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ABSTRACT: An isentropic 11=2-layer model based on modified shallow-water equations is presented, including terms
mimicking convection and precipitation. This model is an updated version of the isopycnal single-layer modified rotating
shallow water (modRSW) model. The clearer link between fluid temperature and model variables together with a double-
layer structure make this revised, isentropic model a more suitable tool to achieve our future goal: to conduct idealized
experiments for investigating satellite data assimilation. The numerical model implementation is verified against an analyti-
cal solution for stationary waves in a rotating fluid, based on Shrira’s methodology for the isopycnal case. Recovery of the
equivalent isopycnal model is also verified, both analytically and numerically. With convection and precipitation added, we
show how complex model dynamics can be achieved exploiting rotation and relaxation to a meridional jet in a periodic
domain. This solution represents a useful reference simulation or “truth” in conducting future (satellite) data assimilation
experiments, with additional atmospheric conditions and data. A formal analytical derivation of the isentropic 11=2-layer
model from an isentropic two-layer model without convection and precipitation is shown in a companion paper (Part II).

KEYWORDS: Data assimilation; Nonlinear models; Primitive equations model; Idealized models; Shallow-water equations

1. Introduction

Satellites are one of the main sources of observations in
atmospheric data assimilation (DA). Since they became part
of the Global Observing System (GOS) in 1979, they have
greatly improved the quality of weather forecasting, especially
in the Southern Hemisphere (Simmons and Hollingsworth
2002; Rabier 2005).

The preeminent position of satellite observations in most
weather forecasting systems continues the need for research
on how to expand their use in a more efficient and impactful
way. Recently, for example, more resources have been
directed toward the assimilation of all-sky observations (Geer
et al. 2017, 2018; Migliorini and Candy 2019). However,
because of the high computational resources required to run
an operational DA scheme and the huge amount of satellite
data available today, research in satellite DA using opera-
tional schemes can be a challenging task. Unsurprisingly, the
development and the use of a wide range of simpler models
has been explored in recent years to support DA research
(Ehrendorfer and Errico 2008; Vetra-Carvalho et al. 2011;
Rudd et al. 2012; Stewart et al. 2013; Würsch and Craig 2014,
hereafter W&C; Smith et al. 2015; Petrie et al. 2017; Zaplot-
nik et al. 2018; Bannister 2020). The use of rotating shallow-
water models to investigate various topics in atmospheric sci-
ences and oceanography constitutes a well-known possibility,
as discussed at length in Zeitlin (2018). In particular, isentro-
pic, multilayer shallow-water models with moisture and pre-
cipitation represent a powerful tool to investigate a number
of dynamic meteorology features (Rostami and Zeitlin 2020,

2021, 2022). In this paper, we propose a similar model for sat-
ellite DA research.

Previous research had led to the development of an isopyc-
nal, idealized model for convection and precipitation, hence-
forth called “modRSW,” based on augmented shallow-water
equations (Kent et al. 2017; Kent 2016), which extended and
improved the shallow-water model developed by W&C. The
W&C model imitates cumulus convection and precipitation
through a system of switches based on fluid depth thresholds
and avoids the explicit modeling of moisture (Q) and precipi-
tation (P) through a Q/P equation, which is typical of other
“moist” isentropic shallow-water models, such as those pre-
sented Bouchut et al. (2009) and Lambaerts et al. (2011).
Moreover, the use of switches to alter the dynamics of the sys-
tem is an important feature commonly found in state-of-the-
art NWP models, which enhances nonlinearity. Despite its
simplicity, the W&C model has proven to be a valuable tool
to investigate various aspects of convective-scale DA, such as
the use of particle filters (Haslehner et al. 2016), the parame-
ter estimation for the representation of clouds (Ruckstuhl and
Janjić 2018), and the representation of model error (Zeng
et al. 2018, 2019). As discussed in Kent et al. (2017), the
modRSW model combines the simple configuration of W&C
with important adjustments to the model equations such that
the system can include rotation and becomes hyperbolic. The
latter aspect facilitates its robust numerical implementation.
Last, the ability of the modRSW model to continuously gen-
erate and remove rain from the system offers a convenient
alternative to the explicit modeling of vaporization.

In later work, the modRSWmodel was used to conduct ide-
alized forecast-assimilation experiments proving its suitability
and relevance for numerical weather prediction (NWP) data
assimilation research (Kent et al. 2020). Further work con-
cerns the inclusion of idealized satellite data assimilation
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simulations (Cantarello 2021). Unfortunately, limitations for
modRSW’s use in satellite DA have emerged and an exten-
sion of the model is necessary. Hence, in this paper, modifica-
tions to the model are undertaken in order to make it suitable
for satellite DA research.

One of the most impactful types of satellite data used in
operational NWP systems are passive observations1 of emit-
ted thermal radiation coming from Earth’s surface and atmo-
sphere. This radiation can be related to the temperature of
the emitting source (and vice versa) by exploiting the princi-
ples of radiative transfer and blackbody radiation. Therefore,
in order to perform sensible satellite DA in an idealized fash-
ion, it is essential that either (i) the background model
includes temperature among the prognostic variables or
(ii) one (or more) of the model variables can be readily
related to temperature.

Regarding the latter issue, the modRSW model is not par-
ticularly well suited, since it does not include temperature
among its prognostic variables, and even though a simple
diagnostic relationship between fluid depth and temperature
can be formulated (based on the hydrostatic equilibrium and
the ideal gas law), this leads to some scaling issues in which
DA-relevant model dynamics can be achieved only for unre-
alistic values of the temperature. A second big limitation
posed by the modRSW model is the fact that it is based on a
single layer of fluid, which hampers the possibility of working
with vertically complex observations, an essential feature that
needs to be replicated in the context of satellite DA.

Given the above issues, we have formulated the following
modifications of the modRSWmodel:

1) we use a 11=2-layer model instead of a single-layer model,
adding a passive layer on top, nearly at rest, and effec-
tively capped by a rigid lid; and

2) we replaced the isopycnal model, with its uniform layer
density, by an isentropic model, in which the potential
temperature (or the entropy) is constant within each
layer.

Although the first modification would require only the
replacement of the acceleration due to gravity with a so-called
reduced gravity g′, the second leads to a somewhat different
set of equations. Previous work done by Bokhove and Oliver
(2009) has shown that, starting from the (hydrostatic) primi-
tive equations, a multilayer shallow-water model can be
derived using Hamiltonian fluid dynamics. In a separate com-
panion paper (Bokhove et al. 2022, hereafter Part II) we will
show a fully consistent mathematical derivation of a “dry”
isentropic 11=2-layer shallow-layer model (i.e., without convec-
tion and precipitation) which originates from that work. In
addition, we will use that paper to discuss the physical scaling
utilized in this study, proving that can be justified on the basis
of real-world observations.

The newly derived “moist” model, denoted by “ismodRSW,”
retains the system of switches to mimic convection and precip-
itation already used in the modRSW model, as well as all the
improvements over the W&C model discussed above. At the
same time, it also incorporates a much more robust definition
of temperature for each layer, since the temperature T for an
isentropic fluid is linked to the definition of its potential tem-
perature u:

u 5 T
pr
p

( )k
⇒ T 5 u

p
pr

( )k
5 uhk, (1)

in which p is the pressure, pr a reference pressure, and k 5

R/Cp the ratio between the specific gas constant for dry air
(R5 287 J kg21 K21) and its specific heat capacity at constant
pressure (cp 5 1004 J kg21 K21), with h 5 p/pr a key variable
in the isentropic model’s lower layer; P 5 hk is also referred
in the literature as the Exner function.

Given the physically consistent definition in (1), the isentro-
pic configuration contributes to solve the scaling issues arising
in the modRSWmodel once equipped with a simpler relation-
ship between temperature and fluid depth (cf. section 2a).
The advantage of using an isentropic model is apparent in a
paper by Pan and Smith (1999), where the isentropic reduced
gravity is used to estimate g′ from the observations in their
classic (isopycnal) reduced-gravity shallow-water model.
Additionally, the presence of the second, upper layer will
help to increase the vertical complexity with which we
describe the atmosphere yielding a more realistic testbed for
satellite DA.

Last, we note that the presence of bottom topography has
not be considered in this study.

The structure of the paper is as follows. In section 2 the
benefits brought about by the new setup are highlighted, the
“dry” 11=2-layer model (i.e., without convection and precipita-
tion) is presented and subsequently put into conservative
hyperbolic form. In section 3, the comparison of robust
numerics with an adapted analytical solution originally pro-
posed by Shrira for nonlinear isopycnal shallow-water waves
is shown as a numerical verification step, cf. Shrira (1981,
1986). In section 4, the “moist” isentropic model endowed
with convection and precipitation is outlined and a prototype
of numerical simulation to be used in future forecast-assimila-
tion experiments is discussed. Conclusions are provided in
section 5.

2. An isentropic 11=2-layer shallow-water model

a. Motivation

The development of a new, isentropic 11=2-layer shallow-
water model is motivated by the limitations posed by the sin-
gle-layer modRSW model developed by Kent et al. (2017) in
conducting idealized satellite data assimilation experiments.
In this regard, the main issues are the lack of a robust physical
definition of fluid temperature and the unrealistic scaling.

One way to proceed would be to equip the modRSWmodel
with a simple diagnostic equation between the dimensionless

1 In satellite meteorology, “passive” observations are measure-
ments of radiation emitted by Earth’s surface and atmosphere or
emitted by the sun and subsequently reflected toward the satellite.
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fluid depth h and its dimensional temperature T based on the
ideal gas law and hydrostatic equilibrium, such as

T 5 T0h with T0 5 gH=R, (2)

in which g is the acceleration due to gravity (g 5 9.81 m s22)
and H the scale height of the fluid. However, the scaling used
in Kent et al. (2017)}i.e., gH 5 330 m2 s22, or H ≈ 34 m}is
based on an unrealistic fluid depth H and leads to an unrea-
sonable scale temperature of T0 � 1.1 K. This configuration is
clearly not suitable for satellite data assimilation purposes
and highlights the need for a different approach. In a paper
by Pan and Smith (1999), an isopycnal 11=2-layer shallow-
water model is used to investigate gap winds and wakes in the
presence of orography. Although the purpose of the study is
different from ours, the fact that the authors used a shallow-
water model and based their scaling on real atmospheric obser-
vations makes this study attractive and interesting. Remarkably,
despite the use of an isopycnal model, they employed the isentropic
definition of the reduced gravity g′, that is,

g′ 5
u1 2 u2

u1
g, (3)

to compute the Froude number utilized in their numerical
simulations. On the one hand, this combined use of an isopyc-
nal model with the isentropic definition of the reduced gravity
seems to guarantee a simple but realistic testbed for their
numerical experiments. On the other hand, the choice of com-
bining together two models with two different underlying
physical assumptions (i.e., constant density and constant
potential temperature) cannot be seen as entirely compatible.
It is precisely to remove this inconsistency that we decided to
develop an entirely consistent 11=2-layer isentropic model. The
ismodRSW model does not suffer from the scaling issues dis-
cussed above, and it is naturally equipped with a physically
consistent temperature definition in terms of the potential
temperature of each layer via Eq. (1).

The scaling of the ismodRSW model used in this paper is
discussed extensively in Part II, as it is inherently linked to its
analytical derivation as a reduced two-layer model. Here it
suffices to say that the scenario presented in this article is
based on radiosonde data during a low-level jet (LLJ) event
and therefore representative of real atmospheric conditions.
The values of the scale variables used in this study are sum-
marized in Table 1.

On a further note, the transition from a single to a 11=2-layer
model offers additional benefits for the modeling of idealized
satellite observations. Real satellite observations are radiance
measurements shaped by several processes (emission, absorption,

and scattering) taking place throughout the atmosphere before
the radiance reaches the satellite. In this sense, the degree of verti-
cal complexity with which the atmosphere can be modeled plays
a crucial role in mimicking the most relevant features of real satel-
lite observations.

b. 11=2-layer isentropic shallow water

In Part II we derive an asymptotically consistent 11=2-layer
shallow-water model in which an isentropic shallow layer of
fluid at potential temperature u2 lies below a second (rela-
tively) motionless layer at u1 (u1 . u2), the latter capped by a
rigid lid. This model can be considered as a reduction to 11=2-
layer of the “dry” isentropic shallow two-layer model already
discussed in Zeitlin (2018), although a change in the set of
prognostic variables requires some attention. A sketch is
given in Fig. 1. The nondimensional closed set of equations
for such a system reads

­ts2 1 $ · s2v2( ) 5 0; (4a)

­tv2 1 v2 · $( )v2 1 fv⊥2 52$M2, (4b)

M1 5 0 and v1 5 0, (4c)

in which s2 is the pseudodensity in the bottom layer defined as

s2 5
pr
g

h2 2 h1( ); (5)

vi 5 (ui, yi) represents the velocity vector in the ith layer and
v⊥2 5 2y2,u2( ) its perpendicular component in the lower layer;

TABLE 1. Scaling of a two-layer isentropic approximation of the troposphere obtained from radiosonde data during a low-level jet
event on 10–11 Dec 1977 in Brownsville, Texas (United States). Variables labeled “1” refer to the upper layer, whereas those labeled
with “2” refer to the bottom layer. We show in section 3 of Part II how these values are computed and to what extent they justify the
scaling chosen to derive the ismodRSW model.

H2 (km) H1 (km) uobs1 (K) uobs2 (K) Uobs
1 (m s21) Uobs

2 (m s21) h0

Two-layer troposphere 1.92 4.2 311.0 291.8 5.7 12.4 0.48

FIG. 1. Schematic representation of the 11=2-layer isentropic shal-
low-water model without topography (b 5 0). Both the nondimen-
sional pressure h0 and the fluid depth Z0 are constant.
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f is the Coriolis frequency; Mi is the Montgomery potential of
each layer. The Montgomery potential M2 in (4b) is defined
as

M2 5 cp u2 hk
2 1 gb, (6)

with b representing the bottom topography. The depth of
each layer is calculated as

h1 5 cpu1=g
( )

hk
1 2 hk

0
( )

; (7a)

h2 5 cpu2=g
( )

hk
2 2 hk

1
( )

: (7b)

For the purpose of this paper, we apply two simplifications
to the system above: (i) we assume flat bottom conditions
[i.e., b 5 0 in (6)] and (ii) flow independence of the meridio-
nal direction (i.e., ­y 5 0). Given these two assumptions, the
equations for (s2, u2, y2) read as

­ts2 1 ­x s2u2( ) 5 0, (8a)

­tu2 1 u2­xu2 2 fy2 52­xM2, (8b)

­ty2 1 u2­xy2 1 fu2 5 0: (8c)

The system of Eqs. (8) is closed since the nondimensional
pressure h2 in (6) is linked to the pseudodensity s2 via its defi-
nition (5), with h1 being

h1 5
u2
Du

2hk
2 1

u1
u2

hk
0 1

g
cpu2

Z0

( )[ ]1=k
, (9)

in which h0 is the (constant) nondimensional pressure acting
on the upper lid, Du 5 u1 2 u2 is the difference in potential
temperature between the layers, and Z0 5 h1 1 h2 represents
the total depth of the fluid. The derivation of Eq. (9) is
detailed in appendix A. A typical function relating s2 to h2

for the scale variables reported in Table 1 is shown in Fig. 2.

c. The conservative hyperbolic system

The numerical implementation of the nonlinear hyperbolic
system (8) can be facilitated when it is written in the following
conservative form:

­tU 1 ­xF U( ) 1 T U( ) 5 0: (10)

To write the system (8a)–(8c) in conservative form, we start
by multiplying (8b) and (8c) by s2. Replacing M2 in the
momentum equation with (6) and after some manipulation
(after dropping the subscripts for s, u, y and h), we obtain

­ts 1 ­x su( ) 5 0, (11a)

­t su( ) 1 ­x su2( ) 2 fsy 52cp u2 s­x hk( ), (11b)

­t sy( ) 1 ­x suy( ) 1 fsu 5 0: (11c)

The right-hand side of Eq. (11b) can be rewritten
as the composite derivative of an unknown function
E h x, t( )[ ]

:

2­xE h x, t( )[ ]
52­hE­xh with

­E
­h

5 k cp u2 s h( )hk21,

(12)

in which the analytical expression of the pseudodensity s as a
function of h reads [after substituting (9) into (5) and drop-
ping the subscript in h2]

s h( ) 5 pr
g

h 2
u2
Du

2hk 1
u1
u2

hk
0 1

g
cpu2

Z0

( )[ ]1=k⎧⎪⎪⎪⎨⎪⎪⎪⎩ ⎫⎪⎪⎪⎬⎪⎪⎪⎭: (13)

Integration of (12) with (13) yields

E h( ) 5 cpu2
pr
g

k

k 1 1
hk11 1

u2
Du

( )1=k
u1
u2

hk
0

([

1
g

cpu2
Z0 2 hk

) k11( )=k
2

u2
Du

( )1=k
u1
u2

hk
0 1

g
cpu2

Z0

( ) k11( )=k]
:

(14)

The expression above is equivalent to the effective
pressure term P(h) 5 gh2 that would appear in an iso-
pycnal shallow-water model and will play a crucial role
in the generation of convection in the “moist” model
(cf. section 4). Finally, the momentum equation can be
expressed as

­t su( ) 1 ­x su2 1 E( ) 2 f sy 5 0, (15)

FIG. 2. Plot of nondimensional s2 as a function of h2 for parame-
ters R 5 287 J kg21 K21, cp 5 1004 J kg21 K21, u1 5 311 K, u2 5
291.8 K, h0 5 0.48, Z0 5 6120 m, and g5 9.81 m s22.
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and system (11) can be written in conservative form (10) with
U, E(U), and T(U) defined as follows:

U 5

s

su

sy

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, F U( ) 5

su

su2 1 E
suy

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, T U( ) 5

0

2fsy

fsu

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠: (16)

By writing su2 5 (su)2/s and suy 5 (su)(sy)/s, the Jacobian
of the system reads as

J U( ) ≡ ­UF 5

0 1 0

2u2 1 ­sE 2u 0

2uy y u

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, (17)

with eigenvalues

l1;2 5 u6
������
­sE

√
and l3 5 u: (18)

Here, ­sE is computed to be

­

­h
E s h( )[ ]

5
­E
­s

ds
dh

⇒ ­E
­s

5

­E
­h
ds
dh

5
kcpu2s h( )hk21

ds
dh

, (19)

after using (12) in the numerator and with denominator:

ds
dh

5
pr
g

1 1
u2
Du

( )1=k
u1
u2

hk
0 1

g
cpu2

Z0 2 hk

( ) 12k( )=k
hk21

[ ]
:

(20)

A plot of ­E=­s in Fig. 3 shows that it is positive for nonnega-
tive values of s, also confirming the hyperbolic character of sys-
tem (11), with real and distinct eigenvalues l in (18) for ­sE. 0.
The numerical scheme used to integrate the model can therefore
be chosen to be close to the one in Kent et al. (2017) with minor
adaptations. More details can be found in the appendix B.

3. Shrira’s solution for nonlinear waves

In this section we provide an independent analytical verifi-
cation of the numerical model using an extended version of
Shrira’s analysis of stationary nonlinear waves propagating on
the surface of a rotating fluid (Shrira 1981, 1986). This verifi-
cation figures as a preliminary step before extending the
model to include convection and rain for future DA experi-
ments. While a similar numerical investigation for an isopyc-
nal single-layer shallow-water models has been conducted
before (see, e.g., Bouchut et al. 2004), here we derive the ana-
lytical solution for our isentropic 11=2-layer configuration, with
its more complicated (Montgomery) potential.

We start by splitting the pseudodensity s into a state s0 and
a perturbation s̃:

s 5 s0 1 s̃ with s̃ 5
s0

f
­y

­x
: (21)

The validity of (21) for s̃ follows by substituting into the
continuity Eq. (11a) and using the meridional momentum
equation, obtaining the identity

s0

f
­2y

­x­t
1

­

­x
s0 1

s0

f
­y

­x

( )
u

[ ]
5 0,

­

­x
­y

­t
1 fu 1 u

­y

­x

( )
5 0:

Using (8c) to express u as a function of ­y=­x and ­y=­t,
one finds [assuming ­y=­x1 fÞ0]

u 52
­y

­t

/
­y

­x
1 f

( )
: (22)

Differentiating (8c) by t and using both (8b) and (22)
yields

­2y

­t2
1 f 2y 2 f

­M
­x

5
­

­t

­y

­x
­y

­t

f 1
­y

­x

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ 1 f

2
­

­x

­y

­t

( )2
f 1

­y

­x

( )2
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (23)

resembling Eq. (10) in Shrira (1981) and Eq. (4) in Shrira
(1986) (once y derivatives are dropped in the older paper and
the high-frequency dispersion term is neglected).

The gradient of the Montgomery potential becomes

­

­x
M h s( )[ ]

5
­M
­h

dh
ds

­s

­x
5 cpukhk21 1

ds
dh

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠s0

f
­2y

­x2
, (24)

after using s′ from (21). Substituting (24) into (23) gives

FIG. 3. Plot of nondimensional ­sE as a function of s for R 5

287 J kg21 K21, cp 5 1004 J kg21 K21, u1 5 311 K, u2 5 291.8 K,
h0 5 0.48, Z0 5 6120 m, and g5 9.81 m s22.
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­2y

­t2
1 f 2y 2 fcpukhk21 1

ds
dh

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠s0

f
­2y

­x2
5

­

­t

­y

­x
­y

­t

f 1
­y

­x

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1
f
2

­

­x

­y

­t

( )2
f 1

­y

­x

( )2
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
:

For traveling waves of phase velocity c, we define z 5 x 2

ct and rewrite the equation above, with primes denoting ­=­z,
to obtain a second-order ODE in z:

c2y′′ 1 f 2y 2 f cpukhk21 1
ds
dh

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠s0

f
y′′ 5 c2

y′( )2
f 1 y′

[ ]′

1
fc2

2
y′( )2

f 1 y′( )2
[ ]′

: (25)

After some manipulation, one finds

y′′ 5

f 2

c2
y

f
c2

cpukhk21 1
ds
dh

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠s0

f
2

f 3

f 1 y′( )3
,

nondimensionalized as follows:

v′′ 5
1

Ro2
v

cpu
c2

khk21 1
ds
dh

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠s0 2

1

Ro3
1

1
Ro

1 v′
( )3 , (26)

using y 5 cv, Ro 5 c/fL and ·( )′ 5 ­=­z 5 1=L
( )

­=­z′ 5
1=L ·( )′. This ODE is solved with a Runge–Kutta fourth-order
method after rewriting it as follows:

x 5 v′, x′ 5 F x, v, z( )

5

1

Ro2
v

2
1

Ro3
1

1
Ro

1 x

( )3 1 c̃pukhk21 1
ds
dh

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠s0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (27)

with c̃p 5 cp=c2. For comparison with the full model (11), we
derive the expressions also for the (nondimensional) u and s, using
(22) and (21), and scaling u and s0 by c and g/pr, respectively:

u 5 x= 1=Ro 1 x
( )

and s 5 s0 1 1 Rox( ): (28)

The solution of (27) is stable only within a certain range of
initial conditions for v0 and x0. Once a stable configuration is
found, the phase velocity c is tuned in order to obtain a sin-
gle-wavelength wave in v, u, and s as solution and subse-
quently used as initial condition for the isentropic 11=2-layer
model. A comparison between Shira’s solution and its numer-
ical implementation at various times t and up to t 5 10T periods
is shown in Fig. 4. Although the dissipative character of the

FIG. 4. Comparison between Shira’s analytical solution for s translated in time (gray solid line) and the evolution of
the model in (11) at various spatial resolutions initialized with the same solution. Snapshots after {0, 1.2, 2.4, 5.6,
8.8, 10} periods (T) are shown. The initial conditions are v0 ≡ y(x, 0) 5 0.08, x0 5 0. The phase velocity of the wave is
c 5 23.05. Other parameters are: s0 5 0.05, Ro 5 0.2305, cp 5 1004 J kg21 K21, u1 5 311 K, u2 5 291.8 K, h0 5 0.48,
pr 5 1000 hPa, Z0 5 6120 m, and CFL5 0.5.
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numerical scheme used in this paper contributes to both an
amplitude and a phase error as time goes by, the numerical solu-
tion (purple to red solid lines) visually converges toward the ana-
lytical one (gray line) as the resolution increases.

4. Isentropic modified 11=2-layer model (ismodRSW)

a. Adding convection and rain

In this section, we extend the “dry” rotating isentropic 11=2-layer
model described so far to include convection and precipitation. To
this end, we adopt the system of switches already used in the
modRSW model (Kent et al. 2017; Kent 2016). Hence, starting
from the dry model (11), a system of pseudodensity thresholds for
convection (sc) and rain (sr) is introduced, in addition to an equa-
tion for the (dimensionless) rain mass fraction r, as follows:

­ts 1 ­x(su) 5 0; (29a)

­t(su) 1 ­x(su2 1 Ẽ)1 sc20­xr 2 fsy 5 0, (29b)

­t(sy) 1 ­x(suy) 1 fsu 5 0, (29c)

­t(sr) 1 ­x(sur) 1 sb̃­xu 1 asr 5 0: (29d)

The modified effective pressure Ẽ takes the value

Ẽ 5
E(sc) for s . sc,

E(s) otherwise;

{
(30)

with E(s) defined earlier in (14); the parameter b̃ is instead
equal to

b̃ 5
b for s . sr and ­xu , 0,

0 otherwise:

{
(31)

Parameters a (s21) and b (dimensionless) control the rate
at which rain is created and removed from the system. The
constant speed squared c20 (m22 s22) converts the dimension-
less rain mass fraction into a potential, introducing a coupling
between the two equations and implicitly controlling the sup-
pression of convection (see Kent et al. 2017; Kent 2016).

The mechanism described here to imitate convection and
precipitation [the reader can refer to Kent et al. (2017) and
Kent (2016) for more details] does not involve the implemen-
tation of a moisture equation. Instead, the thresholds sc and
sr modify the dynamics of the “dry” rotating shallow-water
model: convection is obtained by setting the effective pressure
E constant whenever the pseudodensity becomes bigger than
the threshold sc, producing a further increase in s and there-
fore in the fluid depth h, akin to the rise of a buoyant air
parcel. Furthermore, rain is generated whenever the pseudo-
density reaches a second, higher threshold (sr . sc) in the
presence of fluid convergence (­xu , 0). In this model, (the
word) “rain” represents the mass fraction of precipitated
water: a nondimensional quantity bounded between 0 and 1.
The generation and removal of rain does not alter the conser-
vation of mass in the system and can be seen as a transfer

from and to the mass fraction of precipitable water, i.e., 1 2 r.
One of the advantages of this approach is that the model can
generate and remove precipitation from the system without
having to be reinitialized or restarted and without having to
deal explicitly with vaporization.

Similarly to the modRSW model, the ismodRSW model can-
not be written in conservative form once convection and rain are
added. Its intrinsic nonconservative vector formulation reads

­tU 1 ­xF(U) 1 G(U)­xU 1 S(U) 5 0; (32)

where

U 5

s

su

sy

sr

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, F(U) 5

su

su2 1 Ẽ
suy

sur

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,

G(U) 5

0 0 0 0

2c20r 0 0 c20
0 0 0 0

2b̃u b̃ 0 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, S(U) 5

0

2fsy

fsu

asr

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠:

(33)

The Jacobian matrix J 5 ­UF 1 G of the system is com-
puted to be

J 5

0 1 0 0

2u2 2 c20r 1 ­sẼ 2u 0 c20
2uy y u 0

2u b̃ 1 r
( )

b̃ 1 r 0 u

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,

with eigenvalues

l1;2 5 u6
���������������
­sẼ 1 c20b̃

√
and l3;4 5 u: (34)

From the expression above it can be verified that this model
maintains its hyperbolicity even in the presence of convection
and precipitation, as the argument of the square root in (34) is
nonnegative. Indeed, when only convection is activated}i.e.,
Ẽ 5 E(sc) and b̃ 5 b 5 0}the argument of the square root
takes a constant and positive value (cf. Fig. 3). Similarly, the
generation of rain introduces only an additive constant given
by the product of c20 and b, with the latter being a nonnegative
parameter by construction [cf. (31)].

The numerical scheme used for the ismodRSW model is
the same as described in Kent et al. (2017) and Kent (2016),
with the necessary adaptations reported in appendix B. In par-
ticular, we refer the reader to section 3.4.3 of Kent (2016) for a
helpful line-by-line calculation of the nonconservative products
required for the numerical implementation of the model,
which takes also into account the manipulations required to
handle the step functions (30) and (31). Last, given the lack of
bottom topography, rotation is straightforward to implement,
and it can be included as a forcing term, cf. S(U) in (32).

b. A new nature run for data assimilation

In Kent et al. (2020), we have demonstrated how the
modRSW model is a viable tool to conduct data assimilation
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research for operational numerical weather prediction (NWP).
In particular, forecast-assimilation experiments have been
conducted and subsequently analyzed to show how the sys-
tem, despite its idealizations, performs akin to operational
DA schemes following a variety of metrics and criteria. In
Kent et al. (2020), a so-called twin-setting configuration was
used, in which observations are obtained from a high-resolution
deterministic run, i.e., nature run or simulation, whereas the
background state is generated by running the model at a lower
resolution. Similarly, to conduct new satellite data assimilation
experiments for our novel ismodRSW model, it is essential to
find a dynamically interesting nature run, characterized by con-
tinuous production of convection and precipitation. In Kent et al.
(2020), the interplay between topography and a periodic domain
with a zonal flow constituted a convenient setup to obtain self-
generation of gravity waves. Since topography has not been
developed for this model, a different configuration is needed. In
this regard, it is worth bearing in mind that the numerical scheme
used in this study is based on a first-order spatial discretization,
which is characterized by strong numerical dissipation at low
resolution, as it is evident from the evolution of the Shrira
waves in Fig. 4.

To compensate for the absence of topography, we decided to
introduce both rotation and a forcing term, with the latter consist-
ing of a relaxation term in the meridional momentum equation:

­ty 1 u­xy 1 fu 5 (yrel 2 y)=trel, (35)

in which trel is a relaxation time scale defining the speed at
which the meridional velocity y relaxes toward yrel(x, t). The
relaxation profile yrel is shown in Fig. 5 (blue line) and represents

a smoothed top-hat meridional jet. This type of forcing is
chosen to reflect the troposphere-based scaling used in the
derivation of the ismodRSW model in Part II (cf. section 4b
therein), which is based on LLJ conditions: in our simplified
setup, an LLJ can be approximated by a transverse jet in the
meridional direction in the bottom layer of a two-layer tropo-
sphere. The initial condition used in the nature run is also
shown in Fig. 5 (red lines), and represents a series of convec-
tion updraft located at the center of the domain. The shape of
the initial pseudodensity profile combined with the meridional
velocity produces an unstable setup that maximizes the pro-
duction of convection and rain throughout the duration of the
simulation. Finally, in Table 2 we list the parameter set used
in the ismodRSW model to generate a 48-h-long nature run
with continuous production of rain and precipitation. It is
worth pointing out that the configuration described above is
only a single example among a wide range of dynamical con-
figurations that the ismodRSW model would be able to repro-
duce. However, here we focus on a setup that reflects the LLJ
scaling conditions presented in Part II, compensates well for
the numerical dissipation of our spatial discretization, and
has been used in the satellite DA experiments conducted in
Cantarello (2021).

The dynamical evolution of the nature run is shown in Hov-
möller diagrams, one for each variable, in Fig. 6. The two top
panels (right: s; left: r) show how convection and rain are con-
tinuously generated across the (periodic) domain, as traveling
waves move along it. Gray-shaded areas in the top-left panel
indicate locations where only convection is activated (sc ,

s , sr), whereas yellow-to-brown shadings denote areas of
rain production (s . sr). The fluid velocities are depicted in
the bottom two panels (left: u; right: y). Areas of rain in the
top-right panel are spatially correlated with areas where con-
vergence in u arises, e.g., at locations where a negative gradi-
ent of u exists. The Hovmöller diagram of the meridional
velocity y (bottom-right panel) shows a much smoother time
evolution than the other three variables as it shows the transi-
tion from the initial condition toward the relaxation solution.

The unsettled character of the nature run is further illus-
trated in Fig. 7, where the time series of all variables at loca-
tion x0 5 0.5 are shown. The peaks and troughs in the

FIG. 5. Initial condition (red) and relaxation solution (blue) of
the nature run simulation (parameters listed in Table 1). All varia-
bles are nondimensional.

TABLE 2. Model parameters associate to the ismodRSW
nature simulation shown in Fig. 6. CFL indicates the Courant–
Friedrichs–Lewy number. Please note that sc, sr, and trel are
reported as nondimensional variables. The Froude number Fr is
computed as Fr5U=

�������
g′H2

√
, with g′ given by Eq. (3) and H2

from Table 1.

Initial conditions Fig. 5 h0 0.48
Boundary conditions Periodic Z0 (m) 6.12 3 103

Relaxation solution Fig. 5 c20 1.8
trel 4 a 6.0
CFL 0.1 b 2.0
u1 (K) 311 sc 0.21
u2 (K) 291.8 sr 0.24
Ro 0.248 L (km) 500
U (m s21) 12.4 Nel 400
T (L/U) (h) 11.2 Fr 0.36
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pseudodensity s(x0) indicate the passage of the gravity waves
at this location, with corresponding generation and removal
of rain r(x0). The transit of waves is also correlated with some
irregular oscillations in the horizontal velocity u(x0), while the
meridional velocity y(x0), initially zero, gradually settles
toward its relaxation solution yrel, that is, a jet at the center of
the domain (cf. Fig. 5).

c. Recovery of the modRSW model in presence of
convection and rain

As a final check performed on the full model, we want to
compare the evolution in time of the modRSW against the
ismodRSW model. To this end, we impose k 5 1: as we show
in appendix C, this condition allows us to recover the isopyc-
nal equations starting from the isentropic system. The two
models are initialized with the same initial condition and the
parameters reported in Table 2. The initial values of the fluid
depth H0, and the related thresholds Hc and Hr are scaled to

H0 5 1, Hc 5 sc/s0 5 1.05, and Hr 5 sr/s0 5 1.2 with s0 5

0.2 (see Table 2 and Fig. 5). The value of Froude number in
the bottom layer Fr2 (which needs to be specified in the
modRSWmodel) is reported in Table 2 and is computed as

Fr2 5
U2������
g′h2

√ 5
U2����������������������

g
Du

u1

Ru2
g

g
pr

s

√ , (36)

in which we have used the definition of the isentropic reduced
gravity g′ in (3), the expression of the bottom-layer depth h2
in (7b) and the definition of s in (5).

We run the two models side-by-side in three different con-
figurations: (i) classic rotating shallow water (sc, sr → ‘),
(ii) convection-only regime (sr → ‘), and (iii) fully modified
shallow water. The results (limited to h, s, and r) are shown
in Fig. 8. While in the first two cases (left and center panels)
the two models behave identically (we notice the good agree-
ment between the solid black for h and the dashed gray line

FIG. 6. Hovmöller diagrams of the nature run simulation (parameters listed in Table 2). Nondimensional variables:
(top left) s, (top right) r, (bottom left) u, and (bottom right) y. The gray and yellow shading in the top-left panel indicates
the areas where s is above the convection (e.g., sc , s , sr) and the rain threshold (s . sr), respectively. Note that the
length of the y axis (t5 [0, 4.272]) is the nondimensional equivalent of a 48-h period, given the scaling in Table 2.
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for s in the left and center panels), we observe a gradual
divergence in time between the two once both convection and
rain are turned on (right panels, after t 5 0.75). The differ-
ences are particularly noticeable in the rain solutions (blue
solid and cyan dashed lines). This divergence seems to origi-
nate (and grow thereafter) at various locations in the domain
where s (and similarly h) decreases until it falls below the
rain threshold. We believe this is an indirect effect of round-
ing errors generated by the computation of the different flux
expressions in the two models [cf. Eq. (33) in this article with
Eq. (6) in Kent et al. (2017)], which in turn has an impact on
the values of the nonconservative products. After all, this
type of behavior is not surprising given the nonlinear charac-
ter of the two models.

5. Conclusions and future work

Satellite data are used extensively in data assimilation for
NWP models. Their inclusion in operational systems dates
back to the 1970s (Eyre et al. 2020) and represented a crucial
step in a decades-long effort toward more accurate weather
forecasting, with active research on how to make the best use
of them continuing today. To this aim, a variety of simplified
and idealized models are sometimes used, especially when the
high degree of complexity and the big computational power
typical of data assimilation schemes would hamper the success
and the efficacy of the research on this subject.

In this paper, we presented a novel 11=2-layer isentropic
model based on modified isopycnal-layer equations (ismodRSW)
which has been used for satellite data assimilation research
(Cantarello 2021). A companion paper (Part II) covers the

formal analytical derivation of this model without convection
and precipitation.

The ismodRSW model represents an improvement of the
modRSW model (Kent 2016; Kent et al. 2017) in which a sin-
gle-layer of fluid at constant density is replaced by two layers
at constant potential temperature capped by a rigid lid. The
new model is able to mimic convection and precipitation by
retaining the same mechanism based on switches already in
place in the modRSWmodel, and initially proposed by W&C.
Mimicking convection and precipitation in a shallow-water
model using a system of switches represents a simpler
approach than modeling moisture explicitly (as discussed, for
example, in Bouchut et al. 2009; Lambaerts et al. 2011). How-
ever, the advantages are substantial: a preservation of hyper-
bolicity in all conditions (cf. section 4a) leading to a
straightforward and robust numerical implementation,
together with the possibility of generating and removing rain
from the system without having to deal with vaporization
explicitly. Switches are also a common feature in most state-
of-the-art NWP models and therefore represent an attractive
way to make idealized models more relevant for operational
DA research.

The necessity for revising the modRSW model has been
motivated by two of its limitations: the lack of vertical stru-
cture in the single-layer configuration and the difficulties
found in defining a diagnostic relationship for temperature,
cf. section 2a. Both these aspects hampered the possibility
of performing meaningful satellite data assimilation experi-
ments with the modRSW model. Our new ismodRSW model
addresses those limitations, providing both a robust tempera-
ture definition within each layer and a multilayer dynamics
restricted to a 11=2-layer configuration.

In this paper we provide two checks on the numerical
implementation of our new model: on the one hand, we have
successfully compared the numerical model (without convec-
tion and precipitation) against an analytical solution for sta-
tionary waves adapted from Shrira (1981, 1986), cf. section 3.
Moreover, we demonstrated that the isopycnal model can be
recovered from the isentropic for k 5 R/cp 5 1. This was veri-
fied numerically by running the old and the new model side-
by-side for the same physical scaling, boundary, and initial
conditions. Results were identical except in the presence of
both convection and rain, where small rounding errors even-
tually led to divergence of the two model trajectories, implic-
itly confirming the high nonlinearity of the system with its
switches (see section 4c).

The ismodRSW model has been used to conduct idealized
satellite data assimilation experiments with an ensemble
Kalman filter in a twin setting configuration [cf. section 6.1
of Kent (2016), Kent et al. (2020), and Cantarello (2021)].
The model is run at two different resolutions with the obser-
vations derived from a deterministic high-resolution simulation
(constituting the “truth” model trajectory, or nature run), and
the low-resolution simulations treated as the forecasts. In this
regard, we showed in section 4 that continuous creation and
propagation of gravity waves (essential to recreate an interest-
ing model dynamics) can be achieved with the ismodRSW
model by exploiting rotation and relaxation to a given yrel

FIG. 7. Time series of the nature run variables at location x0 5 0.5
(parameters listed in Table 2).
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solution in a periodic domain, in a way that is compatible
with the physical scaling based on LLJ conditions discussed in
Part II, and eventually paving the way for the new forecast-
assimilation experiments relevant for satellite data assimilation
research described in Cantarello (2021). Another (although
unexplored) option would be to exploit the analytical Shrira’s
solution discussed earlier which could have the potential to
trigger traveling gravity waves with generation of convection
and rain; even in that case, a relaxation solution can be consid-
ered to compensate for the dissipation given by the numerical
scheme.

In particular, the focus of future research will be on investi-
gating the role of satellite observations at different spatial
scales, understanding what has a greater impact: whether
focusing on the large-synoptic scale or, rather, the convective
small-scale features. Herein, the development of a new, non-
linear observation operator [with respect to the linear one

used in Kent et al. (2020)] will be crucial. The new model will
be particularly helpful, since pseudo-observations of radiance
can be simulated with the help of a radiative scheme, now
that a well-defined and more realistic relationship between
one of the prognostic variables (in this case s) and the layer
temperature exists. Moreover, although two layers are not
enough to replicate satellite weighting functions, they can be
used to produce vertically integrated pseudo-observations,
with weighted contributions from each layer, depending on
their temperature and other (layer-dependent) radiative prop-
erties. The possibility of modeling clouds can also be taken
into account by making the observation operator more elabo-
rate: for example, convection and the rain thresholds can be
used to define “nonprecipitating” and “precipitating” clouds.
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APPENDIX A

Derivation of the Expression for h1

In this appendix we show how to derive the expression
for the dimensionless pressure h1 in Eq. (9). The starting
point is represented by Eq. (23) in Bokhove and Oliver
(2009), which in the case of a two-layer model reads (i.e.,
N 5 2, a 5 b 5 1)

M1 5 M2 1 cpDuhk
1 : (A1)

As suggested in the same paper, a constant of integration
c52 cpu1hk

0 1 gZ0
( )

can be added to the equation above
when imposing a rigid-lid boundary condition (leading to a
11=2-layer model):

M1 5 M2 1 cpDuhk
1 2 cpu1hk

0 1 gZ0
( )

: (A2)

Substituting (6) in the above expression gives

M1 5 cpu2hk
2 1 gb 1 cpDuhk

1 2 cpu1hk
0 1 gZ0

( )
: (A3)

The expression for h1 is therefore obtained by imposing
M1 5 0 in (A3) in virtue of (4c) and by rearranging it
appropriately (with b 5 0 in the case of flat topography).

APPENDIX B

Numerical Scheme for the ismodRSW Model

In this appendix we summarize the numerical methods
utilized to integrate the ismodRSW model. Despite some
modifications, the scheme has remained the same used in
Kent (2016) and Kent et al. (2017), which we refer the reader
to for a more comprehensive and satisfactory description.

a. Classic shallow water

To integrate numerically the model in absence of convec-
tion and rain (i.e., the 11=2-layer isentropic shallow-water
model illustrated in sections 2 and 3), a zero-degree discre-
tization of the discontinuous Galerkin finite element
method (DGFEM) developed by Rhebergen et al. (2008) is
used, in combination with HLL fluxes (Harten et al. 1983).
As we saw in section 2c, the shallow-water model is hyper-
bolic and can be put in conservative form.

We split the horizontal domain [0, L] into N open ele-
ments Kk 5 (xk, xk11) of constant length |Kk| 5 xk11 2 xk
with k 5 1, 2, …, Nel, delimited by Nel 1 1 nodes where
05 x1,x2, …, xN ,xNel11 5 L. Therefore, we derive the weak
formulation of Eq. (10) [see section 3.1.2 of Kent (2016)
and more extensively Zienkiewicz et al. (2014)]. The zero-
degree discretization (henceforth DG-0) implies that the
function U in (10) is approximated with a piecewise cons-
tant function within each element Kk such as

Uh(x, t) 5 Uk 5
1
Kk| |

$
Kk

U(x, t)dx: (B1)

In the end, the DG-0 discretization for each element |Kk|
reads

dUk

dt
1

F k11 2 F k

Kk| | 1 T Uk

( )
5 0, (B2)

where F k represents the numerical flux computed at each
element’s node, which for the HLL fluxes is defined as

F k 5

FL if SL . 0;

FR if SR , 0;

FHLL if SL , 0 , SR,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩ (B3)

with FHLL defined as

Fi
HLL 5

Fi
L SR 2 Fi

R SL 1 SL SR Ui
R 2 Ui

L
( )

SR 2 SL
, (B4)

in which SL and SR are the numerical velocities arising
from the eigenvalues in Eq. (18):

SL 5 min uk 2
��������
­sMk

√
,uk11 2

�����������
­sMk11

√( )
; (B5a)

SR 5 max uk 1
��������
­sMk

√
, uk11 1

�����������
­sMk11

√( )
: (B5b)

It is worth noticing that in order to compute the fluxes F
and the numerical velocities SL, SR, the nondimensional
pressure h needs to be calculated at each time step from
the pseudodensity s. However, since inverting analytically
Eq. (5) is not possible, an alternative which is efficient
enough needs to be found. Here we chose to precompute
the corresponding values of s and h (with a resolution of
ds 5 0.0001) and to perform a linear interpolation during
the model integration. A polynomial interpolation is also
possible.

We refer to Kent (2016) for the (adaptive) time step
implementation.

b. NCPs for the full model

We noted in section 4 that the model in its full form}

comprising convection and rain}cannot be put in conserva-
tive form, and that nonconservative products arise and need
to be handled numerically [see Eq. (32)]. To this aim,
notwithstanding the DGFEM method outlined above, the
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DLM theory introduced by Dal Maso et al. (1995) is used.
More details about the mathematical formulation of this
scheme can be found in Kent (2016), Kent et al. (2017),
and Kent and Bokhove (2020), although in this case
(because of the missing topography term) there is no need
to apply the state reconstruction and the well-balanced
scheme developed by Audusse et al. (2004).

The following semidiscrete space-DGFEM scheme for a
single element Kk is found:

dUk

dt
1

Pp
k11 2 Pm

k

Kk| | 1 S Uk

( )
5 0, (B6)

in which the numerical fluxes Pp
i and Pm

i read as

Pp
i 5 PNC

i 1
1
2

$1

0
Gij(/) ­fj

­t
dt, (B7)

Pm
i 5 PNC

i 2
1
2

$1

0
Gij(/) ­fj

­t
dt: (B8)

In the expressions above, Gij(f)indicates the {i, j}
matrix element of the NCP G matrix of Eq. (33), with f

being a Lipschitz continuous path connecting the left and
the right state: f(t; UL, UR) 5 UL 1 t(UR 2 UL), as per
the DLM theory. Moreover, the NCP flux contributions
PNC

i read as

PNC
i U

L
i ,U

R
i

( )
5

FL
i 2

1
2
VNC

i , if SL . 0;

FHLL
i 2

1
2

SL 1 SR

SR 2 SL
VNC

i , if SL , 0 , SR;

FR
i 1

1
2
VNC

i , if SR , 0;

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(B9)

with the numerical velocities SL and SR [cf. Eq. (34)] being

SL 5 min uL 2

���������������������
­sM

∣∣L 1 c20b̃
∣∣L√
,uR 2

���������������������
­sM

∣∣R 1 c20b̃
∣∣R√( )

,

(B10)

SR 5 max uL 1

���������������������
­sM

∣∣L 1 c20b̃
∣∣L√
,uR 1

���������������������
­sM

∣∣R 1 c20b̃
∣∣R√( )

,

(B11)

and VNC is a vector containing the worked-out contribution

of the NCP integral expressions
$1

0
Gij(/) ­fj=­t

( )
dt:

VNC 5

0

2c20[[r]]{{s}}
0

2b[[u]]Q([[u]]) sRIb 1 [[s]]Itb
( )

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (B12)

where Q(·) indicates the Heaviside function, [[·]]5 ·( )L 2

·( )R the jump across the node, and {{ · }}5 1=2 ·( )L 1 ·( )R[ ]
the average quantity. Ib and Itb are still expressed by Eqs.
(C18) and (C22) as per appendix C of Kent et al. (2017),

with analogous derivation upon the redefinition of X and Y
appeared in Kent (2016) as X 5 sR 2 sL and Y 5 sL 2 sr.
The derivations of the elements in VNCVNC are also analogous
to the ones performed in the same appendix, by replacing all
references to z and h with s therein.

APPENDIX C

Recovery of the Isopycnal Model

In this appendix we show how the isentropic 11=2-layer
shallow-water model can be traced back to its isopycnal
counterpart by taking k 5 1 in (1). Incidentally, this should
help visualize the inconsistency of using the isentropic defi-
nition of the reduced gravity, (3), within an isopycnal
model.

Starting from (7b) with k 5 1, a linear relation between
the fluid depth h2 and nondimensional pressure h2 (and
thus pseudodensity s2) is restored:

h2 5
cpu2
g

h2 2 h1( ) 5 cpu2
pr

s2: (C1)

Substituting the above expression back into the continu-
ity Eq. (8a) yields

­th2 1 ­x h2 u2( ) 5 0, (C2)

equivalent to the continuity equation of the isopycnal
model. In addition, we observe that for k 5 1 the Mont-
gomery potential M2 in (8b) becomes

M2 5 cp u2 h2:

By using (7) for k 5 1, we obtain

cpu2h2 5 gh2 1 gh1u2=u1 1 cpu2h0: (C3)

After using the rigid-lid constraint H 5 h1 1 h2 and
substituting back into the Montgomery potential and the
momentum equation, Eq. (8b), we obtain the usual momen-
tum equation for an isopycnal fluid:

­tu2 1 u2­xu2 2 fy2 52g′­xh2, (C4)

with reduced gravity g′ defined as in (3). However, since
k 5 1 implies u 5 T(pr/p), we note that

u1 2 u2
u1

5
T1=p1 2 T2=p2

T1=p1
5

1=r1 2 1=r2
1=r1

5
r2 2 r1

r2
, (C5)

making use of the ideal gas law (p 5 rRT). In other words,
the isopycnal expression of the reduced gravity is recovered
for k 5 1.
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