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THMC constitutive model for membrane geomaterials based on

Mixture Coupling Theory



Abstract

Modelling of coupled thermal (T), hydro (H), mechanical (M) and chemical (C) processes
in geomaterials has attracted attention in the past decades due to many significant
contemporary engineering applications such as nuclear waste disposal, carbon capture
and storage etc. However, in very-low permeability membrane geomaterials, the
couplings between chemical osmosis and thermal osmosis and their consequent
influence on temperature, water transport and mechanical deformation remain as a long-
lasting challenge due to the gap between geomechanics and geochemistry. This paper
extends Mixture Coupling Theory by bridging the chemical-thermal field based on non-
equilibrium thermodynamics, and develops a new constitutive THMC fully-coupled model
incorporating the interactions between chemical and thermal osmosis. Classic Darcy’s
law has been fundamentally extended with osmosis as the major driving force of the
diffusion process. A simple numerical simulation used for the demonstration purpose has
illustrated that the couplings between chemical and thermal osmosis will significantly
change the water flow directions, consequently influencing the saturation variation and
mechanical deformation.

Keywords: THMC model; Diffusion; Non-equilibrium thermodynamics; Thermo osmosis,

Chemical osmosis;



1 Introduction

Very low permeability geomaterials can act as actual semi-permeable membranes,
having good functions for chemical retardation or sorption [1]. They are widely used in
engineering applications such as nuclear waste disposal, carbon capture and storage,
landfill etc [2]. Due to the low permeability, hydraulic flow is not the dominant form of fluid
movement [3]. Thermal and chemical gradients will induce fluid flux into or out of the
formation, leading to thermal and chemical osmosis [4]. The chemical osmosis flow
direction is from lower chemical concentration to higher chemical concentration, and
maybe opposite to the pressure gradient-induced flow direction, thereby reducing the
flow velocity [5]. Similarly, temperature gradient would also cause a thermal osmosis flow,
which has been observed in different experiments [6, 7]. This kind of flow may occur from
high temperature to low temperature or in the opposite direction [8], depending on the

entropy difference between water in the membrane and external to the membrane[9].

Coupled thermal (T), hydraulic (H), mechanical (M) and chemical processes (C) have
been studied mainly by three theoretical approaches, namely: the mechanics approach,
the mixture theory approach, and Mixture Coupling Theory [10-12]. The mechanics
approach is based on the classic consolidation theory of Terzaghi [13] and Biot [14, 15].
This approach focuses on the macroscopic process of THMC (e.g.
pressure/displacement/concentration/temperature). This makes it very practical since
the equations may be specially developed for the intended specific application without
deep understanding of the microscopic mechanisms. A lot of research has been done
using this approach [16-19]. However, the theoretical foundation of the mechanics
approach has led to the difficulties of coupling of chemical processes (micro-process
dominated), due to the gap between geophysics and geochemistry. The mechanics
approach has tried to borrow uncoupled equations from other disciplines to form new

governing equations to overcome the challenge. However, such governing equations are



highly semi-empirical and rely heavily on experiments, hence they are not rigorously
mathematically derived. Mixture theory was firstly developed by Truesdell [20] and
further extended by Bowen [21, 22] and Rajagopal & Tao [23-25]. This approach gives
detailed couplings between solids and fluids. Mixture theory maintains the individuality
of the constituents, which has led to the difficulties of obtaining detailed interaction

information between constituents and therefore restricted its application.

Mixture coupling theory originates from mixture theory, but adopts Biot’s poroelasticity
viewing a fluid-infiltrated rock/soil as a single continuum and employs thermodynamic
force-flux couplings, rather than introducing body forces between the constituents in the
constituent equilibrium equations (or constituent equations of motion in the general case)
as in classic mixture theory [26]. This approach combines Biot's theory and non-
equilibrium thermodynamics. It simplifies the variables of interactions between solids
particles which are normally difficult to obtain in geomaterials, and enables incorporating
the well-developed continuum mechanics for solids deformation. By using fundamental
principles of non-equilibrium thermodynamics (e.g. entropy), mixture coupling theory is
capable of mathematically building the coupling between energy and dynamics in the
mixture system, and has the potential to smoothly bridge geomechanics and

geochemistry [1, 2, 27-29].

In this paper, a new coupled THMC formulation has been developed by extending
mixture coupling theory. Classic Darcy’s law has been extended to include coupled
chemical osmosis and thermal osmosis through using standard arguments of non-
equilibrium thermodynamics. Helmholtz free energy has been used to derive the
relationship between solid and fluid phase and thermal behaviour. A simple numerical
model has been given to illustrate the influence of chemical osmosis and thermal

0Smosis.



2 Balance and Conservation Equations

The mixture within a porous medium contains / states of matter which may include

solids (denoted as subscript s), liquids (/), and gases (g); @ constituents (a=1:n)
which may include examples as water (denoted as w ) or chemicals (as ¢ in general).

One state of matter may consist of multiple constituents, if there is only one constituent
in a matter state, it leads to a simplified =« . Vis a selected microscopic volume of an

arbitrary domain within the porous medium and S is its boundary that is attached to the
solid matter. V' is assumed to be big enough to include all types of constituents present
in the local region, and there is no movement of solids across the domain boundary S;
only movement of fluids (including chemicals in the liquid) or energy (e.g. thermal). The
gases’ contribution to the pore pressure (as well as the mass) is ignored to simplify the
discussion [30, 31], as this research is focused on osmosis in a liquid, and the gas (air)
pressure is quite low compared with water pressure for unsaturated soils close to the

ground surface.

Mixture coupling theory considers that the porous medium may deform, especially for
large deformation of soft materials. A material point X” for the a th constituent in an

arbitrary reference configuration will change to the position X“ at time ¢, which can be

defined as

x=x“(X",1) (1)
Such definition also applies to f th matter.
vV (V7’)is defined as the volume of the a th constituent (4 th matter)in V, V is the
volume of the mixture, V""“is the volume of the pore space and, therefore, the volume
fraction of the 3 th matter, the porosity ¢ and the saturation of  th matter state (fluids

only) are



B Vﬁ _ y pore S/J’ _ Vﬂ
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The mass density can be defined in two different ways: p“ (p” )and Py (pg )- P
is the mixture mass density of « th constituent ( or the 5 th matter) relative to the volume

of the whole mixture (V ); pZ (pﬂﬁ) is the matter state density of the « th constituent (or

the /5 th matter) relative to the volume of the state of the mater V. For any constituents
or matters in the mixture, the two densities relationship may be described as:

P =¢"p5, o’ =¢"pj (3)
where ¢’ is the volume fraction of £ th matter. For example, in a solid-liquid mixture
with a chemical dissolved in the liquid (denote by subscript ‘c’), the relationship of

mixture density p' and the state density p,, and the mixture density of the chemical p°

and its corresponding state density p, can be obtained as
I [ 1 ! ! ! c_ 4l ¢ _ ¢l c
P =0p =S¢, ¢ =S¢, p =¢p =S¢, (4)

where ¢' is the volume fraction of pore liquid, S'is the saturation ratio of the liquid.

2.1 Balance equations for mass

The general balance laws for a thermodynamic open system may be described as [32-

34]

%(J. ﬁdV] - _I | B—A —J.I,r,con ‘nds + j r.dV (5)
v S / )

where 7 denotes the bulk density of some extensive thermodynamic quantity (e.g. mass

density, energy and so on), I and I are the convective flux and non-convective

w,con TT,ncon
flux leave the region V, respectively, nis the outward unit normal vectoron § , and r_is

a source term pertaining to the production of 7.



In this research, it is assumed that there is no mass exchanges/reactions between

constituents or point-mass sources, and the chemical constituents do not react. Then,
the general mass balance law for the a-th constituent (also applies to the £ th matter)

can be obtained using equation (5) as [28]
D
— | p%dV =—| p*(v* =v’)-ndS 6
- lp I pIV=V') (6)

where p“is the mass density of the « th constituent, nis the unit outward normal, v“is

the velocity of the « th constituent, v'is the velocity of the solid, and the time derivative

following the motion of the solid is

p=L_54v.v (7)
Dt

where 0, is the time derivative and V the gradient.

Equation (6) includes all types of constituents/matters. Multiphase fluids/chemicals in
the porous medium (with consideration of the movement or deformation) can be

obtained as

D, , a
Elp dV:—l.I -ndS (8)

where I”is the mass flux defined as
I” = p*(v* = V%) 9)
For example, the liquid flux can be derived as
I'=p' (v -v")
The local balance equations of constituents can be derived by substituting equation (7)

into equation (6), which leads to:

Solid mass:

P +p'V-v' =0 (10)



Water:

P +p'V-v+V-I"=0 (11)
Chemicals:

P+ PV VI =0 (12)
in which the over dot *-’ is the time derivative 0, .

For the pore liquid containing water and chemics. The mass balance for the liquid as a

whole can be rewritten as

P +pV-v+V.I =0 (13)
in which there is relationship o' = p” +p° and I' =1" +1I°.
2.2 Balance equation for energy

2.2.1 Heat
In the domain V, the thermal density changes only through the influx and efflux of thermal
flow across the boundary S in the absence of chemical reaction. The thermal density of

constituent « is
g" = p C°T (14)
In a mixture of solid and liquid (water and chemical), ¢° = p’C°T denotes the heat

density of solids, ¢' =¢" +¢° = p'C'T denotes the heat density of liquid, C°,C' are the

specific heat capacities of solid and liquid, respectively.

q” in equation (14) is related to mass density p“ which is express relative to the

mixture volume, similar to the mass density relationship, the thermo density can be

relative to the matter state volume through
q'=¢'q, =¢'p,C'T, q' =S'¢q, =S'¢p/C'T (15)
where ¢* =1—¢is the volume fraction of the solid, p;, ¢’ are the mass and heat density

relative to the solid volume, ¢/ is the heat density of liquid relative to the liquid volume.



The total thermal flow q across the boundary S can be separated into two parts: 1) the
heat flow contained in the liquid (e.g. water and chemical flow), which can be expressed
as h"I" and A°I°, in which A" and h° are the enthalpy of water and chemical,
respectively; 2) the reduced heat flow I =q—Ah"T" —A‘I°, which is the difference
between the total heat flow and the heat flow carried by the liquid [35]. Following the

fundamental balance equation (5) for thermodynamically open systems, the heat

balance equation can be derived as (neglecting point-heat source)
L [(@ +q"+q)av =—[ (X, +r"I" +KT°)-ndS (16)
Dt} s 1

It is worth noting that the use of flow enthalpy to characterize flow heating influx and
egress is valid only for quasi-equilibrium processes where there is no viscous/lost work
done on the liquid and the pressure variation can be neglected, for any subvolume
modelled.

Using equation (7), the equation (16) can be rewritten as
(@ +q" +q)+ (@ +q" +q)V-V* +V-I +V-R"T"+V-hT =0 (17)
To simplify the discussion, the heat density of the mixture is expressed as

g™ =q' +q" +q°, then equation (17) can be simplified as

g +q" V-V VL + VBT +V- AT =0 (18)

2.2.2 Helmholtz free energy

The Helmholtz free energy density can be obtained using the function w =& —-T7, where

¢ is the internal energy density and 7 is the entropy density[36]. The balance of internal

energy is

D N [ wyw CcYc
Elst:L(cv -Iq)-ndS—jS(h I" + A1) -ndS



and its local form as

E+eV-V =V (V) +V-I +V-R'T" +V-hT =0 (19)

where ¢ is the Cauchy stress tensor.

Similar to equation (18), the balance of entropy for the mixture system is

D mix _
77 KA ~[ 1, -nds+| yav
and its local form as
" +n"V-v + V- I,—7=0 (20)

in which
(1) ™ is the entropy density of the mixture system described as
"t =0t ant =0+ ¢Sy +4S'n;
and n°,n",n° are the entropy of the solid, water and chemical per unit mixture volume,

n,,n; are the entropy of the water and chemical per unit liquid volume.

@1 =474 I'—p1 :?"+77WIW+77”I” is the entropy flux exchange with the

7 T

surroundings [35] (the relationship ¢ = h* —Tn“is used);

(3) yis the entropy produced per unit volume.

Assuming the temperature (T7) is time-dependent only, from the definition of Helmholtz

free energy density v =¢&—Tn, using material time derivative leads to the Helmholtz

free energy density relationship in local form as
l//+l//V-VS=é+6‘V-VS—T77—T(ﬁ+7]V-VS) (21)

Then, from equations (19) and (20), the balance equation for free energy density is

WA+yV v =V (v )+V-I +V BT +V-h'T +Tp™ -TV -1, =Ty <0  (22)



3 Constitutive relations

Following the discussion of the balance equations in section 2, this section will establish
the coupled relationship between the solid/liquid and the stress, strain and temperature

response, using the dissipation function.

3.1 Coupling of water and thermal behaviour from entropy analysis

The transport process of liquid in the porous media will lead to frictional resistance at the
solid and liquid interface, generating entropy production. A macroscopic expression for

the dissipation is obtained by using standard arguments of non-equilibrium

thermodynamics [12, 35]
Ty=-1,-VT-1"-Vu"-I°-Vu (23)
Equation (23) is different from the dissipation function under an isothermal condition

because of the thermo related term I, [12].

As pressure other than chemical potential is widely used in geotechnical engineering, it
is necessary to build a relationship between chemical potential and pressure, which can
be derived by using the Gibbs-Duhem equation[37] based on the assumption that the
temperature influence on non-reactive chemical potential (e.g. water) can be ignored [38],

leading to
pIVU" + PV =Vp, (24)
in which p'is the pore liquid pressure. Also, the Darcy velocity is defined through the
definition [39]
u =¢'(v-v) (25)

where V'is the barycentric velocity of the liquid which can be defined as

Hence, equations (15) and (16) can be used to rewrite the dissipation function as [12]

11



OST}/=I’q-@—HVP,—(JW-V,UWJrJC'V,UC) (26)

where J" =I" — pu, J° =I° — p/u are the diffusion flux of the water and chemical.

Using the phenomenological equation, the full coupling matrix can be written as [12]

Ky o _kgtipou” kytpl

V ve"  Oc’ vT
u Lo Vp,
Jo|=—| 22 oD Lo | ye (27)
' pl T
1 vT
q Lp[

—  pD, 2

L P ]

where
e k,is the effective permeability and v is the fluid viscosity. Comparing to
research on Darcy’s law(e.g. [40, 41]), one could write k,, =kk,, with k being
the absolute permeability and &, being the relative permeability.
e 1, is the chemical reflection coefficient, which serves as a measure of the

efficiency of the osmotic transport [42, 43].
e 1, is the thermal reflection coefficient, which serves as a measure of the

efficiency of the osmotic transport. [11]
e L is the pressure diffusion coefficient for chemical transport.
e p is the dispersion-diffusion coefficient for chemical transport.

e c‘is the mass fraction of chemical ¢, ¢"is the mass fraction of water.
e L, is the thermal conduction coefficient for chemical transport.
L, is the pressure diffusion coefficient for thermal transport.

D, is the dispersion-diffusion coefficient for thermal transport.
A is the conduction coefficient.

It would be worth noting that from equation (26), It would be expected (I;,u,JW,J“ )T can

be given by a matrix relationship with associate variables (VT,VpZ,,uW,,uC)T, these

variables must be related in general in order to enforce equation (26). Assuming that

-J"-Vu" >0always and the remainder of the inequality is still true, lead to a reduced
~ T . .

form (I;,u,Jf)T with associate variables (VT, Vpl,,u") . Since the inputs and outputs of

(27) are directional and the resulting form of (26) is not quadratic or otherwise



constrained to be non-negative, verification of (26) stepwise is a requirement of any

solution.

3.2 Basic equation of state

By assuming that the rock maintains mechanical equilibrium so that V.-6=0, and

combining equations (22) and (23), the resulting balance equation for y is derived as
AUV -V —tr(6VV )+ 1V -1+ gV I+ ™ T =0 (28)

Equation (28) has included the temperature part 7“7 compared with previous work

[28].

In order to obtain the expression of the referential equivalent of equation (28), the
following classical continuum mechanics equations [10] will be needed.

s . v .
X x, E——(FTF ), T=JF'eF", J="2 j=Jv.v' (29)
X dv,

where F is the solid deformation, E is the Green strain, T is the second Piola-Kirchhoff
stress, J is the determinant of F which determine the volume change of the volume

defined by the solid boundary, dV is the volume of a region bounded by solid in the
current configuration, and dV, is the volume of the reference configuration bounded by

the corresponding solid.

Using the continuum mechanics equation (29) and the mass balance equations (11),

(12), the free energy in the reference configuration can be rewritten as
Y =tr(TE) + p"m" + ymi* —JIn™T (30)
where W =Jy is the free energy in the reference configuration; m" =Jp" and

m‘ = J p‘ are the mass of the water and chemical per unit referential volume, respectively.



3.3 Helmholtz free energy density of the pore water and wetted mineral matrix
3.3.1 Pore liquid

If the Helmholtz free energy density of the pore fluid is v ,,, , based on classical

thermodynamics [35, 44], ¥, can be expressed as

Ve =—P"" + 811 p] + S'u" ! (31)

pore

where p””“is the pore pressure and it satisfies p””* ~S'p’, as the gas is ignored.

According to the Gibbs-Duhem equation for time derivative [35, 37]
P =S T =S p; +S' i p) (32)
where 77,’ is the entropy of pore liquid per liquid volume.
Equation (32) can be arranged as p””* =S’ pf +S' 1" p)’ + S'n'T . By substituting this
equation into the time derivation of equation (31) as
Vpore = =P+ S 0] + 8" P!+ (8" )+ 1" (S'p)) (33)
it leads to in a simplified v, as
W pore ==S'mT + 1 (8" p )+ 12" (S ") (34)
3.3.2 Free energy density of the solid matrix

The free energy density of the solid matrix can be derived by subtracting the contribution

of pore space J¢l//pm due to pore liquid from the total free energy W of the combined
rock/fluid system. The free energy density of the solid matrix is:

WV=Joy,, )=V -0y, ~¥,,0 (35)
where v = J¢ is the pore volume per unit referential volume. By invoking equation (30)

for ¥, (34) for ¥ ore » @nd (31) for w, into equation (35), it leads to



(¥ =Ty ) =] tr(TE) + p"1i” + pi v = I T |

i ‘ . . ) _ - (36)
~0(=S'nT + " (S'pi )+ 1" (') ) = (=p + 8w o+ " p )0
Equation (36) can be rewritten as
(¥ =T ) = r(TE)+ gt + p vt T "™ T |
(37)

+l')pp0re +USIT7;T—,UW (USIPZW). —,UC (USl,OlC )
Since Jn™* =Ju"+Jn" +Jn =JIn’ +I4S'n) +I4S'n; , w” =T p") =S’ p")
m° =(J p°) = (LS’ p), equation (37) can be simplified as

Y-Joy,,.)=tr(TE)+ p" o—H'T (38)

where H' =Jn' =Jn™ —J¢S'n’ —J$S'n’ is the referential entropy density of the

solid matrix.



4 Constitutive equations structure

For reasons of convenience, the dual potential (the solid deformation energy) is used as
W=¥-Jpy,,)-p"" v (39)
By substituting equation (38) into the time derivative of W , it satisfies the relationship
W(E, p*,T) =tr(TE)—vp™" —H'T (40)
which indicates that W is a function of E, p” and T, and expressions forT, v and

H' may be obtained.

Since

ij

WEp T =| | E [ ) e[ ) )
P OE i\ opr or
i) prore 1 P E;.T E;.p"

the following equations are obtained:

ow ,
7;j = (a_W] ’ b= _( pore j ’ HS = _(a_WJ (42)
OF; ) o 1 p"" )y 1 A

If equation (42) is differentiated with respect to time, the fundamental constitutive

equations for the evolution of stress, pore volume fraction and temperature can be

expressed as

I; = LijklEkl —M,;p™" - SijT (43)
O=M,E,+Qp"" + BT (44)
W =S,E,+B p"+ZT (45)

S,

i o Z ,B and Q are material-dependent constants

where the parameters L, , M,

defined by the following group of equations

ijkl ’
aE‘kl pre.T aElj proe.T




s s a
Z(GH] (2] [aHj Q( j
6T Eij,Ppme aT E,} phore ap E;T ap E;.T

Note: one example is provided for the derivation from equations (42) to (43):

Since T, =(8—W] , using the differentiation chain rule leads to
pore T

Y/p

or, ofow o oW o
Lo = G| =)
or  or| OF, OE, o) . |oE, 7
) P/Jure T Ul ppm( T Pp( e T

y

Substituting equation (40) into equation (47) leads to

(46)

(47)

oT; . oT; . s .
Y = i(W) = Y E, - 8_0 pre— 81 T (48)
ot | GE, .| ek, OE, OE,
[} prore.T 7] proe.T ij proe.T ij prore JEy,

Comparing equation (48) with equation (43), the coefficients in equation (46) can be

. oT; 0 oH’
obtainedas L, =| —* , M, = & and S, = :
M\ GE, ) " eE, | O,
prere. T i) prore 1 i) proe 7



5 Final equations of motion for mixture coupling theory

5.1 Solids
The non-linearity of the equations is of a geometrical nature and associated with large
deformations. For isotropic materials, the tensors M, and S are diagonal; that is, they

can be written in the form of scalars { and @, , as follows:

M; =¢3;5 S; = or0, (49)

and the elastic stiffness L, can be formed as a fourth-order isotropic tensor

2G
Lijkl = G(é;kgjl + d15jk) +(K - ?)é:jgkl (50)

where G is the rock shear modulus and K the bulk modulus.

With the assumption of small strains, the governing stress (equation (43)) and pore

fraction (equation (44)) equations can be changed to the form
. = 26 +2Ge, — ¢ prs ' 51
G, = (K—?)skk +2G¢; - p"o, — o, T (51)
O=CE, +0p™ + BT (52)

od.
where &, =— and d, is the displacement (/=1,2,3 or the vector d =[d,,d,,d;] ); the

ox ;

void compressibility Q relates to the scalar ¢ according to Qz(l/KS)(g“—¢)+¢’ /K,
in which K is the bulk modulus of the solid matrix and K, is the bulk modulus of liquid
mass; the quantity ¢ is related to the bulk moduli, K and K, in a poroelastic manner,

that is, =1-(K/K,); @, = Kp, with B being the thermal expansion coefficient of

the solids, B=—({—¢)p, .



00
If the mechanical equilibrium condition (—~ =0) is introduced into equation (51), and

ox ;

by using the evolution of the pore pressure p” as[19]

e~ (sp') =(8'+ ; L (53)

a l
where C? —qﬁi
3}7,

the final equation becomes

2] 8. P '
k26, 0y ol 0d | Od ) ol e s e Lo (s
3 0Ox,0x, Ox;0x; Ox,0x, ¢

5.2 Chemical potential and transport

5.2.1 Chemical potential
This section considers the case in which there are only two chemical components
present: the solute (chemical) and diluent (water). The solute chemical potential is given

by the expression[35]
C c RT c
u =g (p,T)+(—-)Ina*) (55)
M
where g° is a function that depends on pressure and temperature, and the term
RT s . . ¢ ¢ c
(F)(lna )is the chemical activity-dependent term of x°. R, M“and a" are the gas

constant, the molar mass and activity of the solute, respectively. Chemical activity is a

measure of the ‘effective concentration’ of the solute in the mixture.

The relationship between a“and x“is



where r. is the activity coefficient. If the solution is assumed to be ideal, then r. =1, so

that the solute activity a“ becomes equal to the solute mole fraction x“. Note that the
mole fraction x° is related to the solute mass fraction ¢° through

C=xM I (x*M+1-xIM") (57)
5.2.2 Chemical transport
From the balance equation (12) and the mass density relationship(4), using the Euler
identity, for the a constituent (a = w, ¢) in the liquid, there is

(S'vp)+JIV-(p u)+JV-J* =0 (58)
By introducing the mass fraction ¢ = p* / p|, equation (58) can be rearranged as

(S'vplc*)+V - (plcu)+JV-J* =0 (59)

Because za c“=1and ZQJ“ =0, summing over all the fluid components leads to

the relationship
WS'p)+IV-(pu)=0 (60)
By invoking equation(60), equation (58) can be transformed to
vS' pl¢* +Jpa-Vet +JV-J* =0 (61)
By substituting equation (27) into equation (61) and using the chemical potential

relationship (55) and the relevant derivation in reference [1], the chemical transport

equation can be derived as

1 RT
Vet + qf’wjv

k
vS'plé - prk—”{vpl—rzpf—w -—
v c'c" M

(62)
Lp o o -
+JV-| ———Vp' = pDVc" =VT |=0
p
In this equation, the chemical and thermal osmosis influence, as well as the pressure
and temperature influence on diffusion, have been embedded. Without considering such

thermal coupled influence, the equation will become the same equation as chemical

osmosis [2].
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5.3 Hydraulic
From equations (4) and (13), and using the Euler identity, the following equation is
derived
WS'p)+IV-(pju)=0 (63)

Expand the first term in equation (63), it leads to

S' plo+vp!S' +vS' Pl +IV-(pu) =0 (64)
With equations (52) and (27), the control equation for the liquid transport can be written
as

S' PV -d+S' pOp? +S' p/ BT +vp,S' +vS'

rpl (65)
v —ptk el i Eagy ot LR Gee 5Pgr || g
Y v c"c" M° T

Considering the average pressure definition in equation (53), alongside the rate of

saturation as a function of pressure S’ = S'(p') and the water density as a function of
pressure and density p| = p| (p’,T) [19, 45, 46] as

oo _c o
op' ot v ot

S'(ph) =

- 1 1 1 -/ -

o, (T, p)=p, [—p —ﬂsz
Kl

1 1(op
where K, the bulk modulus of the liquid with — - = —l[ﬂ) , Bis the thermo
! T

! 817[
: . o 1 (0p|
expansion coefficient of the liquid with §, =——| —| .
p\or ),
With equation (66) and relationship (53), and neglecting the space variation of liquid

density, e.g. Vo, =0, equation (65) can then be rewritten as
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1 " ! C_gp l p U_S[ 6_171 l _ A
S'ev d+{S Q( y +S }_(C‘Y T ﬂ po +S'(B-vp)T

l

1 RT

CH)CC MC

r 1
—JV-kﬁ(Vpl—rlpl[ Vcc+qT'DlVT =0
v

Note: The mass density of water in the “liquid” volume also changes, even if the volume

change is negligible.

5.4 Thermo transport
From equation(15), by using Euler identity, equation (17) can be rewritten as

' p!C'T+5'vg/C'T)+JV-1,+JV-HT =0 (68)
Where v* =J¢’ =1-uvis the solid mass fraction in the reference configuration.

From the flux equation (9), density relationship (4)and Darcy velocity (25), the heat fluid

carried by the liquid can be written as
Wl =C'Tp/u (69)
in which the expression A'l' = C'T pu is adopted.

Since the attention of this paper is to focus on the coupled chemical and thermal osmosis,
by neglecting the temperature and pressure dependence of fluid and solid densities and
neglecting the thermal coupling term due to pressure or chemical, equation (68) can be

rearranged as

9 (1-0)p'C* +vS' P/ C' T} —IV'ANT +JV-C'Tpu=0 (70)
5t K 1 1

which is the same function as that derived based on the mechanics approach [19].

5.5 Validation and innovation of the constitutive equations
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The mechanical deformation equation (54) has a similar formulation to the deformation

equation presented in [11], however, the liquid pressure variation p, accounts for the

combined influence of chemical and thermal osmosis in the equation in section 5.3,
which therefore is a further extension from the current state-of-the-art understanding.
The fluid transport equation (67) has extended previous published equations [1, 2] by

considering the chemical osmosis influence, by incorporating the thermal influence term

!
r"f’ VT . The same heat transport equation (70) [16] has been obtained purely through

the mathematical derivations after simplification of equation (70).
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6 Numerical results for coupled thermal and chemical osmosis

This section focuses on the influence of coupled chemical osmosis and thermal osmosis
induced flow, and their consequent influence on THMC processes. The governing

equations (54) , (62), (67), (70) are solved by using the classic finite element method

[19] for variables of the displacement vector d , liquid pressure p', chemical

concentration ¢, and temperature T .

A simple numerical model has been established to simulate the mechanical behaviour

of an unsaturated very-low permeability rock formation (Fig 1).

6.1 Geometry and boundary conditions

Fig 1 shows the geometry and boundary conditions of model domain. Boundary A is free
and permeable and boundary B is fixed and impermeable. The upper and lower

boundary are on rollers allowing only horizontal displacement.

— SNICRNIONE. ____Stiff constraint

1 1

Unsaturated rock
/ =-4E6 p0=-4E6
«~'E»_ Free permeable . Fixed impermeable  ¢=010 0.35 C0=_0
© boundary A : boundary B T=300K to 380K TO=300K

Stiff constraint
0.15m

Fig 1. Geometry and boundary conditions.

As this numerical simulation focuses on chemical and thermal osmosis, no pressure
gradient is applied. At boundary A, the pressure is set at -4 MPa and remains constant

during the modelling process. The domain is assumed to contain water at a pressure of
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-4 MPa with the saturation of 0.9951 by adopting the Van Genuchten relationship [47],

which is used to define the relative permeability and saturation as

T

S’ = [(— plim)" 1}"1

The initial mass fraction of the chemical in the domain is set to be zero. At boundary A,

the mass fraction (chemical) rises from 0 to 0.35 to simulate the chemical gradient. The

initial mass fraction at boundary B is 0, but not fixed. The initial temperature is set to be

300 K across the domain, and rises to 380 K on boundary A (t>0).

Parameters adopted in this numerical simulation are listed in Table 1.

Table 1. Material parameters [48].

Parameters Physical meaning Values and units
pll Density of fluid 1113 kg/m3
¢ Porosity 0.1

k permeability 1 mD

6 Dynamic viscosity 3e-4 Pa’s
m van Genuchten parameter 0.43

M van Genuchten parameter 51 MPa

E Young’s modulus 24.14 GPa
1% Poisson’s ratio 0.3

¢ Biot's coefficient 1

c” Specific heat of fluid 4181 J/Kg/K
C* Specific heat of solid 768 J/Kg/K
Iq Thermal reflection coefficient 1 (assumed)
n Chemical reflection 0.003 [49]

D Diffusion coefficient 5e-9 m?/s
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6.2 Numerical results

6.2.1 THMC coupling

The classic finite element method [19, 50] has been used to solve the governing
equations. Fig 2 shows the chemical mass fraction change with time. As the chemical
mass fraction rises from 0 to 0.35 at boundary A, the chemical species transports from
high mass fraction to low mass fraction. As a result, mass fraction in the domain
increases with time. Att = 7.2e5 s (200 h), the mass fraction reaches a stable state. After

that, the chemical mass fraction remains constant.

Fig 2. Evolution of chemical mass fraction distribution with time.

Fig 3 shows the temperature change with time. The trend of temperature change is very
similar to the trend of chemical mass fraction change. The difference is that temperature
changes at a much faster rate than chemical mass fraction change [51]. Att = 1.8e5 s
(50 h), the temperature has reached a stable state whereas the chemical mass fraction

is still changing.
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Tesparature X

Fig 3. Evolution of Temperature distribution with time.

Figs 4-6 show the evolution of pressure, saturation and displacement with time under
the influence of chemical osmosis and thermal osmosis. Pressure in the domain is
significantly changed by chemical and thermal osmosis. As saturation and pressure are
linked by the van Genuchten relationship, the trend of saturation distribution is very

similar to the trend of pressure.

Fig 4. Pressure change induced by chemical osmosis and thermal osmosis.
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Fig 6. Horizontal displacement induced by chemical osmosis and thermal osmosis.

6.2.1 chemical or thermal osmosis

By setting the thermal reflection coefficient ry = 7 with the chemical reflection coefficient
set to rn = 0, or by setting the thermal reflection coefficient ry = 0 with the chemical
reflection coefficient set to r; =0.003, the pressure change with time under the influence
of chemical osmosis only or thermal osmosis only can be obtained (Fig 7 and Fig 8 ),

respectively.
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Fig 7 shows the chemical osmosis influence on water pressure. Due to a chemical
gradient between boundary A and the domain, water will flow out from the domain via
boundary A, leading to the reduction of saturation (Fig 9) and a corresponding reduction
of the pore water pressure (Fig 7). At the early stage of this simulation (e.g. 60 s, 300 s),
as the chemical gradient near boundary A is larger, the water loss near boundary A is
quicker than that near boundary B. As a result, the pressure and saturation change near
boundary A is more significant (note: pressure at boundary A is constant). As the
chemical gradient dissipates along with time, water flows back into boundary A and
gradually covers the whole domain, and the water pressure at boundary B recovers from

the lowest (e.g. at t=3600s) to the original -4MPa.

Figure 8 shows the pressure change caused by thermal osmosis only. Compared with
the chemical osmosis process (Figs 7 and 9), one of the major differences is that the
thermal osmosis flow direction is opposite to the chemical osmosis flow direction, hence,

the water pressure does not decrease but increases.

Fressure (Fa

Fig 7. Pressure change induced by chemical osmosis.
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Fig 8. Pressure change induced by thermal osmosis.
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Fig 9. Saturation change induced by chemical osmosis.

Comparing Fig 7 and Fig 8, the pressure change caused by chemical osmosis is
significantly bigger than that caused by thermal osmosis under the simulation conditions
considered (rq =1, n=0; r=0.003, ry=0). As water pressure change section 6.2.1 (THMC)
is the combined influence of chemical osmosis and thermal osmosis, Fig 4 is very similar

to Fig 7. For the same reason, Fig 9 and Fig 5 are very similar.

Since the flow direction of thermo osmosis can be either from high temperature to low

temperature, or vice versa [8], the thermal reflection coefficient is set to be ry = -1 (r =0)
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to compare with ry = 7 (r; =0). The resulting pressure changes are presented in Fig 11: if

rq = 1, the pressure increases. Whereas, if ry = -1, the pressure decreases.

Similarly, by setting the chemical reflection coefficient r, = 0.003 or r; = -0.003 (rq=0), the
pressure changes caused by chemical osmosis (positive and negative) are obtained, as
shown in Fig 11:. Pressure changes are observed with opposing trends under the

opposite (e.g. + or -) chemical reflection coefficients.

Presauw

Fig 11. Pressure change induced by chemical osmosis (r=0.003& rq=-0.003).
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7 Conclusion

In this paper, a new THMC model has been presented incorporating coupled chemical
osmosis and thermal osmosis based on mixture coupling theory. Classic Darcy’s law has
been extended considering the respective osmotic flux components. The numerical
model has illustrated the influence of chemical osmosis and thermal osmosis on the
mechanical behaviour of unsaturated rock. Chemical osmosis and thermal osmosis have
both been found to induce fluid flux movement and alter the pressure distribution in the
domain under the conditions considered in this work. Further experiments might be
required to identify the parameters in greater detail. As the result is a combined influence
of chemical osmosis and thermal osmosis, it points out a potential to change one process

to reduce/enlarge the influence of the other.
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