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Abstract—Massive amounts of data are expected to be 

generated by the billions of objects that form the Internet of 

Things (IoT). A variety of automated services such as 

monitoring will largely depend on the use of different Machine 

Learning (ML) algorithms. Traditionally, ML models are 

processed by centralized cloud data centers, where IoT 

readings are offloaded to the cloud via multiple networking 

hops in the access, metro, and core layers. This approach will 

inevitably lead to excessive networking power consumptions as 

well as Quality-of-Service (QoS) degradation such as increased 

latency. Instead, in this paper, we propose a distributed ML 

approach where the processing can take place in intermediary 

devices such as IoT nodes and fog servers in addition to the 

cloud. We abstract the ML models into Virtual Service 

Requests (VSRs) to represent multiple interconnected layers of 

a Deep Neural Network (DNN). Using Mixed Integer Linear 

Programming (MILP), we design an optimization model that 

allocates the layers of a DNN in a Cloud/Fog Network (CFN) in 

an energy efficient way. We evaluate the impact of DNN input 

distribution on the performance of the CFN and compare the 

energy efficiency of this approach to the baseline where all 

layers of DNNs are processed in the centralized Cloud Data 

Center (CDC).  

Keywords—Deep Neural Network (DNN), energy efficiency, 

Internet-of-Things (IoT), cloud/fog networks, Mixed Integer 

Linear Programming (MILP). 

I. INTRODUCTION 

Machine learning (ML) is increasingly used in many 
fields such as medical applications, smart cities, and 
autonomous cars where the goal is to efficiently and 
accurately predict the output or best response to new input 
data [1]. Nowadays, massive amounts of data can be 
produced by distributed Internet-of-Things (IoT) devices 
which reached more than 50 billion [2]. Using the abundant 
IoT data, intelligent services can be provided at edge 
networks such as distributed detection, monitoring, and 
classification [3] where Deep Neural Networks (DNNs) are 
one of the most widely used ML tools for these applications.  
Traditionally, due to computational complexity, ML 
algorithms used to be processed in centralized cloud data 
centres (CDCs). While it is evident that the usage of 
centralized data centres for ML has provided accuracy and 
high performance, nevertheless it is achieved at the cost of 
high energy consumption [3], [4]. Transferring input data to 
CDCs imposes networking overheads in terms of power 
consumption and delay and also raise privacy concerns as the 
data could be accessed for unauthorized purposes [5].   

To address the aforementioned delay and power 
consumption challenges, researchers have proposed various 
distributed processing tools such as fog computing where a 
large number of devices such as IoTs and different “fog 
nodes” with excess processing, memory and networking 
resource can process the data partially closer to the data 
sources [6], [7], [8]. With a focus on the energy efficiency of 
ML, we proposed a decentralized solution where ML 
algorithms for service requests by a single IoT are embedded 
in different layers on a cloud/fog architecture [9]. We 
address in this paper the optimization of virtualizing and 
embedding the resources required for DNNs on the cloud/fog 
architecture where the data sources are distributed IoTs. This 
work progresses our previous work on the energy efficiency 
of networking and computing for distributed processing for 
IoT [10]-[13], virtual machine placement [14], [15], virtual 
network embedding [16], content distribution [17]-[23], big 
data applications [24]-[29], and also designing optical core 
networks and future data center networks [30]-[39]. 

As the applications using DNNs increase in their 
computational complexity, their associated energy 
consumption becomes challenging. In the case of edge/ fog 
computing, such challenges heighten because the edge 
devices are resource constrained as they operate on a limited 
energy budget [4]. In the literature, the energy efficiency of 
ML algorithms, specifically deep learning models was 
tackled on a number of levels, (i) improving the algorithms 
so that the number of multiplication-and-accumulations 
(MACs) is minimized in the code [1], [5], (ii) performing 
specialized optimization at the hardware level e.g., using 
high-end Graphical Processing Units (GPUs), and 
Application-Specific Integrated Circuits (ASICs) [6], (iii) 
distributing the hidden layers across heterogeneous 
processing resources offered by Cloud/Fog networks [7], [8], 
[9]. In this paper we take the approach in (iii) by designing a 
cross-layer optimization framework that efficiently allocates 
virtualized functions (i.e., layers) of generic DNN models 
across heterogenous layers of processing offered by a 
cloud/fog network architecture.    

The remainder of this paper is organized as follows: 
Section II describes the cloud/fog system model and the 
optimization model for placing DNNs in the cloud/fog 
architecture. Section III provides the results and discussions 
while Section IV provides the conclusions and future work. 
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Figure 1  Proposed cloud/fog network with distributed IoT devices requesting DNNs. 

  

II. SYSTEM MODEL 

In this section, we introduce the cloud/fog architecture 
evaluated and explain the role of the virtualization approach 
in embedding the VSRs, which represent different DNN 
models. We conclude this section with the problem 
formulation, where we present the notations used, key 
mathematical equations in terms of the objective function 
and constraints.  

A. Cloud/fog network architecture and potential processing 

locations 

Figure 1 shows the Cloud/Fog Network (CFN) we 

considered. It mainly comprises of four networking layers 

which are edge, access, metro, and core networks. In the 

edge network, we consider distributed IoT devices in 

different zones where they could collect different types of 

data. For the access layer, we consider a Passive Optical 

Network (PON) in each IoT zone. Each PON contains 

several Optical Line Terminals (ONU) that connect with the 

IoT devices through Wi-Fi and aggregate the traffic from 

IoTs via fiber links and a splitter into a future-proof Optical 

Line Terminal (OLT) [40]. An Access Fog (AF) containing 

several servers is connected to each OLT (i.e., in each IoT 

zone). The OLT connects to the metro network through a 

metro switch which connects to the core network via a 

metro edge router. In the metro network, a Metro Fog (MF) 

is considered containing a set of servers. The core network 

we consider is an IP over WDM network [17] which has 

two layers, an IP layer and an optical layer. The IP layer in 

each core node connects to the metro network and 

aggregates its uplink and downlink traffic and the optical 

layer performs electrical to optical / optical to electrical 

conversion and physically connects to other core nodes via 

optical fiber links. We consider a central Cloud Data Center 

(CDC) connected to a core node that is one hop from the 

core node aggregating from the metro and access networks 

that link the considered IoTs. 

In this network, ML inference for requests is issued by 

distributed IoTs. These requests can be processed in the IoT 

end-devices, Access Fog (AF), Metro Fog (MF), and the 

centralized Cloud Datacenter (CDC). This can be referred to 

as IoT-Cloud continuum [41]. Given the benefits of 

hardware and network virtualization, which include 

resources abstraction, consolidation, and isolation between 

different users, we consider a fully virtualized CFN 

architecture. A single DNN algorithm, which we call a 

Virtual Service Request (VSR) can then be modeled as 

multiple Virtual Machines (VMs) that can be placed at the 

aforementioned processing locations, interconnected 

through a virtual network topology as illustrated in Figure 1. 

Different DNN algorithms can be represented by random 

virtual topologies to be embedded onto the CFN architecture 

[9]. For a certain VSRs processing requirement, a trade-off 

between the processing efficiency and networking power 

consumption for the inter VM traffic and input data transfer 

arises when selecting the optimal VM location in terms of 

the energy efficiency of ML. In the following subsection, 

we formulate a Mixed Integer Linear Programming Model 

(MILP) that optimizes the placement of the VMs of each 

VSR and the embedding of their virtual networks in the 

CFN architecture. 

B. Problem Formulation using MILP 

Benefiting from our track record in MILP optimization 

and particularly in network virtualization and service 



embedding in [13], [14], respectively, we developed a 

model to optimize the placement of virtual DNN functions 

(or VSRs) in the CFN. VSRs comprise of multiple VMs, 

each VM represents a layer of a DNN model that has a 

demand for processing (in Floating Point Operation per 

Second (FLOPS)) and networking (in Mbps). Consequently, 

a VSR is embedded optimally on the CFN model while 

respecting the capacity constraints of processing and 

networking devices. The physical network shown in Figure 

1 is modelled as an undirected graph , where  

represents the set of all nodes and  the set of links 

connecting those nodes in the topology. The VSR  is 

represented by the directed graph , where  

is the set of VMs representing virtualized DNN layers and 

 is the set of virtual links connecting those VMs. In [9], 

we exemplify how demands in a VSR are mapped onto the 

physical resources in the CFN architecture and show clearly 

one of the key variables used to establish the virtual links to 

achieve the inter-VM communication. Before introducing 

the optimization model, we define the sets, parameters and 

variables used:  
 

Sets: 

 
Set of centralized data centres (CDC). 

 
Set of IP/WDM nodes in the core network. 

 
Set of metro fog (MF) nodes. 

 
Set of access fog (AF) nodes. 

 
Set of Wi-Fi enabled ONU access points. 

 
Set of IoT end-devices. 

 
Set of processing nodes that can host virtual service requests  

(VSRs), where . 

 
Set of virtual service requests (VSRs). 

 Set of virtual machines (VMs) in VSR .  

 Set of IoT end-devices that act as input, where .  

 
Set of all nodes in the proposed CFN architecture.  

 Set of neighbor nodes of node . 

 

Parameters: 

 
Index of the source and destination nodes of a VSR topology. 

 
Index of the source and destination after VMs are processed by  

processing nodes . 

 
Index the physical links in the CFN topology.   

 Processing demand by node  in VSR , in FLOPS. 

 
 

Bitrate demand by VSR  on the virtual link . 

  if in VSR , virtual machine  is  

input, otherwise  

 
Maximum power consumption of network node .  

 
Idle power consumption of network node . 

 Power per Gb/s of network node . 

 
Maximum power consumption of LAN network inside  

processing node p .  

 
Idle power consumption of networking equipment inside  

processing node p . 

 Energy per bit of network node  in W/(Gb/s). 

 

Maximum power consumption of a single processing server 

at node .  

 

Idle power consumption of a single processing server at  

node . 

 
Maximum number of servers deployed at processing  

node . 

 
Energy per GFLOPS of processing node  

 
Proportion of idle power consumed on high-capacity  

networking equipment. 

 
Power Usage Effectiveness (PUE) of node  

 for networking. 

 
Power Usage Effectiveness (PUE) of node 

  for processing. 

 

Variables: 

 
Traffic demand between processing node  

pair  aggregated after all VSRs are embedded. 

 
Traffic demand between processing node pair  

 aggregated after all VSRs are embedded, traversing  

physical link ,  and . 

 Amount of traffic aggregated by network node ,  

where 

 

  if network node  is activated, 

 otherwise . 

 
Amount of traffic aggregated by processing 

 node . 

 
Amount of workload in FLOPS, allocated to 

 processing node . 

 
Number of activated processing servers at processing 

 node . 

 , if processing node  is activated,  

otherwise . 

 , if virtual machine  is embedded for  

processing at node b , otherwise  

 

Therefore, the total power consumption is made up of two 

parts: 1) total network power consumption, 2) total 

processing power consumption. It is important to note that 

processing power consumption includes the power 

consumed by the servers as well as the switches routers 

within these nodes to provide the LAN.  

 

• Network power consumption, which is given by: 
 

 

(1) 

 

The power consumption of the networking equipment 

comprises of power consumption of routers and switches of 

all the nodes in the CFN topology depicted in Figure 1 

multiplied by the corresponding PUE at each node. 

 

• Processing power consumption, which is given by: 

 

 
(2) 

 

The first term of (2) is the proportional (or dynamic) power 

consumption of the servers whilst the second term calculates 

the idle (or static) power consumption of these servers. The 

third and fourth terms are the proportional and idle powers 

consumed by the internal LAN of the processing nodes, 

respectively.  

Thus, the objective of the MILP is to minimize the total 

power consumption of the whole network as follows: 



 

Minimize:   

  
 

 
 

Subject to:  

 

 
(3) 

Constraint (3) ensures that all VMs within VSRs are 

processed, except for input VMs, as these must be processed 

by IoT source nodes. 

 

(4) 

Constraint (4) ensures that all input VMs are processed at 

IoT end-devices that act as source/input nodes.  

 

 

 

(5) 

Constraint (5) is the flow conservation constraint, which 

preserves the flow of traffic in the network. 

 
 Due to space limitations in this paper, only the key 
constraints are listed. The remainder of the constraints deal 
with binary indicators, capacity constraints on processing 
and networking devices and constraints that achieve the 
virtual embedding of VSRs.  

Table 1: Servers input data for the MILP model. 

  

Table 2: Networking equipment data used in the MILP model. 

*40Gbps / wavelength || ** is 60% of max power ||***is 90% of max power. 

 

III. RESULTS & DISCUSSION 

We used the parameters in Table 1 and Table 2 for the 

processing servers’ and networking equipment, respectively. 

Where possible, device parameters have been obtained using 

equipment datasheets, however, we have also made simple 

but realistic assumptions. For example, high-capacity 

networking equipment located in the aggregation point of 

the access network, metro and core network are used by 

many applications and services, hence the idle power is set 

to 90% of the maximum power consumption. It is important 

to note that, we assume only a portion of the idle power 

consumption is associated with our application. We assume 

this to be 3% of the equipment’s idle power consumption 

[9]. For low-capacity network nodes such as the ONU, we 

assume the idle power to be 60% of the device’s maximum 

power consumption (hence, full idle power is consumed as 

these devices are deployed for our application only). In this 

work, we have also assumed that the centralized data center 

is a single hop from the aggregation core router (aggregating 

from metro) and based on the topology of the NSFNET, the 

average distance between the core nodes is 509 km [45]. We 

assume that in total, there are 30 IoT devices, randomly 

distributed among 10 IoT zones: IoT Zone 1 – IoT Zone 10. 

Each zone comprises of 3 IoT end-devices and is connected 

via Wi-Fi links to the corresponding ONU Access Point 

(AP). In total there are 10 ONU devices in the network. In 

total, we consider 3 OLT devices and each one aggregates 

traffic from clusters of 3 or 4 ONUs. As for the workloads, 

we assume that each VSR has an input VM that must be 

mapped to the corresponding IoT device acting as the source 

node.  

The number of VMs and the workload per hidden layer 

VM are randomly distributed between 2 – 4 VMs and 

between 2 – 13.5 GFLOPS, respectively. The input VMs 

workload is randomly distributed between 0.01–1 GFLOPS. 

As for the traffic demand, since the idle power is 

significantly higher than the proportional power for the 

networking equipment, the volume of the data rates does not 

influence the outcome of the optimization. We consider a 

PUE of 1.1 – 1.25 in AF and MF nodes, and 1.1 in the 

centralized CDC node. At nodes where both network and 

processing equipment are collocated, we assume the same 

PUE, however since core nodes are not collocated with 

processing servers in this work, we consider a PUE of 1.5 

for core nodes and 1 in the remaining nodes as there is no 

need for cooling [9]. The adopted power profile consists of a 

proportional and an idle part. The proportional part 

increases with the volume of workload, whilst the idle part 

is consumed as soon as the device is activated. In the current 

optimization model, it is assumed that any unused 

equipment is switched off completely. We also assume that 

at each AF and MF node, a maximum of 6 and 10 servers 

are available, respectively. While we assume the centralized 

data center nodes have unlimited number of servers. Finally, 

the MILP model is solved using IBM’s commercial solver 

CPLEX over the University of Leeds high performance 

computing facilities (ARC3) using 24 cores with 126 GB of 

RAM [46]. 

In the following subsections, we study the CFN 

approach in two settings; A) when the centralized CDC is 

available in addition to the fog layers. and B) when the CFN 

is without the centralized CDC. Furthermore, for each of the 

aforementioned settings, we study the impact of the 

input/source node distribution on the performance of the 

CFN approach compared to the centralized CDC. 

  

Devices Max(W) Idle(W) GFLOPS Efficiency 

(W/GFLOPS) 

IoT (Rpi 4 B 4GB) 7.3 [47] 2.56 [47] 13.5 [47] 0.35 

AF  Server (Intel i5-

3427U) 

32.6 [47] 10 [47] 47.7 [47] 0.47 

MF Server (Intel i5-

3427U) 

134 [47] 29 [47] 181 [47] 0.58 

CDC (Intel Xeon 

E5-2640) 

298 [47] 58.7 [47] 428 [47] 0.55 

Devices Max (W) Idle (W) Bitrate  

(Gbps) 

Efficiency 

(W/Gbps) 

ONU Wi-Fi AP  15 [9] 9** 10 [9] 0.6  

OLT 1940 [9] 1746*** 8600 [9] 0.22 

Metro Router Port 30 [9] 27*** 40 [9] 0.08 

Metro Switch 470 [9] 423*** 600 [9] 0.08 

IP/WDM Node 878 [9] 790*** 40/ * 0.14 



A. CFN Approach with CDC 

We evaluate the performance of the CFN approach in two 

scenarios; (i) when the input data of VSRs originate from a 

single IoT source node, i.e. one IoT device is feeding its 

readings into the input layer of the DNN requests (VSRs), 

and (ii) when the input data originates from multiple IoT 

devices. In this work, scenario (i) considers one input device 

in a single IoT zone, whilst scenario (ii) considers 10 input 

devices in total (1 per zone). Figure 2 shows the total power 

consumption versus the number of VSRs in both scenarios, 

compared to their corresponding CFN and baseline 

approaches. In the baseline approach, it is assumed that fog 

computing is not available, hence all VSRs are processed 

inside the centralized CDCs. Whereas in the CFN approach, 

we allow the MILP model to optimally allocate the VSRs 

into multiple processing layers provided by the fog. It is 

shown that, when compared to the baseline, during low 

number of VSRs (1 VSR – 9 VSRs) and for 1 IoT input 

node, the CFN solution achieves up to 43% power 

consumption reduction. This is because VSRs can be 

processed on local low-power IoT devices, as a result 

making significant savings in both processing and 

networking resources. On average, with our CFN solution, 

savings were 33% and in the worst-case scenario this 

dropped to 27%, which is still significant. It can be observed 

in Figure 5(a) that the IoT layer plays a significant role in 

the processing of the VSRs and that the AF and MF are 

never utilized. Instead, the IoT and the CDC are used in 

combination to host the VSRs. The majority of the 

workloads are allocated to the IoT layer when capacity 

constraints permit it (1 VSR – 10 VSRs), however, when 

this is no longer the case, the same is true for CDCs. 

Interestingly, IoT utilization increases again (from 28 VSRs 

– 30 VSRs). This happens to avoid activating an additional 

server at the CDC due to its high idle power consumption.   

 
 

 

 

 
 

 

  

 
 

 

 

 

 
 

 
 

 

 

 

In the second scenario, we adjust the input distribution to 

study its impact on the performance of the CFN solution 

compared with the corresponding baselines. As shown in 

Figure 2, the trends remain almost identical to the first 

scenario such that the IoT and CDC layers are 

predominantly the optimal choice (albeit limited utilization 

of AF layer at 10 VSRs only) of processing and the AF/MF 

have insignificant roles to play. This is interesting because 

regardless of where the VSRs are hosted, all of the OLT 

devices that connect the different zones will be activated as 

we have 1 input per zone. So, one would expect AF/MF 

servers that are closer to the IoT input nodes to be utilized 

more and accessing CDC over metro and core to be 

minimized. This is understandable since the objective 

function is purely based around power consumption and not 

other metrics such as latency, the model will always 

minimize the former regardless of the distance/ number of 

hops. The savings in this scenario compared to the baseline 
Figure 3 Breakdown of CFN’s network and processing power 

consumption, given a total of 1 IoT input/source node. 

Figure 2 Total power consumption with CDC.  

Figure 4 Breakdown of CFN’s network and processing power 

consumption, given 10 IoT input/source node with 1 per zone. 

(a) 

Figure 5 Workload distribution of: (a) CFN approach, given a 

total of 1 input, and (b) CFN approach, given 10 inputs. 

(b) 



is up to 60% and at least 22%, which yields on average 10% 

savings. This low average saving can be attributed to the 

fact that input/source nodes are geographically distributed in 

the network, hence more networking power is consumed to 

establish the communication between the different VMs (or 

DNN layers) compared to the first scenario where a total of 

1 input node existed in the whole network. We can conclude 

from the obtained results that, when an energy efficient 

CDC is available, deploying small-large fog servers in the 

network is not an optimal choice, unless the processing 

efficiency of these servers is significantly improved and 

PUE values are minimized.  

B. CFN Approach without CDC 

In this subsection, we aim to corroborate our claims in the 

previous subsection that the IoT – CDC combination is 

indeed the optimal choice. Hence, we run both CFN 

scenarios again for the case of 1 input node and 10 input 

nodes, however this time without the availability of the 

CDC node, which means VSRs can only be allocated 

between IoTs and AFs/MF. Figure 6 shows that, in the case 

where only a single input node exists in the whole network, 

opting for the CFN without CDC approach would yield a 

4.5% increase in power consumption on average, compared 

to the scenario where CDC is available. As expected, in the 

second scenario where 10 input nodes exist, average savings 

moved up to 0.36% because of the instance where the AF is 

utilized to process about 61% of the total workload at 10 

VSRs as per Figure 5(b). This can be attributed to the 

difference between the networking overhead of the CDC 

and the AF.    

 

 
 

 

IV. CONCLUSIONS AND FUTURE WORK 

This paper introduced a flexible optimization framework 
which allows for DNN models to be abstracted as a virtual 
embedding problem in a cloud fog network architecture 
comprising of heterogenous layers of processing. We studied 
the distribution of IoT input nodes in two scenarios: 1) where 
a single input node existed and 2) where 10 input nodes 
existed.  The aim of this evaluation was to substantiate the 
savings of the CFN approach compared with the legacy CDC 
processing. The results showed substantial savings, however 
only when workloads were allocated between IoT devices 
and CDC. In this work, we assumed an energy efficient 
CDC. It would be of interest to re-evaluate the model with an 
energy inefficient CDC deployed at the core network. 
Motivated by the obtained results, interesting research 
directions can include developing heuristic algorithms with 

improved computational complexity, considering realistic 
core network topologies such as the NSFNET, AT&T 
network and BT network, constraining IoT devices to limited 
power budgets and last but not least looking at the impact of 
renewable sources of energy at different fog sites. Finally, 
the authors do acknowledge the fact that there can be 
scenarios where the data exchanged between the DNN layers 
can be larger than the amount of computation needed for 
inference, thus more power can be wasted in passing the data 
between the neurons, than the power saved as result of 
distributing and packing the processing servers. A useful 
extension can be to quantify the amount of traffic between 
the DNN layers and see the implications.    
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