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Abstract
Recent extreme wildfire seasons in several regions have been associated with exceptionally hot, dry
conditions, made more probable by climate change. Much research has focused on extreme fire
weather and its drivers, but natural wildfire regimes—and their interactions with human
activities—are far from being comprehensively understood. There is a lack of clarity about the
‘causes’ of wildfire, and about how ecosystems could be managed for the co-existence of wildfire
and people. We present evidence supporting an ecosystem-centred framework for improved
understanding and modelling of wildfire. Wildfire has a long geological history and is a pervasive
natural process in contemporary plant communities. In some biomes, wildfire would be more
frequent without human settlement; in others they would be unchanged or less frequent. A world
without fire would have greater forest cover, especially in present-day savannas. Many species
would be missing, because fire regimes have co-evolved with plant traits that resist, adapt to or
promote wildfire. Certain plant traits are favoured by different fire frequencies, and may be missing
in ecosystems that are normally fire-free. For example, post-fire resprouting is more common
among woody plants in high-frequency fire regimes than where fire is infrequent. The impact of
habitat fragmentation on wildfire crucially depends on whether the ecosystem is fire-adapted. In
normally fire-free ecosystems, fragmentation facilitates wildfire starts and is detrimental to
biodiversity. In fire-adapted ecosystems, fragmentation inhibits fires from spreading and fire
suppression is detrimental to biodiversity. This interpretation explains observed, counterintuitive
patterns of spatial correlation between wildfire and potential ignition sources. Lightning correlates
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positively with burnt area only in open ecosystems with frequent fire. Human population
correlates positively with burnt area only in densely forested regions. Models for
vegetation-fire interactions must be informed by insights from fire ecology to make
credible future projections in a changing climate.

1. Introduction

Wildfire is in the news because of recent extreme fire
seasons, notably in western North America, south-
eastern Australia and the Mediterranean region, that
have occurred under exceptionally hot and dry condi-
tions made more probable by anthropogenic climate
change (Abatzoglou et al 2019, Kirchmeier-Young
et al 2019, Williams et al 2019, Bowman et al 2020,
Abram et al 2021, van Oldenborgh et al 2021). The
most newsworthy wildfires are, unsurprisingly, those
that destroy (or threaten to destroy) human settle-
ments. Tropical deforestation by deliberate burning
is also widely reported. Media accounts often men-
tion the large number of fires that are started accident-
ally or otherwise by people (although most are very
small), and almost universally attribute the cause of a
fire to the ignition event that started it rather than the
conditions that allowed it to spread. The consequence
of such skewed reporting is awidespread negative per-
ception of fire: as if it were a malign human inven-
tion, generally a threat to ecosystems and biodiversity,
universally (and increasingly) exacerbated by human
activities.

This perception is almost entirely incorrect (Pau-
sas and Keeley 2009, 2019, Doerr and Santin, 2016).
Wildfire is a natural process with a long geological
history; indeed, it is as ancient as plant life on land
(Bowman et al 2009, Scott 2018). Many ecosystems
and plant species are adapted to wildfire and depend
on it for their persistence. Current increases in fire
frequency in some regions are offset by continu-
ing declines in others (Andela et al 2017, Forkel
et al 2019). Some regions of the world have also
experienced changes in fire severity (e.g. Parks and
Abatzoglou 2020, Tran et al 2020) which will also
have an impact on ecosystems and post-fire recov-
ery, but increases in severity are not ubiquitous (Key-
ser and Westerling 2017). Globally, human popula-
tion density has a negative relationship with burnt
area (Bistinas et al 2014, Knorr et al 2014, 2016).
Empirical analyses of remotely sensed burnt area
data have contributed to overturning previous hypo-
theses about wildfire, such as the incorrect idea
(Seiler and Crutzen 1980) that pre-industrial wild-
fire was an order of magnitude less extensive than
contemporary wildfire (Hamilton et al 2018). Stud-
ies of past fire regimes based on sedimentary char-
coal records (Marlon et al 2008, 2013, Harrison et al
2010) and atmospheric indicators in ice cores (Wang
et al 2010) have also contributed to improved general
understanding of the controls of biomass burning,

including the insight that global wildfire as recently as
themid-nineteenth centurywasmuchmore extensive
than today. However, understanding of present fire
regimes and fire-vegetation interactions—whether in
remote, natural ecosystems or in densely settled and
managed landscapes—remains far fromcomprehens-
ive. This partial understanding is reflected in the
fact that global, process-based models of vegetation
that include fire and fire-vegetation interactions can
reproduce the broad, global-scale patterns of burnt
area but produce substantially different estimates of
global burnt area and struggle to simulate other key
aspects, such as fire season length and interannual
variability (Hantson et al 2020).

Other strands of research on the ecology of fire
have been making steady progress meanwhile and
have produced an extensive and rapidly growing liter-
ature (see McLauchlan et al 2020 for a wide-ranging
review). However, few insights from fire ecology have
yet been incorporated in global, process-based fire-
enabled vegetation or land-surface models, such as
those used and evaluated in the Fire Modeling Inter-
comparison Project, FireMIP (Hantson et al 2016,
Rabin et al 2017, Forkel et al 2019, Teckentrup et al
2019, Lasslop et al 2020, Hantson et al 2020). Fire
ecology research has revealed associations between
specific plant traits and wildfire regimes (Lloret et al
2005, Enright et al 2011, Hollingsworth et al 2013,
Pausas 2015a, Pausas et al 2016), and pointed to
the existence of positive feedbacks that can main-
tain sharp boundaries and allow abrupt transitions
between vegetation types with different character-
istic fire frequencies and plant traits (Ratnam et al
2011, Dantas et al 2016, Aleman et al 2020). In this
paper, we summarize findings from recent empirical
and theoretical research in fire ecology. We develop
a simple conceptual framework based on these find-
ings, illustrating key points with regional or global
data analyses. We hope that this framework will facil-
itate improved understanding of the causes and con-
sequences of wildfire in a global context, as well as
improved realism in fire-enabled vegetation models.

2. Fire as a natural ecosystem process

Most biomes are adapted to fire to some degree. Trop-
ical rain forests, most temperate deciduous forests
and deserts are exceptions, since although they may
be resilient to isolated sporadic fires which initiate
gap dynamics they are not adapted to regular or
intense burning. Fire return intervals range from one
to two years in some tropical grasslands to hundreds
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Figure 1. Assessment of actual and potential natural fire return intervals across different biomes, using the SOFIA model (Forkel
et al 2019). SOFIA is an empirical model of monthly burnt area that accounts for climate, land cover and human influences on
fire occurrence. Two simulations were made to investigate the impact of people on fire return intervals, one in which the model
was run using all driving variables (SOFIA model with people) and one in which the human population density effect was
removed (SOFIA model without people). The monthly burnt areas were aggregated to provide annual burnt area. The allocation
to biomes is based on the Hengl et al (2018) potential natural vegetation map. Observed actual burnt area, based on the GFED4
(Giglio et al 2013) and FireCC51 (Chuvieco et al 2018) data sets, is shown for comparison.

of years in boreal forests. Some direct information on
fire return intervals on these longer time scales can
be obtained from sedimentary charcoal (Gavin et al
2007, Stivrins et al 2019) and tree-ring (Everett 2008,
Kharuk et al 2016) records. Satellite remote sens-
ing can provide spatially explicit information about
fire regimes and has been used to create regional
burnt area data sets (e.g. Finco et al 2012, García-
Lázaro et al 2018). However, reliable global satellite-
derived burnt area records are available only for the
period since about 2000 CE, and thus only provide
useful information about regions characterised by
shorter fire return intervals. Furthermore, there are
still substantial differences between remotely sensed
burnt-area products derived by different methods
and depending on the resolution of the satellite sensor
used (Hantson et al 2016, Humber et al 2019, Roteta
et al 2019). To estimate fire return intervals from these
rather short records we rely on the approximation
that annual burnt-area fraction is the reciprocal of fire
return interval. This is true for the idealized case in
which fires are randomly distributed within the grid
cell, but leads to an overestimation of fire return inter-
vals in ecosystems (e.g. boreal forests) where there has
been little fire in the satellite observational record.

Remotely sensed data can provide informa-
tion only about actual fire return intervals under
the recently prevailing conditions of climate, land
management and settlement. Inferring ‘natural’ fire
regimes (i.e. the fire regime that would occur in the

absence of human influence) is a challenge, and prone
to error. Given the sensitivity of wildfire to climate
change (Pausas and Keeley 2021), whether natural or
anthropogenic, it is essentially impossible to estimate
the natural fire regime today based on evidence from
any period in the past.

An alternative approach to infer natural fire
return intervals is via empirical models trained on
remotely sensed data products. Figure 1 illustrates the
considerable range of actual fire return intervals, as
estimated from two such products (Giglio et al 2013,
Chuvieco et al 2018), both within and between bio-
mes. It also shows results from an empirical model
that accounts for the effects of multiple climatic and
land-use predictors, and for the influence of human
population density (Forkel et al 2019). Themodel can
be run with all predictors ‘on’ to provide an estim-
ate of actual return intervals, and with the influence
of population density ‘off ’ to provide an estimate of
natural return intervals (figure 1, SI figure 1 available
online at stacks.iop.org/ERL/16/125008/mmedia). In
biomes with short fire return intervals, such as trop-
ical savanna and xerophytic woods and scrub, there
is no net influence of human population (figure 1,
SI table 1). In some biomes with long fire return
intervals, such as evergreen needleleaf and coolmixed
forests, the net effect of human population is to sup-
press fire and further lengthen the return interval. In
temperate deciduous broadleaf forest and temperate
woodlands, with moderate fire return intervals, the
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Figure 2. Changes in tree abundance as a result of fire. The top plot shows the absolute change in simulated tree cover as a result
of fire for an ensemble of four global vegetation-fire models (LPJ-GUESS-SPITFIRE, LPJ-GUESS-SIMFIRE-BLAZE, and
JSBACH-SPITFIRE, JULES-Inferno). The simulations are from the FireMIP project and consist of baseline experiments for the
historical period and experiments in which fire was switched off (Rabin et al 2017, Lasslop et al 2020). The bottom plot shows the
response of tree abundance to the presence of fire aggregated by biome from the same ensemble of four global vegetation-fire
models (green circles) and from a meta-analysis of fire exclusion experiments (orange triangles). The simulation results shown
represent tree cover change due to fire (averaged between 1993 and 2013) and are displayed as the median of the modelled values
for each biome and the bars show the range between the minimum and maximum of the individual model results. The
experimental data are from Pellegrini et al (2020) and Pellegrini et al (2021) and show changes in tree cover as a result of fire
based on exclusion experiments (See SI table 2 for details). The allocation to biomes is based on the Hengl et al (2018) potential
natural vegetation map.

net effect is to increase fire and shorten the return
interval. Overall, the effects of human population are
small compared to the intrinsic differences among
biomes, and are of similar magnitude to the dif-
ferences between alternative burnt-area data sets.
Nonetheless, this comparison points to heterogeneity
among biomes in their wildfire responses to human
presence in the landscape.

Another counterfactual model experiment
involves examining the nature of a ‘worldwithout fire’

(Bond et al 2005). This requires the use of process-
based models of vegetation and its interactions with
fire. The limitations of process-based models can be
circumvented, to some extent, by pooling results from
an ensemble of models with different potential defi-
ciencies and associated errors—an approach widely
used in the climate modelling community (Haged-
orn et al 2005, Parker 2013, Sanderson et al 2015,
Merrifield et al 2020). The map in figure 2 shows the
decrease in tree abundance due to fire, as simulated
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by the average of four of the fire-enabled vegeta-
tion models that participated in FireMIP (Rabin et al
2017, Lasslop et al 2020) with fire turned on or off.
Median, minimum and maximum values of mod-
elled tree abundance changes are averaged across each
biome, and shown in figure 2. Thesemodel results are
supported by independent evidence for tree abund-
ance changes derived frommanipulative experiments
(Pellegrini et al 2020, 2021). In most biomes where
such experiments have been conducted, the observed
changes overlap with the simulated changes. In trop-
ical savannas and tropical deciduous broadleaf forests
and woodlands, models consistently show reductions
in tree abundance due to fire, and experiments show
even greater reductions. Mapped biome shifts (e.g.
Bond et al 2005, Martin Calvo and Prentice 2015,
Lasslop et al 2020) suggest the expansion of tropical
forests into savannas as the most prominent con-
sequence of a world without fire, consistent with the
geographic pattern of changes in tree cover shown in
figure 2, although the extent of modelled biome shifts
differs among models.

3. Plant adaptations and feedbacks to fire

Plant species are not passive recipients of fire regimes.
Instead, species and fire regimes have co-evolved
on a macroevolutionary time scale (Keeley et al
2011, 2012, Archibald et al 2018, Lamont et al 2019).
Fire-prone ecosystems today include species possess-
ing a variety of traits that promote their survival,
reproduction and competitive success in different fire
regimes (Keeley et al 2012, Enright et al 2014). The
most common fire-related traits vary according to the
mode of fire spread (surface or crown) and the typ-
ical fire return interval. Therefore, at least in a semi-
quantitative sense, the natural fire regime of an eco-
system (to which plants are adapted) can be reliably
inferred from the traits of the plants it contains. The
following four examples provide illustrations of this.

• Ecosystems may be normally fire-free for three
reasons, or combinations thereof (McLauchlan et al
2020): a lack of continuous fuel due to low pro-
ductivity, e.g. deserts; climates where potential fuel
is rarely dry enough to burn, e.g. tropical rain
forests; or in a few (rare) cases, a lack of natural
ignition sources (Keeley et al 2011, 2012). Plant
species characteristic of (largely) fire-free ecosys-
tems typically lack fire-adaptive traits and may be
vulnerable to burning.

• In ecosystems characterized by relatively infrequent
crown wildfires (fire return interval >10–25 years
on average), many plant species show resilience to
fire i.e. the population survives through enhanced
recruitment even though individual plants die.
This is facilitated through traits such as serotiny—
possessing seeds that are only released when a fire

occurs (Buma et al 2013, Lamont et al 2020)—
and heat- or smoke-dependent germination, which
enable regeneration from seed after a fire has
occurred (Paula and Pausas 2008, Moreira et al
2010).

• In ecosystems characterized by relatively frequent
surface fires (fire return interval <10–25 years
on average), plants more often show resistance to
burning, i.e. individual plants resist fire-induced
mortality, through traits such as thick bark (which
prevents cambial damage from overheating: Lawes
et al 2011, Pausas 2015a); protected meristems;
underground storage organs, allowing plants to
resprout from the base (Pausas et al 2018, Corrêa
Scanlon et al 2020); and umbrella-type (rather than
conical) canopies that mean that leaves are able to
survive the passage of ground fires (Pausas 2015b).

• In ecosystems subject to very frequent surface
fires (fire return interval <5–10 years on average),
only plants with underground meristems and pre-
dominantly below-ground biomass (e.g. grasses),
ephemeral plants with fire-promoted germination,
and occasional trees with thick bark can survive
and thrive (Pausas et al 2015a, Pausas et al 2018,
Simpson et al 2019).

Here we illustrate this by showing how the abund-
ance of resprouting woody species changes with fire
frequency across the European continent (figure 3, SI
figure 3). This analysis shows that the frequency of
resprouters (relative to non-resprouters) differs sig-
nificantly along the gradient of fire return intervals,
with resprouting species being the most common
when the fire return interval is shorter and least com-
mon when fire return interval is longer. Resprout-
ing allows individual plants to persist after fire and
therefore is a strong response to frequent fires (Kara-
vani et al 2018), while plants that cannot resprout
will be excluded unless they have alternative survival
mechanisms such as post-fire seeding. The ability to
resprout has a significant impact on the speed of eco-
system recovery after fire (Calvo et al 2003, Casady
et al 2009, Gouveia et al 2010, van Leeuwen et al 2010)
and indeed on the trajectory of ecosystem change in
response to climate (Baudena et al 2020). However, it
is not usually included as a trait in global fire-enabled
vegetationmodels, although the failure to account for
this behaviour could have an important effect on sim-
ulated ecosystemdevelopment (Kelley et al 2014) and,
through this, on fire regimes (Baudena et al 2020).

Some woody plants experiencing frequent fires
also possess traits that increase flammability (Pausas
et al 2017), such as deciduous bark or the presence
of volatile secondary compounds. Likewise, some
serotinous woody species in low-frequency, high-
severity fire regimes possess flammability-enhancing
traits such as the retention of lower branches,
which allow fire to spread into the canopy where
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Figure 3. Changes in the relative abundance of resprouting woody plants as a function of fire return interval. The relative
abundance information for 29 192 sites across Europe (SI figure 2) was derived from the sPlotOpen data base (Sabatini et al
2021). Information about species that resprout or do not resprout after fire was derived from the BROT (Tavşanoğlu and Pausas
2018) and TRY (Kattge et al 2020) databases, an extensive literature search and the authors’ field knowledge (see SI table 3).
Species that could not be classified as resprouters or non-resprouters are excluded from the analysis. The fire return interval was
calculated using burnt area data from 2000 to 2020 fromMODIS MCD64CMQ (Giglio et al 2018). This product does not sense
small fires and thus underestimates total burnt area in individual grid cells. This and the short length of the record means that the
fire return times should be considered as relative rather than absolute estimates of actual fire return times. Individual site values
are shown as blue dots, the red dots show the mean, the black lines show the median, the boxes show the interquartile range of the
relative abundance. The significance of median differences under different fire return intervals was assessed using the
non-parametric Kruskall-Wallis test, where significantly different populations are indicated by different letters. The number of
observations in each category is indicated in brackets.

heat-responsive seed-bearing structures are held (He
et al 2012). While it is still debated whether these
flammability-related traits are adaptive (see e.g. Bond
and Midgley 1995, Bowman et al 2014, Prior et al
2017), it is clear that deciduous bark such as in
some Eucalyptus species increase the build-up of fuel
and therefore the probability of fire. Grasses show
a large range in flammability; more flammable spe-
cies are both adapted to and promote frequent burn-
ing (Simpson et al 2016, 2021, Cardoso et al 2018).
Variations in flammability are also seen at the com-
munity scale. Closed canopy forests, for example,
tend to resist the incursion and spread of fire from
neighbouring flammable ecosystems by maintain-
ing a shadier, more humid and relatively windless
understorey from which flammable grass species are
excluded and other accumulated fine fuels remain too
wet to support fire spread (Hoffmann et al 2011, Oliv-
eras et al 2016, Cardoso et al 2021). Grasslands in gen-
eral burn more frequently than forests, and their fre-
quent burning makes it hard for trees to dominate
even if climatic conditions are suitable and there are
nearby seed sources of tree species (Hoffmann et al
2012a, 2012b, Pausas and Bond 2020a). There is a

universal threshold around 40% forest cover, below
which fire frequency increases steeply (Archibald et al
2009, Staver et al 2011, van Nes et al 2018). The
fire regime, in turn, impacts nutrient availability: fre-
quent fires reduce plant and ecosystem nutrient con-
tents and thereby the potential for biomass accumu-
lation (Pellegrini et al 2021). Indeed, the emissions
from frequent fires may lead to the redistribution of
nutrients over a large area, thus increasing the spatial
scale of nutrient recycling (Pausas and Bond 2020b).

Plant adaptations to wildfire thus tend to rein-
force the fire regime with which they are associ-
ated through positive feedback mechanisms (‘veget-
ation switches’ sensuWilson and Agnew 1992). These
feedbacks can maintain persistent sharp boundar-
ies between vegetation patches, for example between
forest and grassland (Dantas et al 2013, Oliveras and
Malhi 2016, van Nes et al 2018). Positive feedbacks
can also cause sharp spatial vegetation transitions
along continuous environmental gradients (Grimm
1983, Grimm and Jacobson 1992) and, analogously,
abrupt temporal responses of vegetation to gradual
changes in climate (deMenocal et al 2000, Zhao et al
2017). Some mathematical models of such systems
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predict the co-existence of alternative stable states
under identical environmental conditions (Accetino
et al 2010, Staver and Levin 2012), and this concept
has been widely invoked in interpretation of observed
sharp forest-savanna boundaries (e.g. Staver et al
2011, vanNes et al 2018, Pausas andBond 2020a). The
extent of the climate space where such states co-exist
is still debated. Veenendal et al (2018) suggested that it
may be small, and that climatic and edaphic gradients
primarily determine vegetation composition even in
the presence of positive feedbacks, while several oth-
ers (e.g. Staver et al 2011,Dantas et al 2016,D’Onofrio
et al 2018) predict it to be a relatively widespread
phenomenon. However, there is general agreement
about the existence of positive vegetation-fire feed-
backs, and their role in sharpening vegetation trans-
itions in fire-prone regions.

4. The effects of fragmentation and
ignition sources

The distinction between fire-prone and normally fire-
free ecosystems, as determined by the traits of the
plant species they contain, is crucial to understand-
ing the ways in which different ecosystems respond to
fragmentation. Fragmentation of some natural eco-
systems has been found to promote fire, whereas in
others fragmentation has been found to suppress fire
(see e.g. Armenteras et al 2013, Alencar et al 2015 vs
Parsons and Gosper 2011). The origin of this appar-
ent paradox lies in the existence of two competing
effects of fragmentation. On the one hand, in nor-
mally fire-free ecosystems, deforestation, logging and
the creation of ‘edges’ by road-building promote dry-
ing of litter, and increase wind speed (compared to
the forest interior), thereby increasing the chance that
either a lightning strike or a human ignition will start
a fire (Arienti et al 2009, Armenteras et al 2013, Cano-
Crespo et al 2015, Armenteras et al 2017, Pausas and
Keeley 2021). On the other hand, in fire-prone eco-
systems the creation of clearings, paths, roads, and
other barriers mainly act to interrupt fuel continuity
and thus fire spread, leading to a reduction in burnt
area (Gillson et al 2019). Figure 4 illustrates these
differences in behaviour across three different bio-
mes in South America. There is a positive relation-
ship between fragmentation and burnt area in ever-
green broadleaf forests, which are normally fire-free
ecosystems, but fragmentation leads to decreased fire
in savanna and cerrado.

These different effects of fragmentation on wild-
fire may also be relevant for understanding why
potential ignition sources (human population dens-
ity and the frequency of lightning) have been demon-
strated (see e.g. Bistinas et al 2014, Knorr et al
2014, 2016, Andela et al 2017) to be generally poor
predictors of wildfire. Figure 5, inspired by a sim-
ilar graphic in Andela et al (2017), maps the spa-
tial correlations between burnt area and human

population density and between burnt area and light-
ning frequency. Burnt area is negatively correlated
with human population almost everywhere. Excep-
tions, showing positive correlation between burnt
area and population, are in densely forested regions,
including tropical rain forests in Borneo and south-
western Amazonia. For lightning, there is a posit-
ive correlation with burnt area over many fire-prone
regions (notably tropical savannas) but no correla-
tion (or even a negative correlation) with burnt area
in dense forests. Examination of these spatial correla-
tions with respect to population density (SI figure 4)
and burnt area (SI figure 5) shows that positive correl-
ations with population density occur in regions with
high population but low burnt area. There is no inter-
action between lightning and population density, but
significant positive correlations with lightning occur
at high levels of burnt area.

We suggest the following explanation for these
contrasting patterns. One key consequence of human
population is vegetation fragmentation, which has
opposite effects in fire-prone versus normally fire-
free ecosystems. The widespread negative correlation
between human population and burnt area primarily
reflects the inhibition of fire spread by landscape frag-
mentation (including permanent cultivation). This
correlation is observed even though fragmentation
facilitates access, and therefore the chance of acci-
dental human ignition. Fire suppression may also
be a factor in regions where fire severity is lim-
ited by moist climates or discontinuous fuel (Balch
et al 2017). The practice of slash-and-burn agricul-
ture (nowgeographically restricted) is also considered
to be incompatible with a large human population
(Smith et al 2021). Lightning is an important igni-
tion source, and in fire-prone ecosystems in relatively
dry regions a higher lightning frequency is linked to
more fire starts. However, in normally fire-free forest
ecosystems, high precipitation levels mean that fuel is
almost permanently wet so that lightning strikes are
ineffective in starting fires. The negative correlation
between lightning and burnt area in densely forested
regions reflects their low flammability, and the fact
that lightning is likely to be accompanied by rain in
climates suitable for such forests.

The lack of a consistently positive correlation
between fire starts and potential ignition sources is
a serious problem for models that assume such a
correlation exists. Venevsky et al (2002) introduced
the concept that each person, on average, starts a
given number of fires per unit time. This number
propagates directly into the total number of mod-
elled fires. Subsequent models have also adopted
this concept but sometimes along with an additional
function to describe fire suppression by people (see
model descriptions in Rabin et al 2017). Teckentrup
et al (2019) illustrated the large diversity of functions
for human ignition and suppression that have been
adopted in global fire-enabled vegetation models.
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Figure 4. The relationship between vegetation fragmentation and burnt area in evergreen broadleaf forest, woody savanna and
open savanna in tropical South America. Observed burnt area and vegetation fragmentation is based on the Global Fire Atlas
(Andela et al 2019) and Hansen et al (2020) data sets at 1 km pixel resolution. Evergreen broadleaf forest (>60% evergreen woody
vegetation, >2 m height), woody savanna (30%–60% forest cover, >2 m height) and open savanna (<30% forest cover, grassland
and shrubland) is based on MODIS MCD12Q1 for 2012 (Friedl et al 2002) resampled at 1 km pixel spacing. The data for
evergreen broadleaf forests are only from north of the equator. The scales for burnt area differ between the three biome types.

Given that the empirical basis for all these formula-
tions is weak, there is a need for more rigorous testing
of howpotential ignitions relate to observed ignitions.
Furthermore, it would be useful in a model devel-
opment context to shift the focus away from poten-
tial ignition sources, to the physical and biological
factors that influence the fuel loads and flammabil-
ity of ecosystems and hence fire spread, and the way
that these factors may be modified by human inter-
ventions. Indeed, how vegetation properties determ-
ine fuel loads and fuel drying is known to be a weak-
ness of existing global models (Baudena et al 2015,
Forkel et al 2019, D’Onofrio et al 2020).

5. Implications for biodiversity and
ecosystemmanagement

It is now generally accepted that universal fire sup-
pression is neither possible nor desirable. Although
biodiversity can be negatively impacted by fire in non-
fire-adapted ecosystems, it is also expected to be neg-
atively impacted by fire suppression elsewhere because
the life histories of plants adapted to fire are intim-
ately bound up with their fire regime (Driscoll et al
2010). Moreover, as is now widely recognized, zero-
fire policies in some countries have increased the risks
of uncharacteristically intense wildfires (Calkin et al
2015, Moreira et al 2020, Santos et al 2021) with
potentially negative consequences for biodiversity, as
well as for human habitation.

Globally, wildfire frequency has declined steeply
since the late nineteenth century (Marlon et al 2008),
a trend they explained by increased landscape frag-
mentation due to the widespread adoption of intens-
ive agriculture. Other factors, such as the expansion

of commercial forestry, improved forest management
and deliberate fire suppression to preserve agricul-
tural and timber resources may also have contrib-
uted to this decline. The (partly unintentional) role
of human population in reducing fire frequency in
fire-adapted ecosystems means that almost no place
on Earth can now be said to have an entirely nat-
ural fire regime (Chuvieco et al 2021). Biodiversity
conservation in some regions may require trying to
mimic the natural fire regime through a combination
of approaches, including prescribed burning (Kelly
et al 2020).

Recent years have indeed seen a shift in wild-
fire management practices in regions where wild-
fires are important for maintaining natural resources
and biodiversity (Hunter et al 2011, Huffman et al
2020). Nevertheless, adapting wildfire management
to meet multiple objectives, including safeguarding
habitation and infrastructure while conserving biod-
iversity, in a rapidly warming climate is a challenge
for which we are still poorly equipped (Moritz et al
2014, Kelly et al 2020). The palaeorecord has shown
that wildfire frequency is highly sensitive to temper-
ature variations: even the relatively small-amplitude
variations in global mean temperature over the last
millennium are reflected in charcoal records all over
the world (Marlon et al 2008). Model simulations
of future fire risk under continued climate change
do not project increases everywhere, but they do so
consistently in some regions. However, the projec-
tions of climate change made using different climate
models also show considerable divergence from one
another and there are substantial regions where the
projected changes in fire risk diverge even in sign
(IPCC Land Report 2019). The evidence base for
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Figure 5.Mapped correlations between annual burnt area and human population (top panel), and between annual burnt area
and cloud-to-ground lightning frequency (bottom panel) during 2010–2016 at 0.5◦ resolution. Burnt area data are from GFED4;
population density data from HYDE 3.2; lightning data from Kaplan and Lau (2019). The insets show median correlation
coefficients for grid cells classified into percentiles of tree cover, based on the MOD44B product at 250 m resolution. All
correlations were calculated over a 5× 5 mesh of individual 0.5◦ grid cells. For correlations and relationships with other potential
drivers of burnt area, see supplementary information.

adaptation to future fire regimes is thus weak. The
problem is compounded by the inability of current
fire-enabled vegetation or land-surfacemodels to dis-
tinguish different types of fire regime (see e.g. Rabin
et al 2017)—yet transitions between themwould have
implications for biodiversity. Abrupt transitions in
fire regime accompanied by large changes in veget-
ation composition have occurred in the recent geo-
logical past (Fordham et al 2020), and are likely to
happen in the future, posing new challenges for biod-
iversity conservation as well as fire management.

6. Towards an ecosystem-centred
framework for understanding fire

We have outlined a number of ways in which veget-
ation properties, either at plant or ecosystem level,
shape fire regimes. Traditional approaches to linking
vegetation and fire focus on the role of vegetation for

fuel dynamics and fuel drying. While this is neces-
sary, it is not sufficient. Most plants and ecosys-
tems have co-evolved with fire. The behaviour of
fire-adapted vegetation is very different from that of
vegetation that experiences fire less often, in terms
of both the response to anthropogenic fragmenta-
tion and the speed of ecosystem recovery after fire.
Vegetation properties are diagnostic of fire regimes
and can provide valuable insights into ecosystem
resilience and guides to appropriate fire manage-
ment. Although there are some remaining puzzles
and data gaps, embedding current understanding of
fire ecology into process-based fire models should
help improve the ability to predict how fire regimes
might change in the future. Thus, we advocate the
adoption of an ecosystem-centred approach to mod-
elling fire regimes, building on the insights this offers
on the bi-directional interactions between vegetation
and fire.
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