these kind of
uncertain SNPs are not too frequent in the data, it is
probably better to remove them, since they can bias the
results.

• Heterozygosity. In a homogeneous randomly mating
population, very high or low levels of heterozygosity can
indicate poor quality genotyping. However, this test is not
appropriate in a non-randomly mating population, because
population structure can lead to extremes of heterozygosity
(Boca et al., 2020).

• Deviation from Hardy-Weinberg (HW) equilibrium. This
test, standard in population studies, evaluates whether the
expected relationship between allele frequency and
genotype frequency exists. However, HW equilibrium
assumes that there is random mating in the population
under study; so if there are clear subpopulations (different
ancestries) the conditions are not met and the test is not
valid as a criteria for assessing quality. Therefore, this test is
not generally recommended to use directly when studying
structured populations. If the populations are labeled (e.g.
we have data from different, clear sources) then it is better to
apply HW tests separately.

The second set of criteria we can evaluate with genotype data
can elucidate the ancestry of the individuals in the study. For this
set we can use the methods we described above: admixture
analysis and principal component analysis. There are two ways
in which these are used as part of quality control:

• Firstly, individuals whose ancestry is not well represented in
either cases or controls should be removed. In the case of a
continuous trait this is equivalent to removing outliers. This
avoids ancestry-specific biases in the association test, but is
not expected to affect the variability of the data ancestry-
wise.

• Secondly, if distinct populations (e.g. African, European,
Asian) are represented across the phenotype, the study can
be partitioned over these distinct populations. This would
allow us to obtain multiple association tests, the results of
which can subsequently be combined (see the post-GWAS
Interrogation section). This method reduces ancestry-
related variability and bias of each of the studies but
decreases the amount of data in each of them,
diminishing the statistical power of each test.
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In case-control studies in particular, the selection of
controls is a crucial step. If there is a factor that can
influence the outcome (in our case the phenotype) in some
way other than the variable that we are measuring (the
genotypes), then it must be accounted for in the
experimental design. As an illustrative example, in a trial
for testing a new drug, there may be covariates (such as sex
or age) that should be controlled for in order to ensure that the
effect of the drug versus a placebo is measurable; e.g. age and
sex may influence the outcome variable due to, for example,
metabolism changes and hormone differences. One option to
control for these covariates is randomizing which patients will
receive the drug. What this procedure does is ensure that the
distribution of age and sex between cases and controls is
effectively the same, so the influence of these variables does
not influence our observation of the drug effects. In GWAS

studies, the distribution we want to keep consistent between
cases and controls (or across the continuous trait) is the
ancestry. In the following example we will use the first two
principal components to illustrate this.

4.1 A Motivating Example
In order to develop a feeling for what quality control means in a
GWAS, imagine a simple dataset (Figure 4A) to which PCA was
applied and for which only the first two components are relevant
to account for population structure.

Since the principal components represent a factor that we
want to control (ancestry/ethnicity), we need a similar
distribution of the components in both the cases and controls.
We can further simplify the example by summarising the
distribution using the mean (Figure 4B). Even by using only
the mean of the data, it is evident that the distribution of controls

FIGURE 4 | Quality control previous to performing a GWAS. (A) Hypothetical PCA plot for a simple dataset. There are three separate populations including both
cases and controls. (B) The means of the components for cases and controls are not close because there is a concentration of controls in an area with no representation
from cases. (C) By removing the controls that are not well represented in the cases (light blue), we can get a mean that is closer to the mean of the cases. (D) The means
are closer when separating by the observed populations, so these can then be analysed separately and the results subsequently combined.
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does not follow the same distribution as the cases. A simple
solution is to remove the controls with components that are
unrepresented in cases (Figure 4C). The means of the cases and
controls are now more similar, although not identical. We can
further seek a better fit of the distributions by separating the
populations according to the clusters that we can see in the plot.

Once this cluster separation has been done, there is a better fit
in the distributions in each of the three sets of cases and controls

(Figure 4D). Although for each of the association tests there will
be less data to work with, and so less statistical power for each test,
we can overcome this issue later via meta-analysis.

4.2 Comparability of Cases and Controls
In order to illustrate this approach, we up-sampled 2000
individuals from the 1000 Genomes Project dataset, removed a
number of genotypically similar samples and assigned a fictitious

FIGURE 5 | Comparison between admixture of cases and controls of simulated data according to a run of ADMIXTURE with K � 5. In these data, there is a super
population that is underrepresented in the cases. (A) Admixture plot sorted by population label on 1,000 Genomes. (B) Density plot for cases and controls on the
probability of membership to each of the clusters of the ADMIXTURE run. Note that here, cluster c4 corresponds to the African population.

FIGURE 6 | (A) First components plotted for cases and controls. (B) First components plotted for 1000 Genomes population labels. There is a region in these data
that is not well represented in the cases as well as in the controls (red circle).
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case-control status to each of these in order to make the
usefulness of the method more obvious. An ADMIXTURE run
on the data shows a cluster that is underrepresented in the cases
(Figure 5). This means that there is a super population from
which almost no cases with the phenotype were sampled. In this
case, it is a good idea to remove from the data the individuals
from that population.

A PCA run on these data shows that there is a region of the
plot where there are no cases, so the appropriate step would be to
remove the individuals from that region (Figure 6). It is notable
that if we just used the cluster results from the admixture analysis,
cluster c4 would be a candidate for removal, but with PCAwe find
more nuanced criteria for the decision.

4.3 Separating the Data for Multiple
Association Studies
If the clustering (in admixture analysis) or the separation
(observed in PCA) is clear, such as in our sample data, it is
preferable to analyse the populations in separate datasets as they
may have different patterns of linkage disequilibrium. This can be
useful to make statements about SNPs associated to the
phenotype that are specific to subpopulations. However, if
there are some population-specific signals for the tested trait,
they may be lost in the subsequent meta analysis. If there are no
distinct clusters, it is considered better to analyse the combined
data in the association test (Begum et al., 2012).

In order to separate the data, in admixture analysis we can
choose for each individual the cluster for which the probability of
membership is maximised as its cluster. For PCA, we can use a
clustering method on the first n components (Figure 7).

5 ASSOCIATION TEST

Once we have performed quality control of the samples and SNPs,
and have chosen those to include in the analysis, as well as the

number of separate population clusters we will be analysing, then we
are ready to proceed to the identification of SNPs that are associated
with the phenotype being tested. There are several ways to find
candidate causal SNPs from genotype data, such as hypothesis
testing and linear model-based approaches. In order to account
for population structure, linear models are most widely used.

5.1 Methods to Perform Association Testing
5.1.1 Logistic Regression
In the case of case-control studies, phenotypes are binary, and so
we can use logistic regression. This model consists on assuming a
linear relationship between independent variables and the log-
odds, which represents the logarithm of the ratio of the
probability of being a case over the probability of being a
control conditioned on the covariates. That is, for two
independent variables x1 and x2,

FIGURE 7 | Results of running a K-Means algorithm on the first 5 components of the simulated data with K � 4. The purpose of this analysis is to separate the data
into subpopulations in order to conduct association tests within each.

FIGURE 8 | Examples of estimated probability of phenotype given a
genotype value, which is coded numerically as the number of alternative alleles
(aa � 0, Aa � 1, AA � 2).
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log
p

1 − p
� β0 + β1x1 (1)

Where p is the probability of being a case, β0 is the intercept and
β1 is the effect size for the covariable x1. If we have more than one
covariable, we can add more terms β2x2, β3x3, . . . . The model in
Eq. 1 can yield results such as we see in Figure 8.

In any case, the logistic regression is performed on a locus-by-
locus basis. This yields parameters with its respective p-value for
each SNP. We will now discuss two methods to control for
ancestry in the association test: via PCA and via admixture
mapping. The difference between these methods lies in what
independent variables are used in the logistic regression.

5.1.2 Mixed Models
Mixed models are an extension of linear models that allow us to
include effects that account for dependency between data points.
For example, in the case of genetic studies, the data points are the
individuals, and the dependency can be thought of as being the
ancestry.

Themodel for a mixed effects regression for association testing
can be written as follows

f(x) � Gβ + ] +Xc (2)

Where the first term on the right side of the equation is the same as
any linear model: the independent variables and the parameters;
these are called the fixed effects and in the context of genetic
association it is the genotype as described in the logistic regression
section. The last term is the covariates (e.g., the first principal
components, sex, etc). The second term represents the random
effects, which model the error just like any other regression model,
but in this case, the error is not equally distributed for every
observation. Usually, we would say that the error follows a Normal
distribution centered on zero with a fixed variance N(0, σ2); but in
mixed models we say that ] ∼ N(0, τZ), where τ is a parameter for
Z, the matrix of random effects. Z is usually the genetic relationship
matrix, which estimates the degree of sharing of identity by descent
(IBD) between all pairs of individuals in the dataset, but it can also
be a matrix of categories where each row (sample) is a vector of
zeros everywhere except in the columns that represent the
subpopulation to which it belongs (e.g. from Admixture analysis).

This is a general definition of mixed models, but there are
several particular implementations based on variations of Eq. 2
and in particular of matrix Z such as EMMA (Kang et al., 2008),
FaST-LMM (Lippert et al., 2011), GCTA-LOCO (Yang et al.,
2014) and some Bayesian modelling versions like BOLT-LMM
(Loh et al., 2015).

5.2 Controlling the Association Model for
Ancestry
In the association test, we canmodel each locus as an independent
variable with values 0, 1 or 2 depending on the dosage of the
alternative allele (aa, Aa, AA respectively) with the trait being
measured as a dependent variable. This model allows us to add
other covariables; in particular, we can use the first principal
components from the genotype PCA. Since the components

absorb information about the ancestry, the model will only
give significance to the SNPs that are related to the trait
without the confounding of the population structure captured
by the PCs included in the model.

One way of determining how many components to use consists
in plotting the components until no separation is found in the data.
In our 1000 Genomes example, there is clear separation of the
individuals in the scatterplot between components one through four,
but the direction of the fifth component is reaching for a subset of
less than 1%of the data (the few points with the component 5 greater
than 0.4), so it is not accounting for a significant amount of ancestry-
related variability (Figure 9). So in this case, we would probably be
safe in controlling by using only the first 4 components. This is a
simple example, but it is useful in practice to visually review the
interaction between the components to get a grasp of the structure of
the data. For a more automated and statistically sound procedure,
the software EIGENSOFT provides methods to infer the statistically
significant number of components for population structure by
evaluating the significance of each component iteratively
according to the variance explained by each (Patterson et al., 2006).

An example of this usage can be found in Nannini et al. (2017).
The authors use PCA to compare their Latino population with a
reference panel of Europeans and Africans. They also determine
that using four principal components in their regression is enough
to control for population stratification. Another interesting
example can be found in Costa-Urrutia et al. (2019), where
authors control not by the principal components, but for the
proportion of Amerindian ancestry estimated via ADMIXTURE.

As for local ancestry, inWang et al. (2011) the authors propose
controlling each of the tests by their respective estimated local
ancestry. However, this method is not widely used, as it has been
argued that the bias introduced by using only global ancestry is
small (Martin et al., 2018). The methods that we discuss below
exploit the advantages of local ancestry more directly.

5.3 Admixture Mapping
Admixture mapping is motivated by the scenario of recent mixing
of populations which occurs alongside discrepant incidence of the
trait between two populations (i.e. a difference in the proportion
of affected people between the ancient populations). Affected
persons in the admixed population should therefore be expected
to have preferentially inherited the risk locus from the higher
incidence population (Patterson et al., 2004). The genome-wide
approach is to examine each region of the genome systematically
to identify regions where affected persons inherit a statistically
higher proportion of their alleles from the high risk population
than the overall pattern of inheritance for that person.

This method relies on the assumption that the phenotype-
associated alleles have different frequencies across ancestral
populations. This extra requirement helps specify a model
with more statistical power to find these specific loci, so in
this way fewer SNPs (and since this implies lower burden of
tests, also fewer samples) are needed to find associations.
However, this means that it will fail to identify all risk loci;
since not all causal SNPs follow this pattern. Also, fewer loci
means longer LD tracts and so a higher difficulty in identifying
causal markers via fine mapping (Seldin, 2007).
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Admixture mapping has been successfully used to identify
risk loci associated with specific ancestries across different
traits; the tools and panels necessary for performing these
kinds of analyses were developed in early 2000s. In 2005, the
first applications of this seminal method were published,
focusing on the study of African American individuals and
finding a number of ancestry-specific associated loci
(i.e., either European or African) to the traits: Zhu et al.
(2005) found that excess African ancestry at 6q24 and
21q21 was associated with hypertension, and Reich et al.
(2005) identified a European-derived locus in chromosome
1 associated to multiple sclerosis. Later, Freedman et al. (2006)
identified that excess African ancestry at the 8q24 locus is
associated to increased risk of prostate cancer.

More recently, Wang et al. (2019), used admixture
mapping to find loci related to several traits used to
measure sleep apnea; this study was performed on Latinos
and found three novel regions associated with this condition.
In another study in the Latino population, Burkart et al.
(2018), identified genomic regions associated with lung
function and chronic obstructive pulmonary disease, some
of them previously undiscovered. In both of these studies,
some of the risk loci found were replicated in Europeans,
which illustrates the advantage of using samples from
admixed populations.

As mentioned above, ADMIXTURE and STRUCTURE take
different approaches to estimate a person’s proportion of genome
inherited from an ancestral population (global ancestry). If, as
computed using either of these approaches, the average proportion
of genome from the higher risk population is estimated as θ for a
study participant, then the genome-wide analysis is conducted for
each participant by examining their actual inheritance at each SNP
from this average across the genome. The calculation of the actual
number of alleles at this SNP that have ancestry from the high risk
subpopulation requires some discussion (local ancestry). Analysis
of a single SNP will often be uninformative in terms of identifying
the ancestral origin of each allele so instead the approach required
is to use SNPs in proximity to the SNP under consideration to
estimate the actual number of alleles from the high risk
subpopulation (McKeigue, 1998).

If x is the estimated number of alleles at an SNP that have
ancestry from the high-risk subpopulation (0, 1, 2) for a person,
then given θ and p, the prevalence of the disease (0.5 with equal
number of cases and controls), we can fit the logistic regression
model from Eq. 3 (Hoggart et al., 2004):

log
p

1 − p
� log

π

1 − π
+ x

2
− θ( )β (3)

Where β is the odds ratio for having 2 copies of the risk allele
versus 0 in the high risk population. In the formula, the left

FIGURE 9 | Matrix of scatterplots between the first five principal components of simulated data based on 1,000 Genomes.
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hand term is the log odds of the trait. The right hand term of
the equation has two components: the first one reflects the
prevalence of the disease in log odd terms, and the second
models genetic risk considers deviation from the average
genotypic contribution from the high risk population for
that person.

One extra advantage of admixture mapping is that, since
this model examines ancestry at each SNP with the average
across the genome for that person, there is an alternative test
that can be done without controls (the so called “case only
study”). It involves testing whether there is an increased risk
according to the local ancestry in a given SNP. However, in
practice, power is usually greater for the case-control
comparison.

One widely used software to run admixture mapping can be
found in the GENESIS package for the R programming language
via the admixMap function.

5.4 Local Ancestry Regression
A novel approach is using the inference of local ancestry
directly in the association testing. The software Tractor
(Atkinson et al., 2021) implements the following regression
model for each locus:

log
p

1 − p
� β0 + β1X1 + β2X2 + β3X3 +/ + βkXk (4)

Where every βi are the effect estimates, X1 is the admixture
proportion from the first ancestry, X2, X3 are the number of
copies of the alternative allele coming from the first and
second populations respectively (aa � 0, Aa � 1, AA � 2), and
after that we can add any number of covariates such as age or
some PCA components. This model allows for the inclusion
of ancestry specific information, and in that way it results in
relevant summary statistics related directly to each of the
populations of the admixture. This model accounts only for
two ancestries, however the model can be expanded to
several ancestries.

Having a parameter associated to the ancestry in a given
locus prevents the association model from attributing an effect
to the allele count that is better explained by the ancient
population from which the haplotype is descended. This
avoids bias caused by local ancestry differences between
populations that are not attributable to the trait (Atkinson
et al., 2021).

In addition, although this method is analogous to
controlling via PCA in the sense that we are controlling for
ancestry, this type of regression achieves this by analyzing
the ancestry of each specific locus at a time. This allows us
to add samples without worrying about introducing
population structure, which then translates into more
statistical power.

These ancestry specific parameters provide information on
ancestry predisposition to the trait. In contrast to admixture
mapping, this method does not assume that the phenotype
incidence differs across the ancestral populations. In this
model, however, it is necessary to have data on both cases and
controls.

6 POST-GENOME-WIDE ASSOCIATION
STUDIES INTERROGATION

Association tests are performed on a SNP by SNP basis, so after the
candidate SNPs have been identified, it is important to use
techniques that help us validate the adequacy of our population
adjustments in the previous steps. The technique of genomic control
will allow us to evaluate whether the association test has a bias based
on population structure. Performing a meta-analysis will allow us to
combine the results of the different populations if we previously
decided to separate by subpopulations in the quality control step.

6.1 Genomic Control
This method corrects the test statistics (p-values) obtained from
the association analysis based on a single number, usually called
the genomic inflation factor (Pritchard and Rosenberg, 1999) and
denoted as λ. The inflation factor is calculated using the genetic
markers that are not related to the disease, and it consists in
testing whether there is a consistent difference between the allele
frequencies in cases and controls across the genome.

This factor can be interpreted as follows: If λ � 1, there is no
population stratification, and values greater than 1 indicate that
there is structure unaccounted for in the study. However, in large
well-powered studies, the inflation that this factor measures could
be coming from a different source, such as polygenicity. For a
more nuanced approach we can use LD score regression (Bulik-
Sullivan et al., 2015), which leverages the relashionship between
the SNP in question and those around it to discriminate the
source of the inflation.

Even though the inflation factor can be used to correct for
population stratification, it is not generally recommended to do so
(Shmulewitz et al., 2004), as it is particularly ineffective in highly
admixed data. It is however useful for identifying the presence of
inflation in order to evaluate whether themethods in previous steps
of the analysis were sufficient to account for population structure
(Galanter et al., 2014; Conomos et al., 2016; Hodonsky et al., 2017;
Jorgenson et al., 2017; Nannini et al., 2017).

6.2 Meta-Analysis
The meta-analysis is not in itself a method for correcting for
population structure, but it is employed to analyse GWAS results
from different populations. If we used the methods discussed in the
Quality Control section to separate our individuals and performed
one association test for each of those subpopulations, we can perform
a meta-analysis to aggregate their results. This will help us regain
statistical power lost by the reduced sample sizes of each study; the
power is of course reduced if the effects are specific to some
subpopulation, and this will be true no matter the analytical
approach.

The results that we intend to aggregate from the studies are the
effect sizes (c) for the trait. However, since factors such as sample size
can influence the existence of different levels of uncertainty on each
study, we must have a measure available to assess uncertainty. For
this purpose, having also the standard error will allow us to perform
an inverse variance-weighted meta-analysis; which means that we
are using the variance of the estimator to weigh in the uncertainty
found in each of the studies before performing the meta-analysis.

Frontiers in Genetics | www.frontiersin.org November 2021 | Volume 12 | Article 70390111

Simonin-Wilmer et al. Performing GWAS in Diverse Populations

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


The first model we can use is to use a fixed-effects-only model.
This assumes that all of the effect sizes across all studies are the
same, and the differences between them are the product of a
normally distributed random error (ϵ).

c � β + ϵ (5)

Another possible model would be to use a random-effects-
only model. This is applied when we suspect that the
underlying effect size varies between studies, for instance
due to different patterns of linkage disequilibrium or gene-
environment interactons.

c � θ + μi + ϵ (6)

Where θ is the true effect size, and μ is the within study variance
that will be estimated from the data (Kelley and Kelley, 2012).

The difference between the two models then, is that in the
fixed effects model we are assuming that there is a single, true
effect size across all the studies, and we are trying to find whether
this true effect size is different from zero. In the random effects
model we are assuming that there is a distribution of random
effects, and we are trying to find whether the mean of the effect
sizes is different from zero.

The fixed effects model assumes that there is no heterogeneity
between the effects in the different studies being combined, this
can be tested by referring to Higgins and Thompson (2002),
where they propose a metric I2 that measures the proportion of
variation between studies that is due to heterogeneity. They
propose as a rule of thumb that with an I2 > 30% we should
consider using random effects instead of fixed effects. The fixed
effects model provides more power, but it is important to examine
its appropriateness before enjoying its benefits.

Jorgenson et al. (2017) provide an example of a study with
different ethnicities (Non-Hispanic Whites, Hispanic/Latinos, East
Asians, and African Americans) where authors decided to separate
the analysis into different studies and used meta-analysis to
aggregate the results. They were successful in describing both
genotype-phenotype associations that were unique to individual
populations, and signals that reached significance when all
populations were taken into account via a trans-ethnic meta-
analysis.

If we have been careful in performing all steps above, including
quality control, association testing and post-GWAS
interrogation, we should have a list of SNPs that are enriched
for real genotype-phenotype associations.

7 DISCUSSION

In this review, we have attempted to give an overview of the
methods used for performing GWAS on admixed populations.
Themain objective was to shed some light on the intuition behind
using each of them.

1) Quality Control. The objective in this step is to remove low-
quality SNPs and samples and to ensure a comparable
population structure across the phenotype (e.g. same
distribution among cases and controls).

• Comparability of cases and controls. Removing outliers from
the data can be convenient to the analysis, but excluding
whole subpopulations hurts the generalizability of the study.
This strategy is used mostly when the control data has not
been sampled according to the same protocol as the cases,
like the case of using a generic database such as a biobank.

• Separating the data for multiple association studies. If there
is an overrepresentation of a subpopulation or if there is a
need to report population specific related SNPs, it could be
convenient to analyse the data separately. The main caveat
of doing this is the possibility of having to perform an
association test with few data.

2) Controlling for ancestry at the association test step. Here, we
account for population structure in the actual modeling of the
genotype-genotype relationship. This helps avoid spurious
correlations. Methods that we can use for this purpose are:
• PCA. There is no reason not to control for ancestry using PCA,
but it is important to add the correct number of components to
themodel (Tian et al., 2008). The recommendation is to review
the distribution of the data in several component plots and to
examine the results of inflation by using the genomic factor, or
use specialised software such as EIGENSTRAT.

• Admixture mapping. If there are no clearly distinct
subpopulations found in the sample, admixture mapping is
an appropriate way to find regions where the admixture is
related to the phenotype. Some methods such as Tractor can
also find the specific effect sizes on each of the subpopulations.

3) Post-GWAS interrogation. As in many other cases of
experimental studies, the results of a statistical procedure
should be analysed and should be open to correction
according to the data and data cleaning that has been used.
• Genomic control. This tool is useful as a measure of the
population structure that has been introduced to the study, and
to suggest whether or not it is necessary to go back to previous
steps in order to further account for the structure of the data.
Although it is possible to use it to control for overall population
structure by scaling the p-values of the association test, it is not
recommended and should be used only as a sanity check.

• Meta-analysis. This is necessary in order to aggregate the
results in the case that we have separated the data into its
subpopulations. It is possible to achieve the same power as
a whole-data association test given some properties, but
any population specific signal that may have appeared in
the individual studies might be lost in the meta-analysis.
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