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Expected Value of Sample Information to
Guide the Design of Group Sequential
Clinical Trials

Laura Flight , Steven Julious, Alan Brennan, and Susan Todd

Introduction. Adaptive designs allow changes to an ongoing trial based on prespecified early examinations of accrued

data. Opportunities are potentially being missed to incorporate health economic considerations into the design of

these studies. Methods. We describe how to estimate the expected value of sample information for group sequential

design adaptive trials. We operationalize this approach in a hypothetical case study using data from a pilot trial. We

report the expected value of sample information and expected net benefit of sampling results for 5 design options for

the future full-scale trial including the fixed-sample-size design and the group sequential design using either the

Pocock stopping rule or the O’Brien-Fleming stopping rule with 2 or 5 analyses. We considered 2 scenarios relating

to 1) using the cost-effectiveness model with a traditional approach to the health economic analysis and 2) adjusting

the cost-effectiveness analysis to incorporate the bias-adjusted maximum likelihood estimates of trial outcomes to

account for the bias that can be generated in adaptive trials. Results. The case study demonstrated that the methods

developed could be successfully applied in practice. The results showed that the O’Brien-Fleming stopping rule with

2 analyses was the most efficient design with the highest expected net benefit of sampling in the case study. Conclu-

sions. Cost-effectiveness considerations are unavoidable in budget-constrained, publicly funded health care systems,

and adaptive designs can provide an alternative to costly fixed-sample-size designs. We recommend that when plan-

ning a clinical trial, expected value of sample information methods be used to compare possible adaptive and nona-

daptive trial designs, with appropriate adjustment, to help justify the choice of design characteristics and ensure the

cost-effective use of research funding.

Highlights

� Opportunities are potentially being missed to incorporate health economic considerations into the design of

adaptive clinical trials.
� Existing expected value of sample information analysis methods can be extended to compare possible group

sequential and nonadaptive trial designs when planning a clinical trial.
� We recommend that adjusted analyses be presented to control for the potential impact of the adaptive

designs and to maintain the accuracy of the calculations.
� This approach can help to justify the choice of design characteristics and ensure the cost-effective use of

limited research funding.
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Conducting efficient research is a priority for funders

with limited heath research budgets.1 Adaptive designs

are one way to potentially make a trial more efficient

that use data collected as a trial progresses, at

prespecified time points, to inform modifications to the

trial.2 They can directly benefit patients and health care

providers both ethically and financially.3,4 Adaptive

designs are increasingly used5–7 and have been adopted

in trials for the treatment of COVID-19.8

The methods of value-of-information analysis (VOIA)

provide a framework for quantifying the value of collect-

ing more information to determine whether a treatment

should be adopted by balancing the benefits of additional

research against the costs. To date, opportunities are

potentially being missed to apply VOIA methods into

the design and analysis of adaptive designs.9,10

In this article, we extend existing VOIA methods, spe-

cifically the expected value of sample information (EVSI)

for assessing the cost-effectiveness of proposed fixed-

sample-size designs to the adaptive design setting.11 This

approach helps to increase the efficiency of trials while

reflecting stakeholder preferences for adaptive decisions

to be informed by clinical effectiveness during the trial.11

We highlight how this approach differs from the fixed-

sample-size design setting using the ISPOR Value of

Information Emerging Good Practices Task Force

framework.10,12 Key considerations include appropri-

ately adjusting estimates for the adaptive nature of the

design as well as capturing the costs associated with con-

ducting an adaptive design.

Using a hypothetical case study, based on the CAC-

TUS pilot trial,13 the methods are used to guide the

design of a trial focusing on the number of interim analy-

ses and choice of clinical effectiveness stopping rule while

making appropriate adjustments for the adaptive nature

of the design.

Group Sequential Designs

Pallmann et al.4 provided a summary of available adap-

tive designs. In this article, we focus on the commonly

used group sequential designs (GSDs).5,14 During a

GSD, data are examined multiple times. At an interim

analysis, a test statistic comparing the intervention and

control arms for the outcome of interest—typically, a

clinical rather than a cost-effectiveness outcome—is cal-

culated. This test statistic is then compared with the pre-

specified stopping boundary (also known as a stopping

rule).

If the test statistic falls within the boundary, the trial

continues to the next analysis. This process is repeated at

each interim analysis using all accumulated evidence

until the test statistics cross the boundary or reach the

final analysis. Examples of stopping rules include those

proposed by Pocock15 and O’Brien-Fleming.16 Each rule

has different characteristics and impact on the design

and subsequent analyses.17 The Pocock rule requires a

larger maximum sample size if the trial does not stop

early; however, there is a lower hurdle for stopping the

School of Health and Related Research, University of Sheffield, Shef-

field, UK (LF, SJ, AB); Department of Mathematics and Statistics,

University of Reading, Reading, UK (ST). The authors declared no

potential conflicts of interest with respect to the research, authorship,

and/or publication of this article. The authors disclosed receipt of the

following financial support for the research, authorship, and/or publi-

cation of this article: Laura Flight was funded by a National Institute

for Health Research (NIHR) Doctoral Research Fellowship for this

project. This article presents independent research funded by the

NIHR. The views expressed are those of the authors and not necessa-

rily those of the NHS, the NIHR, the Department of Health and Social

Care, or the University of Sheffield. The CACTUS Pilot trial was

funded by the NIHR under its Research for Patient Benefit (RfPB)

Programme (grant reference number PB-PG-1207-14097). This study

was also supported by the Stroke and Telehealth themes of the South

Yorkshire Collaboration for Leadership in applied health research and

care (CLAHRC). NIHR CLAHRC for South Yorkshire acknowledges

funding from the NIHR. The study also received support from North

of Tyne PCT. The views expressed are those of the authors and not

necessarily those of the National Health Service, the NIHR, or the

Department of Health. The Big CACTUS project was funded by the

NIHR Health Technology Assessment Programme (12/21/01). Addi-

tional funding support was provided by the Tavistock Trust for Apha-

sia. The views and opinions expressed are those of the authors and do

not necessarily reflect those of the Health Technology Assessment Pro-

gramme, the NIHR, the National Health Service, the Department of

Health and Social Care, the Tavistock Trust for Aphasia, or the Stroke

Association. Financial support for this study was provided entirely by a

National Institute for Health Research Doctoral Fellowship. The fund-

ing agreement ensured the authors’ independence in designing the

study, interpreting the data, writing, and publishing the report.

2 Medical Decision Making 00(0)



trial at early analyses compared with the O’Brien-Flem-

ing rule.

It is important to account for the adaptive nature of

the design during analysis to avoid introducing bias into

the trial results.14 Flight18 explored the impact that a

GSD can have on the health economic analysis following

a clinical trial and showed how it is important to adjust

for the adaptive design to maintain an accurate health

economic analysis.

In this article, we consider the appropriate adjustment

for the adaptive nature of the trial when extending VOIA

methods to guide the design of GSDs, highlighting the

additional considerations in the adaptive design setting.

Our approach allows researchers to determine a cost-

effective design by comparing different stopping rules

and number of interim analyses and to compare adaptive

with fixed-sample-size designs.

Methods

To conduct a VOIA for a fixed-sample-size design, Fen-

wick et al.12 proposed 7 steps in the ISPOR Value of

Information Emerging Good Practices Task Force gui-

dance. The following sections discuss each of these steps

in the context of employing an adaptive design, highlight-

ing how they differ from the fixed-sample-size design

case. Here, step 6 has been modified for adaptive designs.

This work was supported by a public advisory group

who ensured that the development of the methods was

relevant and appropriate from the public perspective.

More information on their role is provided by Flight.18

Steps 1 and 2: Conceptualize and Construct a Health

Economic Model and Parametrize with Evidence

As for fixed-sample-size designs, a health economic

model needs to be constructed for the population of

interest. This may be an existing model that has been

developed for the disease of interest or from previous

work such as a pilot study.

Steps 3 and 4: Generate the Probabilistic Sensitivity

Analysis Sample and Identify Uncertainty

A probabilistic sensitivity analysis (PSA) is generated

based on available prior evidence for the model para-

meters, denoted by u. Model parameters might include

transition probabilities, costs, and benefits for a health

state. We denote the PSA sample by

u
(1), . . . , u(NPSA)

� �
ð1Þ

where NPSA is the number of PSA samples. For

each row of the PSA sample, the model is evaluated to

give a per-person net benefit for each intervention,

denoted by

NB(d, u(1)), . . . ,NB(d, u NPSAð Þ)
n o

ð2Þ

where d represents the interventions. There is no differ-

ence between the VOIA approach for a fixed-sample-size

and adaptive design at this stage.

Step 5: Establish whether Further Research is Worthwhile

The expected value of perfect information (EVPI) consid-

ers the scenario in which further research would eliminate

all decision uncertainty.19–21 Further research is poten-

tially worthwhile if the associated costs are less than the

EVPI.22 Using the same approach as for a fixed-sample-

size design, this can be calculated for the adaptive design

using19

EVPI =Eu max
d

NB(d, u)

� �
� max

d
Eu NB d, uð Þð Þ

� �
:

ð3Þ

It may be possible to resolve all the uncertainty about a

subset of the model parameters.10 This can be measured

using the expected value of partially perfect information

(EVPPI).20

Step 6: Estimate the Value of Specific Research

If the EVPI calculation suggests further research is

worthwhile, the value of different research designs can

be estimated by calculating the EVSI and expected net

benefit of sampling (ENBS). At this stage, additional

considerations are required for an adaptive design. We

break this step down into 6 stages:

1. Identify the trial designs for comparison.

2. Simulate the trial results and analysis data sets.

3. Calculate summary statistics adjusting the point esti-

mates and confidence intervals of primary and sec-

ondary endpoints to allow for the adaptive nature of

the trial design.

4. Calculate the EVSI.

5. Calculate the cost of sampling, accounting for any

additional and potential costs savings.

6. Compare the ENBS of the proposed trial designs.

Flight et al. 3



Stage 1: Identify the trial designs for comparison. The

first stage is to choose the trial designs for consideration,

which includes the sample size for the trial and the cri-

teria on which the trial might stop early (the stopping

rule). As discussed by Flight et al.,9 this is typically

informed by the clinical primary outcome, as cost-

effectiveness outcomes are rarely used in the design of an

adaptive trial. As with the fixed-sample-size design, and

using a frequentist approach to sample size calculation, this

will require an estimate of the clinically important difference

for the primary outcome, an estimate of the population var-

iance (for a normal outcome) and type I and type II errors

(typically chosen to be 0.05 and 0.1, respectively).23 These

choices are the same regardless of the adaptive nature of

the trial and are usually informed by prior information or

discussions with the clinical research team.

Additional considerations for an adaptive design—

specifically, a GSD here—include the choice of stopping

rule (based on the clinical primary outcome) and the

number of interim analyses. We consider GSDs with the

Pocock stopping rule and the O’Brien-Fleming stopping

rule with up to 5 equally spaced analyses of the data.

The sample size is informed by these choices.

Stage 2: Simulate the trial results and analysis data sets

accounting for the adaptive design. A trial result data set

representative of the population to be randomized into

the future trial is simulated for each row of the PSA sam-

ple. This is based on the likelihood function from existing

information such as a pilot study or observational study.

Rothery et al.10 suggested that data sets should be simu-

lated taking into account how the data from the trial would

be analyzed. Flight18 showed that the adaptive nature of a

trial can affect the subsequent health economic analysis.

Failing to adjust for this could result in a spurious estimate

of the EVSI, potentially wasting limited resources. They

also describe how bias-adjusted maximum likelihood esti-

mate methods for the adjustment of the point estimate and

the sample mean ordering approach to calculate adjusted

confidence intervals of primary and health economic out-

comes can be extended to adjust a within-trial and model-

based health economic analysis.24–26

In this article, the bias-adjusted methods are referred to

as the ‘‘adjusted analysis,’’ and the usual maximum likeli-

hood estimate is referred to as the ‘‘unadjusted analysis.’’

The data simulation is informed by the PSA para-

meter estimates to give a trial analysis data set in each

row of the PSA. The trial analysis for the design under

consideration is applied to each trial results data set. For

an adaptive design, this establishes whether the trial

would have stopped early at any of the interim analyses.

For example, the first group of simulated participants

form the analysis set at the first interim analysis. The pri-

mary outcome is calculated and compared with the pre-

specified stopping boundary. If the estimate crosses the

boundary, the trial stops and the trial analysis data set is

formed from the participants randomized into the trial

up to that point. If the boundary is not crossed, the trial

continues to the next interim analysis, until the point

estimate crosses the boundary or the final analysis is

reached. This is repeated for each row of the PSA sam-

ple. The accumulating cost-effectiveness data are not

used to inform whether the trial should stop early.

Stage 3: Calculate summary statistics. Summary statis-

tics for primary and secondary outcomes informing the

health economic model are estimated from the trial anal-

ysis data set in each row of the PSA sample. This will

include the primary and secondary clinical outcomes and

health economic outcomes, such as health care resource

use and health-related quality of life. These statistics are

denoted by

~T (y 1ð Þ), . . . , ~T (y(NPSA))
n o

, ð4Þ

for the adjusted analysis and by

T̂ (y 1ð Þ), . . . , T̂ (y(NPSA))
n o

, ð5Þ

for the unadjusted analysis.

Stage 4: Calculate the EVSI. The EVSI is the difference

between the expected net benefit given sample informa-

tion minus the expected net benefit given current infor-

mation. The health economic model has input

parameters (u) to estimate the net benefit of each inter-

vention (d = 1, . . . ,D) under consideration. This gives

a per-person EVSI of

EVSI =EY max
d

EujYNB(d, u)

� �
� max

d
Eu NB d, uð Þð Þ

� �
,

ð6Þ

for data Y to be collected.27 A population-level EVSI is

estimated by multiplying the individual-level EVSI by the

time horizon (T ) and the annual prevalence for the popu-

lation (Np) to give28

popEVSI = EVSI 3T 3 Np: ð7Þ
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Methods for efficiently calculating the EVSI are summar-

ized by Health et al.29 and Kunst et al.30 We use the non-

parametric regression approach, as this does not require

the existence of conjugate distributions or parametric

assumptions.27

Stage 5: Calculate the cost of sampling accounting for

additional costs and cost savings. We need to understand

the costs associated with conducting the research, known

as the cost of sampling.31 The total cost of sampling is

composed of fixed, variable, analysis, and opportunity

costs and depends on the number of participants

recruited and number of analyses conducted. Fixed costs

are incurred regardless of the trial design and include site

recruitment and training, archiving costs, and dissemina-

tion. Variable costs include randomizing and following

up participants such as staff costs and database manage-

ment. The analysis costs include costs associated with

conducting an analysis of the endpoints used to inform

interim decision making (typically clinical endpoints).

For the fixed design, the cost of analysis is included in

the fixed costs. For the adaptive design, however, we sep-

arate this out, as multiple analyses may take place

depending on the design chosen.

The opportunity cost can be thought of as the finan-

cial cost of delaying a decision to obtain more informa-

tion.32 Willan and Kowgier33 suggested, for a 2-arm

trial, the opportunity cost is equal to the incremental net

benefit (INB) of the new intervention compared with the

control based on information available before the trial

begins.

The cost of sampling, for a 2-arm trial, is calculated

using

TC=Cf +NaCa + nCv + nICv, I + nCCv,C +
n

2
Co, ð8Þ

where TC is the total cost of sampling, Cf is the fixed

cost, Na is the expected number of analyses, Ca is the cost

of analysis, n is the expected sample size (ESS), Cv is the

variable cost per patient incurred by every participant in

the trial, nI is the expected number of participants in the

intervention arm, Cv, I is the variable cost per participant

incurred in the intervention arm only, nC is the expected

number of participants in the control arm, Cv,C is the

variable cost per participant incurred in the control arm

only, and Co is the opportunity cost per participant.

Additional information on how to calculate the cost of

sampling for an adaptive design is given in the supple-

mentary material.

Stage 6 and Step 7: Compare the ENBS of trial designs

and iterate with new evidence. The ENBS is the difference

between the population EVSI and the cost of sampling.

This can be calculated using the adjusted approach,

denoted by gENBS , or the unadjusted approach, denoted

by dENBS . The optimal design from a health economic

perspective has the highest ENBS. We use the ENBS to

guide the design of a clinical trial alongside discussions

with clinical teams, including the use of adaptive as well

as fixed-sample-size designs. As for the fixed-sample-size

design, this process should be repeated once new evidence

is available.

The steps for conducting a VOIA for a fixed-sample-

size design, proposed by Fenwick et al.,12 have been

extended for an adaptive design. These methods appro-

priately adjust the analysis for the adaptive nature of the

trial and capture the potential additional costs and cost

savings of these designs. The following sections outline a

hypothetical case study used to illustrate the approach

and summarize the results.

Hypothetical Case Study

We use a hypothetical case study, based on a real trial,

to illustrate how VOIA can be applied to an adaptive

design. The Cost-effectiveness of Aphasia Computer

Treatment Compared to Usual Stimulation (CACTUS)

pilot clinical trial aimed to assess the feasibility of con-

ducting a large-scale clinical trial into the effectiveness of

self-managed computer treatment for people with long-

standing aphasia post stroke.12 Participants were rando-

mized to either receive a computer-based intervention

(CSLT) designed to improve word-finding ability

through language exercises or a usual care control (UC).

A model-based cost-utility analysis of pilot data pro-

vided an early analysis of the likely cost-effectiveness of

CSLT, and full details are reported by Latimer et al.34

We considered alternative designs for a full-scale clini-

cal trial following the CACTUS pilot comparing CSLT

and UC. Using R, we adapted the original model and

analysis methods reported by Latimer et al,34 and the

proposed designs did not attempt to replicate the Big

CACTUS clinical trial or health economic analysis that

followed the CACTUS pilot trial.35 Full details on the

economic model used in this analysis are provided by

Flight.18

Trial design and data characteristics. We compared a

fixed-sample-size design, Pocock (POC)15 and O’Brien-

Fleming (OBF)16 stopping rules with maximums of 2

Flight et al. 5



and 5 analyses. Each design was applied in R (version

3.4.3) using the RCTdesign package (http://www.rctde-

sign.org/Welcome.html). For each design, the type I and

type II error rates were 0.05 and 0.1, respectively. The

clinically important difference was the improvement in

proportion of words named correctly between the inter-

vention and control arm (treated as a continuous vari-

able). That and its associated standard deviation were

calculated using the pilot trial data.

To explore the impact of different trial designs and

data characteristics on the choice of optimal design, the

correlation between primary and health economic out-

comes and the intervention costs were varied. We assumed

there was a negative correlation between the primary out-

come and costs and a positive correlation between the pri-

mary outcome and utilities. Absolute correlations of 0.0,

0.4, and 0.8 were explored, covering a range of no,

medium, and high correlation. The cost of CSLT was var-

ied over 15 values, and the INB from the pilot trial and

the subsequent EVSI and ENBS was recalculated.

Data-generating mechanism. To generate the PSA sam-

ple, we bootstrapped the CACTUS pilot data 5000

times. We simulated a trial result data set for each of the

PSA rows using copulas. This allowed the marginal dis-

tributions of the primary and the health economic out-

comes (resource costs and utility) to be nonnormal and

correlated. Full details are provided in the supplementary

material. We used a willingness-to-pay threshold of

£20,000 per quality-adjusted life-year as per National

Institute for Health and Care Excellence guidance with a

discount rate of 3.5% applied to costs and benefits.36 The

time horizon and prevalent population were taken from

the Latimer et al.34 pilot health economic analysis, giving

an average of 27,616 patients expected to eligible for and

compliant with CSLT per year over a 10-y period.

Trial results estimates. We calculated adjusted and

unadjusted estimates of the health economic model para-

meters using the bias-adjusted maximum likelihood esti-

mates described by Flight,17 compared adjusted and

unadjusted point estimates of the primary clinical out-

come, and reported the width of the 95% confidence

interval. We then calculated and compared the ENBS

for each of the scenarios to determine the optimal trial

design from a health economic perspective.

Results

We summarize how the results of such analyses could be

presented when exploring the optimal trial design,

including both fixed-sample-size and adaptive designs, by

first considering the impact of each design on the maxi-

mum and ESS for the trial, the difference in the cost of

sampling, and how the EVSI and ENBS for the designs

might be compared visually and summarizing the poten-

tial impact of the unadjusted versus the adjusted

approaches. FIX denotes the fixed-sample-size design,

and OBF2 and OBF5 and POC2 and POC5 denote the

O’Brien-Fleming and Pocock designs with 2 and 5 analy-

ses, respectively. The specific results from applying the

new VOIA methods to the hypothetical case study are

context dependent and not generalizable to all VOIA cal-

culations using this approach.

Maximum and ESS and Proportion of Trials Stopping at

Each Analysis

Table 1 summarizes the ESS, number of analyses, and

distribution of the sample size for each design over the

interim and final analyses with zero correlation between

the primary and health economic outcomes. OBF5 has

the highest expected number of analyses (4.55 analyses)

and POC2 the fewest (1.79 analyses). Both POC designs

have a high maximum sample size because of the large

penalty for early examinations of the data. The ESS for

these designs is high, as a large proportion of trials reach

the final analysis where the sample size is larger than the

fixed-sample-size design. A small number of trials

(0.02%) stopped at the first interim analysis of OBF5,

based on the accumulating evidence for the primary out-

come, where the sample size was 60. In contrast, almost

5% of trials stopped at the first analysis of POC5, where

the sample size was 72.

Calculating the Cost of Sampling for the Case Study

Financial information from the Big CACTUS grant

application (not the actual costs incurred) was used to

inform the cost of sampling for the hypothetical CAC-

TUS case study. These detailed costs are routinely out-

lined in the planning of clinical trials and are a useful

source for any trial team considering this approach. The

components of the cost of sampling for the hypothetical

case study are given in the supplementary material.

The cost of sampling for each design is given in Table

1. The cost of sampling for FIX is £2,127,530, the highest

cost of sampling of the 5 designs. POC2, OBF2, and

OBF5 have similar costs of sampling because of their

similar ESS. POC5 has the highest costs of sampling;

however, this is only £140,000 greater than the cheapest

design (OBF5), which is relatively small given each design

has a cost of sampling greater than £2,000,000. Even

6 Medical Decision Making 00(0)



when a trial can stop at the first analysis, large costs are

incurred, especially when the first analysis is conducted

halfway through the trial. The trials stopping at the first

analysis of 5 have the smallest cost of sampling, as they

have one-fifth of the maximum number of participants.

This is slightly smaller for OBF as the first analysis is

conducted on the fewest number of participants.

EVSI and ENBS

Table 2 gives the unadjusted EVSI and ENBS for FIX,

as there are no early examinations of the data, there is no

need to adjust the final analysis. The adjusted EVSI and

ENBS are presented for the 4 adaptive designs to reflect

the adjustments required.

OBF2 has the highest EVSI and ENBS. From a cost-

effectiveness perspective, this is the optimal trial design.

This design gives a high EVSI but incurs a smaller cost of

sampling compared with FIX and POC (see Table 1). The

saving in costs of the additional, earlier analyses of OBF5

do not outweigh the reduction in EVSI as a result of the

smaller ESS. Likewise, both POC designs do not perform

well, as only a small number of trials stop early, and so the

trial has a large cost of sampling with no gain in EVSI.

Table 2 Results for 5 Proposed Trial Designs under 3 Different Scenarios for the Extent of Correlation between Primary and

Health Economic Outcomes, with Correlation 0.0, 0.4, and 0.8. Based on 5000 Probabilistic Sensitivity Analysis Samplesa

Design FIX OBF 2 OBF 5 POC 2 POC 5

Correlation = 0.0
EVSI per patient (SE) 26.62 (5.17) 27.27 (5.60) 26.20 (5.41) 25.83 (5.49) 25.13 (5.41)
Population EVSI (million) 7.35 7.53 7.23 7.13 6.94
ENBS (£ million) 5.22 5.46 5.20 5.04 4.76
Correlation = 0.4
EVSI per patient (SE) 39.91 (6.12) 40.56 (6.32) 38.84 (6.05) 37.99 (5.83) 40.91 (6.43)
Population EVSI (million) 11.02 11.20 10.73 10.49 11.30
ENBS (£ million) 8.89 9.13 8.69 8.39 9.12
Correlation = 0.8
EVSI per patient (SE) 36.25 (5.83) 40.13 (6.08) 37.95 (6.12) 37.68 (5.92) 38.56 (5.99)
Population EVSI (million) 10.01 11.08 10.48 10.41 10.65
ENBS (£ million) 7.88 9.01 8.44 8.31 8.47

ENBS, expected net benefit of sampling; EVSI, expected value of sample information; OBF O’Brien-Fleming stopping rule; POC, Pocock

stopping rule.
aUnadjusted values are presented for FIX and adjusted values for the adaptive designs. Values in bold show the most efficient design.

Table 1 Expected Number of Analyses, Expected Sample Size, Proportion of Trials Stopping at Each Analysis, and Expected

Cost of Sampling for 5000 Probabilistic Sensitivity Analysis Samples, Assuming Zero Correlation between the Primary and

Health Economic Outcomes

Design Analysis FIX OBF 2 OBF 5 POC 2 POC 5

Expected number of analyses 1.00 1.91 4.55 1.79 4.28
Maximum sample size 292 294 300 320 352
Expected sample size 292.00 280.66 273.05 285.73 301.52
Proportion of simulated trials stopping
at each analysis (expected No. of
participants at each analysis)

1 1.00 (292) 0.09 (148) 0.00 (60) 0.21 (160) 0.05 (72)
2 — 0.91 (294) 0.03 (120) 0.79 (320) 0.09 (142)
3 — — 0.11 (180) — 0.09 (212)
4 — — 0.13 (240) — 0.07 (282)
5 — — 0.73 (300) — 0.70 (352)

Expected cost sampling (£million) 2.13 2.07 2.04 2.10 2.18
Expected cost of sampling for a trial stopping
at each analysis (£ million)

1 2.13 1.42 0.98 1.48 1.04
2 — 2.14 1.28 2.27 1.39
3 — — 1.57 — 1.73
4 — — 1.87 — 2.08
5 — — 2.17 — 2.42

OBF, O’Brien-Fleming stopping rule; POC, Pocock stopping rule.
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The 95% confidence intervals for the estimated EVSI

are wide and overlapping for all scenarios. Increasing the

number of PSA samples may reduce the variance; how-

ever, this will need to be balanced against the increased

computation time. As this estimate is used to calculate

the ENBS, the choice of design for the trial is uncertain if

considering the EVSI and ENBS for 5000 PSA samples.

Varying Intervention Costs in the Case Study

Figure 1 summarizes the ENBS for the 5 proposed

designs for increasing intervention costs. This provides a

useful way to visualize and compare the competing trial

designs to identify the optimal option under increasing

intervention costs, identifying scenarios in which differ-

ent designs may be optimal. In the hypothetical case

study, the OBF2 design performs best for all correlations

when the intervention costs are low, as they have a higher

EVSI and low cost of sampling. The POC5 design also

performs well for lower intervention costs, especially

when correlations are equal to zero and 0.8, as it has a

high EVSI that outweighs its high cost of sampling.

However, once the intervention costs are higher than

approximately £8000 the designs with the smaller cost of

sampling are preferable because of the small EVSI gained

from all designs. Hence, the designs with 5 analyses per-

form better.

The ENBS increases as the intervention cost increases,

as there is greater uncertainty in the cost-effectiveness

decision. Once the intervention costs reach £3846, this

uncertainty decreases, as it becomes clearer that the

CSLT is unlikely to be cost-effective. POC5 performs

well when there is highest uncertainty, as this has the

highest ESS and thus the opportunity to learn more

information from more participants.

Comparison of Adjusted and Unadjusted EVSI

Table 3 summarizes the adjusted and unadjusted esti-

mates of the EVSI, ENBS, health economic model para-

meters, and the primary outcome from the PSA samples.

There is no difference between estimates for the baseline

utility in the control arm, as this is not affected by the

design of the trial and is thus set to be equal.

Figure 1 Case study sensitivity to the intervention cost assumption. Expected net benefit of sampling (ENBS) for 5 designs (5000

PSA samples). The adjusted ENBS is presented for the adaptive designs and the unadjusted ENBS for the fixed-sample-size

design.
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Table 3 Adjusted and Unadjusted Estimates of the EVSI, ENBS, and their Percentage Differences for Health Economic Model Parameters and the Clinical

Primary Outcome

Design FIX OBF 2 OBF 5 POC 2 POC 5 FIX OBF 2 OBF 5 POC 2 POC 5 FIX OBF2 OBF 5 POC 2 POC 5

Correlation 0.0 0.4 0.8

EVSI Adjusted — 27.3 26.2 25.8 25.1 — 40.6 38.8 38.0 40.9 — 40.1 37.9 37.7 38.6
Unadjusted 26.6 25.8 24.4 24.1 23.8 39.9 37.2 35.2 36.0 36.9 36.2 35.4 34.9 34.5 35.9
% Difference — 5.6 7.3 6.8 5.4 — 8.7 9.8 5.4 10.3 — 12.5 8.4 8.8 7.2

ENBS Adjusted — 5.5 5.2 5.0 4.8 — 9.1 8.7 8.4 9.1 — 9.0 8.4 8.3 8.5
Unadjusted 5.2 5.0 4.7 4.6 4.4 8.9 8.2 7.7 7.8 8.0 7.9 7.7 7.6 7.4 7.7
% Difference — 7.8 10.3 9.8 8.0 — 10.8 12.2 6.9 12.9 — 15.6 10.5 11.2 9.1

Resource cost intervention arm Adjusted — 201.4 201.4 201.6 201.8 — 201.9 201.9 202.1 202.6 — 202.3 202.5 202.4 202.8
Unadjusted 201.5 201.4 201.4 201.6 201.8 201.6 201.4 201.4 201.4 201.1 202.2 201.9 201.9 201.8 201.6
% Difference — 0.0 0.0 0.0 0.0 — 0.2 0.2 0.3 0.7 — 0.2 0.3 0.3 0.6

Resource cost control arm Adjusted — 269.8 269.7 269.7 269.6 — 269.6 269.5 269.5 269.1 — 269.4 269.3 269.3 268.9
Unadjusted 269.8 269.8 269.7 269.6 269.5 269.9 270.1 270.2 270.1 270.5 269.8 269.8 269.9 269.8 270.2
% Difference — 0.0 0.0 0.0 0.0 — –0.2 –0.3 –0.2 –0.5 — –0.2 –0.2 –0.2 –0.5

Utility improvement Adjusted — 0.0 0.0 0.0 0.0 — 0.3 0.3 0.3 0.3 — 0.2 0.2 0.2 0.2
Unadjusted 0.0 0.0 0.0 0.0 0.0 0.3 0.3 0.3 0.3 0.3 0.2 0.2 0.2 0.2 0.2
% Difference — –0.3 –0.5 –0.4 –1.0 — –1.0 –1.5 –1.4 –3.1 — –1.0 –1.5 –1.4 –3.1

Probability of a good response Adjusted — 0.4 0.4 0.4 0.4 — 0.4 0.4 0.4 0.4 — 0.4 0.4 0.4 0.4
Unadjusted 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4
% Difference — –2.1 –2.4 –2.3 –3.4 — –2.1 –2.4 –2.3 –3.4 — –2.0 –2.3 –2.3 –3.4

Probability of relapse Adjusted — 0.0 0.0 0.0 0.0 — 0.0 0.0 0.0 0.0 — 0.0 0.0 0.0 0.0
Unadjusted 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
% Difference — –11.2 –12.6 –12.1 –17.5 — –14.3 –16.0 –15.4 –21.3 — –13.6 –15.0 –15.0 –19.7

Treatment effect Adjusted — 0.1 0.1 0.1 0.1 — 0.1 0.1 0.1 0.1 — 0.1 0.1 0.1 0.1
Unadjusted 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
% Difference — –5.4 –7.9 –7.2 –16.1 — –5.4 –7.9 –7.2 –16.0 — –5.4 –7.9 –7.2 –16.0

Width treatment effect CI Adjusted — 0.2 0.2 0.2 0.2 — 0.2 0.2 0.2 0.2 — 0.2 0.2 0.2 0.2
Unadjusted 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
% Difference — 34.1 33.9 34.3 36.5 — 34.1 34.0 34.4 36.5 — 34.1 34.1 34.3 36.5

ENBS, expected net benefit of sampling; EVSI, expected value of sample information; OBF O’Brien-Fleming stopping rule; POC, Pocock stopping rule.
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The difference between the adjusted and unadjusted

estimates of the primary outcome is greatest for the adap-

tive designs with 5 analyses compared with 2 analyses

and highest for POC compared with OBF. The point esti-

mates are likely to be based on less data, as the interim

sample size for early analyses out of 5 is small and the

POC stopping boundary is more likely to be crossed at

an early interim analysis by design. The adjusted confi-

dence intervals are wider, reflecting the additional uncer-

tainty introduced by the adaptive design.

The differences between the model parameters are

small and close to zero for the cost parameters and the

utility improvement. The percentage differences are

higher for the probability of good response and prob-

ability of relapse, reaching 3.42% and 21.29%, respec-

tively. The primary outcome is used to calculate these

model parameters and is biased even when there is no

correlation between primary and health economic out-

comes. The differences for all parameters are greatest for

POC5 within each correlation and greatest when the cor-

relation is equal to 0.4.

Overall, the impact of the adjustments for the hypothe-

tical case study is small, with the optimal design changing

only when the correlation is 0.4. The adjusted EVSI

estimates for the adaptive designs are larger than the

unadjusted estimates. The increased EVSI could suggest

greater uncertainty as a consequence of the analysis meth-

ods used to estimate the adjustments or could reflect the

fact that unadjusted approaches underestimate the uncer-

tainty introduced by the adaptive design.

The EVSI values change when there is a change in the

decision uncertainty.12 If the bias adjustments have little

impact on the decision uncertainty, there will be only

small differences between the adjusted and unadjusted

EVSI estimates, even if there are large differences

between the adjusted and unadjusted model parameters

estimates. This is illustrated using 2 hypothetical scenar-

ios in the supplementary material.

Case Study Summary

In the hypothetical case study, we found small differ-

ences in the cost of sampling between designs driven by

small differences in the ESS. The ENBS was positive and

similar for each of the designs, suggesting they were all

cost-effective. The effect of the bias adjustment was small

and had limited impact on choosing the optimal design.

The O’Brien-Fleming stopping rule with 2 analyses had

the highest EVSI and ENBS, suggesting this was the

most cost-effective design. As the intervention costs were

increased and ENBS was recalculated, the potential sav-

ings in ESS offered by the adaptive designs gave them a

higher ENBS. The O’Brien-Fleming stopping rule with 5

analyses was preferred when variable costs were high, as

they offered early interim analyses with a small number

of participants and hence a lower ESS and cost of sam-

pling when there was little to be gained in terms of EVSI.

The financial benefits of stopping a trial early are likely

to be small when the fixed costs are high relative to the

variable costs and likewise when the variable costs asso-

ciated with assessing the trial outcomes in all patients

may be high.

Discussion

We have adapted existing methods of EVSI to guide the

design of fixed-sample-size designs to the case of consid-

ering adaptive designs. These methods appropriately

adjust for the adaptive nature of the design and have

been operationalized in the context of a hypothetical case

study.

How This Fits with Existing Literature

We have considered adaptive designs with clinical effec-

tiveness stopping rules based on recommendations by

Flight et al.11 and suggestions from the public advisory

group supporting this research. However, application of

VOIA methods could be extended and applied at the

interim analysis of an adaptive design to allow research

teams to assess the cost-effectiveness of continuing and

to inform the design of the rest of the trial. A simple

approach would be to update the EVSI calculation with

the available data at the interim; however, this does not

take account of all possible future interim analyses.

Using health economic outcomes during an adaptive

trial has been discussed in the literature33,37–39; however,

care is needed to ensure the preferences of stakeholders

are met.11

The EcoNomics of Adaptive Clinical Trials (ENACT)40

collaboration has explored how the value-based sequential

approach of Chick et al.39 and Alban et al.41 can be

applied in the context of publicly funded research in the

United Kingdom. Using 2 retrospective case studies, they

considered the methodology’s strengths, such as consider-

ing the ultimate technology adoption decision in the

design and analysis of a trial, and challenges, including

the application of the methods within current funding

structures.42,43

Implications for Practice and Research

We recommend researchers adjust analyses for the adap-

tive nature of the designs to avoid introducing bias,
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reflecting current reporting and regulatory guidance for

adaptive designs.44,45 As discussed by Flight,17 adjusted

model parameters cannot always be directly estimated

from the trial data, and so alternative methods are

required. As such, the difference between adjusted and

unadjusted estimates may be a consequence of the differ-

ent analysis methods as well as biases introduced by

the design. We reported the adjusted estimates for the

adaptive designs and unadjusted estimates for the fixed-

sample-size designs, as we felt that this best reflected the

analysis approach that would be undertaken in practice

and reflected current guidance.10

The VOIA approach outlined offers a formal way to

quantify and compare the value of fixed-sample-size and

adaptive designs. This will enable researchers to provide

a quantified justification for their choice of adaptive

design as per the recent guidance from the Food and

Drug Administration in the United States.45 We antici-

pate these methods will also be used by research teams

to inform discussions on the best choice of trial design.

We have compared the ESS, EVSI, and ENBS to

identify the optimal design. Other factors may include

the potential maximum sample size. As discussed, the

Pocock stopping rule requires a larger sample size if the

trial does not stop early compared with the O’Brien-

Fleming rule. Funders, for example, will need to consider

the financial and practical implications should the trial

continue to the maximum sample size.

Following the approach of Willan and Kowgier,33 we

have assumed the opportunity cost is equal to the a priori

INB. However, this will be true only if the new interven-

tion cannot be implemented in practice before the trial

ends. The opportunity cost may be zero if the interven-

tion is potentially cost-effective and can be used in prac-

tice while research is ongoing.46 Research teams should

select the appropriate opportunity cost for their setting.

Using this approach may require a large investment

of work before the trial is funded. In the CACTUS case

study, pilot data and a health economic model were

available, reducing the time burden of the VOIA. Appli-

cation of this approach may be limited to contexts in

which an economic model is available or a model can be

developed quickly alongside the design of the trial. As

highlighted by Flight et al.,11 for these methods to be

used to their full potential, funding bodies need to con-

sider alternative ways to fund this work.

As with other EVSI methods, the computation time is

high.27,47 For 5000 PSA samples, it took approximately 5

and 7 h to run the designs with 2 and 5 analyses, respec-

tively. A full range of trial designs should be compared

with a high number of PSA samples.10 However, this

may not be viable given the time constraints associated

with designing clinical trials for a grant application.

Alternative methods for the calculation of EVSI47–50

could decrease the computation time.

We have focused on the commonly used GSD; how-

ever, this approach could be considered for other adap-

tive designs. For example, Ward et al.51 used EVSI to

compare the optimal design of a 3-arm trial with and

without an interim futility analysis.

Strengths and Limitations

To the best of our knowledge, this is the first adaptation

of EVSI to guide the design of a GSD in which interim

adaptations are focused on clinical effectiveness. These

methods reflect the views of key stakeholders in health

technology assessment on the use of health economics in

adaptive design11 and build on existing guidance and

methods in VOIA.10,12,27 These methods have the poten-

tial to affect the design of adaptive trials that are increas-

ingly used in practice.5

We have used a hypothetical case study to illustrate

how the methods can be applied in practice. The results

are context specific; for example, there were small differ-

ences between the ENBS for the designs considered, and

the bias adjustments had a limited impact. We cannot

draw generalizable conclusions about the performance of

adaptive and fixed-sample-size designs. However, the

adapted VOIA methods and the presentation of the

results can be applied to different contexts.

Conclusion

Health economics is rarely used in the design and analy-

sis of adaptive clinical trials. We discuss how existing

VOIA methods can be adapted to guide the design of a

GSD based on the number of analyses and clinical effec-

tiveness stopping rule. This can guide and justify the

choice of characteristics and prevent limited research

budgets being wasted. We recommend that adjusted

analyses are presented to control for the potential impact

of the adaptive designs to maintain the accuracy of the

calculations.
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