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Abstract: An improved spectral reflectance estimation method was developed to transform captured
RGB images to spectral reflectance. The novelty of our method is an iteratively reweighted regulated
model that combines polynomial expansion signals, which was developed for spectral reflectance
estimation, and a cross-polarized imaging system, which is used to eliminate glare and specular
highlights. Two RGB images are captured under two illumination conditions. The method was
tested using ColorChecker charts. The results demonstrate that the proposed method could make
a significant improvement of the accuracy in both spectral and colorimetric: it can achieve 23.8%
improved accuracy in mean CIEDE2000 color difference, while it achieves 24.6% improved accuracy
in RMS error compared with classic regularized least squares (RLS) method. The proposed method is
sufficiently accurate in predicting the spectral properties and their performance within an acceptable
range, i.e., typical customer tolerance of less than 3 DE units in the graphic arts industry.

Keywords: spectral reconstruction; two illuminations; iteratively reweighted regulated model;
feature selection; RGB images

1. Introduction

One of the ultimate goals of spectral estimation from a camera image is to predict
the spectral reflectance data that represent the physical properties of a device-dependent
camera signal. Spectral reflectance is a major area of interest in many fields, including
biometric identification [1,2], art archiving [3], cosmetics [4,5], agriculture [6], and high-
fidelity color reproduction [7]. Thus, the technique of spectral estimation from camera
images has gained importance.

Generally, it is acknowledged that spectral reflectance estimation from a three-channel
RGB camera has a relatively lower estimation accuracy compared with a multispectral imag-
ing system that contains more signal channels with different filtration mechanisms. Con-
ventionally, a multispectral imaging system is constructed using a camera with bandpass
filtration systems, such as narrowband filters, liquid crystal tunable filters (LCTF) [7–11],
programmable illumination imaging system [12–17], or broadband filters with trichromatic
cameras [18–23]. It is worth mentioning that, with dramatically developing technology for
both digital cameras and LED lighting, a multispectral imaging system with consumer-
grade cameras and broadband lighting can be developed with much lower cost and easier
operation processing, although the spectral reflectance estimation algorithm needs to be
developed and verified.

The current literature on spectral reflectance estimation is extensive and focuses par-
ticularly on accurate algorithms. These algorithms can be classified into three groups:
model-based methods, interpolation methods, and learning-based methods [20]. Recently,
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learning-based reconstruction has developed dramatically. It can use low-cost but high-
resolution cameras, and it is convenient in practical applications because it is not necessary
to characterize the spectral sensitivity function of the imaging system, which has a low re-
quirement in wavelength resolution similar to a spectrophotometer. The performance, how-
ever, is greatly affected by the choice of the training set used as part of the characterization
process. In recent years, there has been an increased amount of literature on learning-based
algorithms, for example, the pseudoinverse method, Wiener estimation [23,24], princi-
pal component analysis [25–27], and polynomial-based regression models [18,28,29]. For
example, Berns et al. proposed an image-based spectral reflectance estimation method
using matrix R based on the Wyszecki hypothesis by combining a trichromatic camera and
absorption filters [18,19]. Hardeberg et al. proposed a method using a principal eigenvec-
tor technique and pointed out that any spectral reflectance can be expressed as a linear
combination of basic functions and a scalar vector and evaluated illuminant estimation
models from color to multispectral imaging [7,10]. Li and Cao proposed two reconstruc-
tion methods, based on local linear regression, which achieve reasonable reconstruction
accuracy [30,31]. Shen et al. reported that the partial least squares regression (PLS) method
could also be adopted in constructing a regression model based on the correlation between
response value and spectral reflectance [32]. All these studies claimed to have achieved
good results using different metrics.

Overall, most studies use a mathematical algorithm for spectral estimation. However,
the impact of overfitting, which would lead to poor accuracy performance, has not been
sufficiently investigated. Overfitting is usually caused by the polynomial degree of camera
signal expansion. When using higher degree polynomials, the irrelevant detail and noise
in the training dataset are picked up and learned as concepts, and the error for the test set
starts to rise as the model’s ability to generalize decreases, i.e., when a model works well
for the training set data but performs badly on the test set. Several approaches could be
used to reduce this problem, such as approaches based on reducing the feature numbers
or imposing penalties by putting weights on the features, such as the regularization
method [33–40]. For example, Shen et al. proposed a nonlinear regression method based
on a polynomial model for spectral estimation, with consideration being given to the
potential overfitting problem in the polynomial-based regression model [14,33]. Graham
et al. demonstrated that the root-polynomial regression model could provide leading
performance in both spectral recovery and color reproduction. Harifi et al. initially
applied the principal component analysis embedded regression method to recover the
spectral reflectance, and a third-order polynomial system was found to be best for the
calculation of the transformation matrix [28]. Therefore, a method that reduces the problem
of overfitting as well as characterizes the nonlinearity of the spectral reflectance estimation
of multispectral imaging systems should be promising.

The main aim of this study is to develop a multispectral imaging system using an RGB
camera and two commonly used illuminants. We specifically focused on the development
of a more accurate spectral estimation method from raw camera responses using the
iteratively reweighted regularization regression model proposed in this study. To solve
the overfitting problem, we develop a feature selection process that uses neighborhood
component analysis. The superior performance of this proposed method is evaluated and
compared with existing methods by using both a semiglossy ColorChecker SG (CCSG140)
chart and a matte ColorChecker DC chart (CCDC240). The overall performance of both
the proposed and the traditional methods is compared in terms of both spectral and
colorimetric accuracy.

2. Multispectral Imaging Model

In this section, we show the details of the proposed method. Two raw images are
captured under two different color temperature lighting conditions to recover the spectral
reflectance of a scene.
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2.1. Regularization Model

The camera response is proportional to the intensity of the captured light; thus,
the camera response can be expressed as a linear combination of the camera sensitivity
functions, the illumination spectral power distribution, and the spectral reflectance of the
objects. As has been shown in previous work [5–10], the camera sensor response vector c
can be formulated as spectral reflectance:

c = rLS + ε (1)

where S is a 31 × 3 matrix that represents the spectral sensitivities of the sensors (assuming
we have 31 bands from 400 nm to 700 nm at 10 nm intervals); L is a 31 × 31 diagonal matrix
that represents the spectral power distribution of the illuminant; r is a 1 × 31 discrete
spectral vector of the object uniformly sampled over the visible wavelength range, typically
from 400 nm to 700 nm at 10 nm intervals; ε is a 1 × 3 vector of the additive system errors;
and c is a 1 × 3 vector that represents the camera sensor response.

The spectral reflectance can be estimated using prior knowledge of a training set of
measured color patches and camera responses. When the error can be ignored, the above
equation can be transformed as a scalar product in matrix notation as:

R = CQ (2)

where R is an n× 31 matrix of the spectral dataset in which each row represents the spectral
reflectance of n samples. C is an n × 3 matrix that represents the camera response, and
each row consists of one or two sets (two three-channel images taken under two different
lighting conditions) of camera responses for a sample. Q is a 3 × 31 matrix that represents
the transform between the camera response and the spectral reflectance.

As described in the literature, most spectral estimation processes perform spectral
estimation based on regression models, including linear, second-, third-, and fourth-order
polynomial expansion models. In general, the accuracy of the spectral estimation depends
not only on the training set but also on the number of signal features: the greater the
number of features, the better the linearity of the imaging system. To improve the spectral
estimation accuracy, a polynomial transform was used to extend the response values
instead of increasing the number of imaging channels. Taking a third-order polynomial
model as an example, the six-channel camera response (a row of C) can be expanded to 84
terms:

D =
[
1, R1, G1, B1, R2, G2, B2, R2

1, R1G1, · · ·G2B2, B2
2, · · · , R3

1, R2
1G1, R2

1B1 · · · B3
2

]
(3)

Using D to denote the matrix expanded from C, models can be built to map the
polynomial camera response features to the spectral reflectance as:

R = DΘ (4)

where Θ is the 84 × 31 transform matrix searched for by the least-squares method. This
could address some of the problems by imposing a penalty on the size of the coefficients.
The L2-norm of vector κ can be added to the loss expression to give the preferred solutions
with smaller norms. The objective functions J1(Θ) are as follows:

J1(Θ) = argmin
(
‖DΘ− R‖2

2 + κ‖Θ‖2
2

)
(5)

here, κ is a regularization parameter to be empirically selected. The purpose of this
regularization setting is to stabilize the regression output, which prevents a large change in
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the result when small perturbations in the input camera response occur. The gradient of
the objective functions in the least-square sense becomes:

∂J1(Θ)

∂Θ
=

∂

∂Θ
((DΘ− R)H(DΘ− R) + κΘHΘ) = DH DΘ− DH R + κΘ (6)

Let the gradient manually be zero, that is, ∂J1(Θ)
∂Θ = 0

Θ = (DH D + κ I)
−1

DH R (7)

where I is the identity matrix. Small, positive values of κ reduce the variance of the
estimates. While biased, the reduced variance of ridge estimates often results in a smaller
mean squared error when compared to the ordinary least-squares estimates, and δmin is
the smallest positive singular value. Referring to the singular value decomposition of
the expanded camera signal response matrix, D = UΣVH , DH D = VΣHΣVH , the above
equation can be transformed:

Θ = V(ΣHΣ + δ2
min I)

−1
ΣHUH R (8)

2.2. Iteratively Reweighted Regularization Model

The conventional method is optimum when the noise is ignored; however, it provides
a poor estimation and is unreliable when outliers are present in the training data. Residual
analysis is required to address these problems and downweight the influence of outliers.
Here, we proposed a method by assigning a weight to each training sample to downweight
the influence of outliers iteratively. In the first iteration, each training sample is assigned
an equal weight, and the model coefficients are estimated using the regularization model
from Equation (8). At subsequent iterations, weights are recomputed so that the points
farther from the model predictions in the previous iteration are given lower weight until
the values of the coefficient estimates converge within a specified tolerance. The modified
objective function J2(Θ) minimized by the M-estimator is as follows:

J2(Θ) = argmin
[
ω
(
‖DΘ− R‖2

2 + κ‖Θ‖2
2

)]
(9)

where ω is a function of weighted residuals called fair estimators defined as follows. The
M-estimator needs to be found; it is a way of mitigating the influence of outliers in an
otherwise normally distributed data set.

w =
1

1 + |u| (10)

The value u in the weight functions is

u =
resid

tune× s×
√

1− h
(11)

where resid is the vector of residuals from the previous iteration, the tune is the tuning
constant with 1.4 as the default, and s is an estimate of the standard deviation of the error
term given by

s =
median

[
abs
(

resid/
√

1− h
)]

0.6745
(12)

where h is the vector of the leverage values from a least-squares fit, which is calculated
from a QR decomposition, and h = sum(Q2). Assuming the signal matrix is of full rank
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and the test sample errors are independent and identically distributed with variance, the
gradient for the weighted residual in the least-square sense becomes

∂J2(Θ)
∂Θ = ∂

∂Θ

[
(wDΘ− wR)H(wDΘ− wR) + κwΘHΘ

]
= ∂

∂Θ

[
ΘT DTwTwDΘ− 2RTwTwDΘ + RTwTwR + κwΘHΘ

]
= DTwTwCΘ− DTwTwR + κΘ

(13)

Let the gradient of the above equation be zero. The schemes for finding the solution
are as follows:

Θ =
[

DTwTwD + κ I
]−1

DTwTwR (14)

Solving this estimation equation is equivalent to a weighted least-squares problem:
the weight depends upon the residuals, and the residual depends upon the estimated
coefficient, so an iterative solution is therefore required.

(a) The initial estimates of spectral reflectance R0 are calculated in Equation (8).
(b) At each iteration t, residuals resid(t−1) and associated weights wi

(t−1) are calculated
from the previous iteration.

(c) The new weighted least-squares estimates are solved with Equation (10)

Θt =
[

DTw(t−1)Tw(t−1)D + κ I
]−1

DTw(t−1)Tw(t−1)R (15)

(d) Steps (b) and (c) are repeated until the estimated coefficients converge.

2.3. Feature Selection

It should be noted that when the number of polynomial expansion signals is large, its
components are correlated, and the columns of the signal matrix have an approximately
linear dependence. The estimation is extremely sensitive to random noise in the camera
response, producing a large variance, and the situation of multicollinearity is an issue.
This will degrade the prediction performance and the stability of spectral estimation
precision [29]. The objective of a feature selection search for a subset of extended polynomial
camera responses is to optimally model the camera responses and the spectral reflectance.
The subset is subject to constraints such as the required or excluded features and the size of
the subset. The performance of the spectral estimation transform matrix can be improved
using the neighborhood component analysis feature selection [38–42]. Consider a spectral
estimation training set S containing n color patches:

S = {(ci, ri), i = 1, 2, 3 · · · n} (16)

where ci is the polynomial expansion of the camera signals from the ith patch, and ri is the
corresponding spectral reflectance. A randomized regression model can be built as follows:

(a) A patch Ref (c) is randomly selected from S as the ‘reference point’ for camera response.
(b) The response value at c is set equal to the response value of reference point Ref (C).

The probability, P(Ref (x) = cj|S), that point cj is picked from S as the reference for c is

P
(

Re f (c) = cj
∣∣S) = υ(dw(c, cj))

n
∑

j=1
υ(dw(c, cj))

(17)

where dw is the distance function, and ν is the kernel function that assumes large values
when dw is small. Now consider the leave-one-out application of this randomized regres-
sion model, that is, predicting the response for ci using the data in S−i, and the training set
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S excluding the point (ci, ri). The probability that point cj is picked as the reference point
for ci is given by:

pij = P(re f (ci) = cj

∣∣∣S−i ) =
υ(dw(ci,cj))

n
∑

j=1,j 6=i
υ(dw(ci,cj))

(18)

Let r̃i be the response value the randomized regression model predicts and ri be the
actual spectral response for ci. Let l be a loss function that measures the disagreement
between ri and r̃i. Then, the average value of the loss function l(ri, r̃i) is given by:

li = E(l(ri, r̃i)|S−i) =
n

∑
j=1,j 6=i

pijl(ri, r̃i) (19)

After adding the regularization term λ, the weight vector wf can be expressed as the
following minimization regression error:

w f = argmin
w f

{
f (w f )

}
= argmin

w f

{
1
n

n

∑
i=1

li + λ
p

∑
r=1

w2
r

}
(20)

where wr is weight vector for rth feature item, n is the number of observations, and p is the
number of predictor variables.

3. Experiment and Result

In this section, the proposed method is implemented and compared with the currently
existing methods; meanwhile, the feature selection that will influence the estimation
accuracy of the proposed method is also investigated and discussed.

3.1. Camera Setup

To verify the proposed approach, comparative experiments were conducted. The
multispectral imaging system we developed includes a commercial trichromatic camera
(Canon EOS 6D Mark II) with 16-bit digitization and two spectrally tunable THOUSLITE
LED Cubes mounted with translucent diffuse reflectors. To illuminate glare and specular
highlights, a linear polarizer was placed in the illumination plane of each LED Cube with
the polarizing axes orientated in the same direction, and another linear polarizing filter
was placed on the lens of the camera. As shown in Figure 1, the imaging plane of the digital
camera was set to be approximately parallel to the sample placement plane, and the two
LED Cubes were placed at an angle of approximately 45◦ to the color samples.
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During image capture, each cube is used to simulate D65 (CCT approximately 6500 K)
and incandescent light (CCT approximately 3500 K), These two illuminations are most
commonly used, and the shape of SPD curves are quite different and weak in correlation.
The spatial nonuniformity of the light field was corrected using exposure to a white card.
The relative spectral power distribution of the two light sources was measured using a
diffused white sample and is illustrated in Figure 2. Note that the SPD curves are similar
in some wavelength bands because these lights are fitted from 15 narrow channels over the
visible wavelength range.
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Figure 2. (Left) LED Cube; (Right) Two SPD curves under 3500 K and 6500 K illumination conditions.

The parameter settings for the camera were fixed during the image capture, with the
aperture size set to f5.6, the shutter speed at 1/8 s, and the ISO speed set to 640. Canon
EOS Utility software was used to control the camera for the image capture. The original
raw responses were recorded by the camera and used to predict spectral reflectance. The
dark current noise was recorded with the camera lens cap closed and was subsequently
subtracted from the captured digital images.

An X-Rite ColorChecker semigloss chart (CCSG, 140 patches) and a Gretag–Macbeth
ColorChecker DC matte chart (CCDC, 240 patches including 232 mattes, and 8 glossy
patches) were used as color targets and captured by the proposed multispectral imaging
system. The spectral reflectance of all the patches was measured by a Konica Minolta
CM2600D portable sphere Spectrophotometer from 400 nm to 700 nm (under SCI mea-
surement based on diffuse: 8 geometry) at intervals of 10 nm over the wavelength range.
Measuring Specular Component Included (SCI) would capture true color data from the
sample and negate the effect of surface appearance to measure only color. It makes little
or no difference if the patches are mirror-like or matte in appearance. Figure 3 shows the
color distribution of both charts plotted in the CIELAB color space. The CIELAB values
were calculated using the CIE 1931 standard observer and illuminant D65.

The raw camera RGB of each patch in the color chart was obtained, and 50 × 50 pixels
from the raw Bayer-patterned response of the central color patches of the image without
postprocessing were extracted and demosaiced by the DcRaw program. Then, the transform
matrix between the camera response and spectral reflectance was calculated from the
training set and evaluated on the test set. To test the model more robustly and fairly, a ten-
fold cross-validation approach was used ten times to evaluate the proposed method. All
the patches were divided into ten groups randomly, and for each group, 9/10 of the patches
were assigned as the training set, and 1/10 of the patches were assigned as the test set.
Both spectral differences and color differences between the model-predicted results from
the camera and the measurement results from the spectrophotometer were calculated to
represent the performance of the predictive accuracy for the spectral reflectance estimation.
That is, root-means-square error (RMS) was used as spectral metrics [15], with CIEDE2000
(color difference) under the D65 CIE standard illuminant as the colorimetric metric. The



Sensors 2021, 21, 7911 8 of 16

RMS and CIEDE2000 are positive values, with 0 corresponding to a perfect estimation.
These metrics are given by the following equations:

RMSE =

√
1
n

n

∑
i=1

[ri − r̃i]
2 (21)

where r̃i denotes the reconstructed spectral reflectance of ith patches, ri denotes the mea-
sured reference of ith patches, and n denotes the number of full samples. n denotes the
wavelength sampling number of the spectral reflectance over the visible spectrum.
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Figure 3. The color distribution of matte charts (circle marker) and semigloss charts (square maker).
(a) Comparison of color distribution in the CIELAB color space. (b)The chromaticity coordinates of
samples in a* − b* plane.

3.2. The Influence of Feature Selection

Another common problem that was raised in the introduction section concerns the
feature number of the expanded polynomial. For all the existing methods, the performance
is calculated by the first-order, second-order, and third-order, rather than by the most
important selected features. As noted in Section 2.3, the feature number of the camera
response is crucial for spectral estimation.

Neighborhood component analysis feature selection is performed to optimize the
feature selection for the proposed imaging system. Here, the MATLAB function fsrnca, in
the Machine Learning Toolbox, was used. However, as explained by Urban et al., too many
items can cause overfitting problems [22]. By selecting weighted features, the colorimetric
and spectral metric precision will be determined as the feature number is changed. In this
study, using 380 color samples from the SG140 chart and DC240 chart, a regularization
model with third-order polynomial expansion was used to calculate the different selected
features in terms of both the spectral reflectance RMS and the mean CIEDE2000 color
difference. Figure 4 reveals the relationship between the mean spectral reflectance RMS,
the mean CIEDE2000 color difference, and the feature numbers within the expanded
polynomial feature range. The performance of colorimetric and spectral metrics initially
decreased with an increase in the feature number, and then their performance increased
after an optimal value of approximately 30 features was reached. Thus, it should be more
meaningful to understand the importance of the features and train a model using the only
the selected features.

Figure 5a illustrates the feature selection weights of 84 extended third-order polyno-
mial feature items from six-channel camera responses using neighborhood component
analysis (NCA). Over half of the feature weights are less than 400. Calculating the loss
using the test set as a measure of the performance, the weights of the irrelevant features
should be close to zero, and the performance of feature selection using five-fold cross-
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validation should improve. Figure 5b shows a hierarchical treemap view of the feature
weights and shows the obvious patterns, including which items are most important for
spectral estimation. The relationship between each feature is shown by color and proximity.
The 30 most relevant features were identified and are summarized in Table 1. There are
6 first-order terms, 17 s-order terms, and 7 third-order terms that are most important for
spectral estimation. This means that not all terms are necessary for spectral estimation; part
of the second-order and third polynomial expansion are negative, irrelevant, and decrease
the estimation performance. In addition, it should be noted that the selection of features
might depend on the camera, illumination, and training dataset.
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Table 1. Selected terms of the polynomial regression.

Order Polynomial Regression

1st-order (6) R1, G1, B1, R2, G2, B2

2nd-order (18) R2
1, G2

1 , R2
2, G2

2 , B2
2 , R1B2, R1G2, R1R2, R1B1, G1B2,

G1G2, G1R2, B1R2, B1B2, B1G2, R2G2, B2G2, B2R2
3rd-order (6) B3

2 , B2
2 R2, B2

2 R1, B2R2
2, B2R1R2, B2R2

1
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Based on the proposed multispectral camera system, the performance of the spectral
reflectance estimation with different expansions (including the linear expansion, the second-
order polynomial expansion, the third-order polynomial expansion, and finally, the third-
order polynomial expansion with the proposed 30 features) was evaluated in terms of both
the colorimetric error and spectral difference. All results are given in Table 2: compare
the evaluation results of different polynomial expansion methods, it can be seen that the
best performance, i.e., the smallest average color difference between the predicted and
measured spectra, is achieved by selecting 30 feature items from the third-order polynomial
expansion; it has the smallest value in root-means-square error (RMS), CIEDE2000 color
difference under D65 illumination, lowest standard deviation (SD), and largest value in
Student’s t variance (t-stat). Student’s t variance is used in the testing the variance for
Student’s t distribution. The higher the t-stat value, the greater the confidence we have in
the coefficient as a predictor. It is not safe to conclude that more feature numbers are needed
to obtain more accurate results. Excessive training numbers would cause overfitting and
thus reduce accuracy.

Table 2. Performance of reflectance estimation using two illuminants with different polynomial expansions.

RMS CIE DE00

Mean Min Max SD T-Stat Mean Min Max SD T-Stat

1st-order (7) 2.85% 0.48% 39.2% 0.03 21.6 2.09 0.08 32.1 2.0 20.0
2nd-order (28) 2.24% 0.25% 69.3% 0.04 11.7 2.11 0.17 141.9 7.3 5.6
3rd-order (84) 2.18% 0.23% 107.5% 0.06 7.4 1.97 0.12 131.1 6.9 5.6
Selected (30) 2.14% 0.18% 34.4% 0.02 19.3 1.79 0.11 20.2 1.5 22.9

To visualize the performance of different signal expansion methods, the estimated
spectra of three randomly selected samples (No. 54, No. 180, and No. 288) are plotted
in Figure 6, where the left axis shows the estimated spectra of samples with different
polynomial expansions and the right axis shows the ∆R error between estimated and
measured spectra. Our feature selection method outperforms the traditional expansion
methods in terms of both spectral and colorimetric accuracy.
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3.3. The Influence of the Regression Model on the Proposed Method

The proposed method was implemented and compared with currently existing
methods. These included the regularized least-squares (RLS) [34], Tik regularized least-
squares [36], Wiener method [5], ordinary least-squares method (OLS) [10], principal
component analysis (PCA) [7], and partial least-squares method (PLS) [33]. All the existing
methods were implemented in their optimal conditions, while six principal components
were used conventionally for the PCA- and PLS-based methods, as the first six (instead of
the total 84) components explain over 95% of the total variance.
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Tables 3 and 4 compare the evaluation results of the spectral metric in RMS and
CIEDE2000 color difference between 84 items (third-order polynomial expansion) and
30 items (feature-selected). They show that our proposed method, the iteratively reweighted
regularization model (IRWR), improves the precision of spectral reconstruction in color and
spectral using feature selection, while the traditional methods exhibit a large discrepancy
without considering the overfitting effect caused by an excessive number of features. Espe-
cially for the feature-selected model (30 items), IRWR has the smallest value in RMSE (mean
value of 2.14%, maximum value of 9.35%, standard deviation (SD) of 1.77%) and smallest
CIEDE2000 color difference (mean value is 1.79, the maximum value is 7.31, standard
deviation (SD) is 1.39) compared to other methods. Furthermore, the predictive error of
the feature-selected method is reduced by approximately 0.19 for the CIEDE2000 color
difference compared to the unselected 84 items. Compared with the fully expanded items,
our feature-selected model has the lowest standard deviation (SD), which indicates that
the spectral estimation errors tend to be close to the mean value and the model has strong
performance.

Table 3. The comparison of estimation accuracy in terms of RMS using ten-fold cross-validation.

Model
84 Items (3rd-Order Polynomial Expansion) 30 Items (Feature-Selected)

Mean (%) Max (%) Min (%) SD (%) Mean (%) Max (%) Min (%) SD (%)

RLS [34] 2.84 18.37 0.37 3.39 2.88 28.06 0.38 4.88
Tik [36] 2.91 30.70 0.37 5.26 2.81 25.66 0.38 4.49
PCA [7] 3.77 11.45 0.84 2.48 3.78 12.09 0.96 2.53

Wiener [5] 4.88 20.13 1.16 3.89 3.54 20.96 0.85 3.53
PLS [33] 3.81 11.25 0.79 2.49 3.68 10.91 0.76 2.39
OLS [10] 2.99 24.63 0.35 4.27 2.30 17.39 0.36 2.99

IRWR 2.34 16.24 0.36 2.89 2.14 9.35 0.35 1.77

Table 4. Comparison of estimation accuracy in terms of CIEDE2000 using ten-fold cross-validation.

Model
84 Items (3rd-Order Polynomial Expansion) 30 Items (Feature-Selected)

Mean (%) Max (%) Min (%) SD (%) Mean (%) Max (%) Min (%) SD (%)

RLS [34] 2.35 15.32 0.27 2.70 2.30 19.06 0.39 3.30
Tik [36] 2.31 21.73 0.34 3.69 2.32 19.99 0.38 3.42
PCA [7] 2.16 6.16 0.41 1.23 2.17 6.05 0.39 1.22

Wiener [5] 4.85 20.91 0.69 4.64 2.95 19.85 0.48 3.61
PLS [33] 2.28 6.65 0.41 1.36 2.26 6.54 0.41 1.34
OLS [10] 2.65 24.73 0.27 4.19 2.07 20.26 0.26 3.44

IRWR 1.98 19.5 0.23 3.37 1.79 7.31 0.33 1.39

To illustrate both the overall predictive accuracy and the error distribution of all
methods, Figure 7 is plotted using boxplots to represent the distribution of the color
difference and spectral RMS error compared with other estimation methods. The boxplot
distribution of the estimation result of the proposed method is more compact than that of
the existing methods, of which most of the CIEDE2000 and spectral RMS are less than those
of the other traditional methods. The top of the blue rectangle indicates the upper quartile,
a horizontal red line near the middle of the rectangle indicates the median, and the bottom
of the blue rectangle indicates the lower quartile. The topmost outlier is represented by a
vertical line that extends from the top of the rectangle to indicate the maximum value, and
the bottom end outlier is represented by the vertical line that extends from the bottom of the
rectangle to indicate the minimum value. The outliers (red cross) that are above or below
the box body indicate that their values are greater than the upper quartile plus 1.5 times
the interquartile range or less than the lower quartile minus 1.5 times the interquartile
range. In addition, the boxplot of the overall error distribution for the ten-fold validation in
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Figure 7 shows that there are more small error samples estimated by the proposed method,
which is more intuitive to prove the superiority of the proposed method.
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The reconstruction of the spectral reflectance of three randomly selected samples
(No. 54, No. 180, and No. 288) compared with those of the existing methods is shown
in Figure 8, where the black line is the measured spectral reflectance. The reflectance
reconstructed by the proposed method is found to be more accurate than those of the
traditional methods. The experimental results using the simulated camera may, to some
extent, prove the superiority of the proposed method.
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3.4. Methods Implementation and Comparison for Illuminant Metamerism

To evaluate whether the RGB camera under two illuminations can give a better spectral
estimation than that of the camera under one illumination, our proposed model with the
third polynomial regression was also investigated under each illumination (3500 K or
6500 K) separately. The performance of the spectral estimation under 3500 K, under 6500 K,
nonfeature selection (84 items), and feature selection (30 items) is listed in Table 5 in terms
of the mean error, maximum and minimum error, standard deviation (SD), and Student’s
t mean and variance (t-stat) of the color differences under these five test conditions. All
the color difference data were calculated according to CIE Special Metamerism Index:
Change in Illuminant (CIE 015.2-1986), and the data listed in the table were CIE ∆E*76
color difference between estimated and measured spectra.

The results indicate that the three-channel signals of 3500 K and 6500 K with traditional
quadratic expansions have high chromatic accuracy at the approximate color temperatures.
The performance of the six channels under two illumination conditions is improved. It
can be seen that the best performance, i.e., the smallest average color difference of color
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difference between the predicted and measured spectra, is achieved by our proposed
method, which uses 30 items from the third-order polynomial expansion variables and
six channels under both 3500 K and 6500 K illumination. The average color differences
range from 2.14 (Illuminant D65) to 2.40 ∆E*ab units (Illuminant D50), with an overall
mean of 2.23 ∆E*ab units, a maximum value of 5.41, and a standard deviation (SD) of
1.19. Additionally, the reconstructed spectral reflectance of the three randomly selected
samples No. 54, No. 180, and No. 288) with single illumination (3500 K, 6500 K), double
illumination, and feature-selected double illumination is shown in Figure 9. Our method
achieves improved estimation accuracy by selecting features from polynomial expansions
of camera response under two illumination conditions.

Table 5. Metamerism performance of four methods under different illuminations.

Illumination
Temperature (Items)

3500 K
(10)

6500 K
(10)

3500 K + 6500 K
(30)

3500 K + 6500 K
(84)

A

Mean 2.65 2.85 2.39 2.18
Max 7.09 7.67 8.12 5.35
Min 0.27 0.22 0.38 0.30
SD 1.53 1.70 1.56 1.10

t-stat 10.58 10.23 9.30 12.01

F2

Mean 2.94 2.58 2.47 2.31
Max 9.72 7.12 8.55 5.35
Min 0.32 0.26 0.29 0.18
SD 2.08 1.66 1.71 1.25

t-stat 8.60 9.42 8.80 11.22

TL84

Mean 2.65 2.49 2.35 2.15
Max 7.64 6.03 8.56 5.31
Min 0.27 0.21 0.31 0.19
SD 1.65 1.49 1.62 1.16

t-stat 9.77 10.12 8.79 11.24

D50

Mean 2.92 2.81 2.62 2.40
Max 7.93 7.04 9.69 5.72
Min 0.25 0.24 0.56 0.32
SD 1.85 1.66 1.80 1.23

t-stat 9.60 10.26 8.85 11.83

D65

Mean 2.74 2.40 2.34 2.14
Max 7.87 5.77 8.77 5.30
Min 0.26 0.21 0.28 0.19
SD 1.77 1.46 1.65 1.19

t-stat 9.42 9.97 8.62 10.99

Mean
(above illumination)

Mean 2.78 2.62 2.43 2.23
Max 8.05 6.73 8.74 5.41
Min 0.28 0.23 0.36 0.24
SD 1.77 1.60 1.67 1.19

t-stat 9.59 10.00 8.87 11.46
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3.5. Discussion

In this study, we developed a cross-polarized multispectral camera system by applying
two commonly used illuminants and propose a new method to improve the accuracy of
the estimation of the spectral data from the raw camera responses. The results illustrate
that the performance of reflectance estimation from the camera images can be significantly
improved when two broadband illuminations are used. This implies that multi-illumination
with consumer-grade cameras can be an effective approach to construct a multispectral
camera system. The factors that have contributed to the improvement in estimation
accuracy are as follows.

(1) We found that the feature selection of the expanded camera response influences
the estimation performance. We have shown that a small number of features can
provide better performance than the full selection of features of the camera response
expansion. The selection of features might depend on the camera, illumination, and
training dataset. Further investigation of factors affecting the feature selection was
conducted and reported in this paper.

(2) As outliers present in the training data could lead to poor estimates, the iteratively
reweighted regulated model was proposed. An analysis of residuals was necessary to
work around this by assigning weights to the training data. The weighting is done
automatically and iteratively; weights are recomputed iteratively so that the points
farther from the model predictions in the previous iteration are given a lower weight.
Then, the influence of outliers is downweighted. The result supported our previous
research.

(3) The most significant performance improvement was achieved by mapping the six-
channel signals under two illumination conditions into the spectral reflectance, which
minimized the degree of metamerism significantly compared to the three-channel
mapping. As shown in Table 5, for each of the illumination conditions tested, the best
performance, i.e., the smallest mean color difference between the predicted and the
measured spectral data, was achieved by using six channels under two illumination
conditions, where the mean color differences ranged from 2.14 (Illuminant D65) to
2.4 ∆E*ab units (Illuminant D50), with an overall average of 2.23 units.

4. Conclusions

This paper proposes a method for spectral estimation to calculate the spectral data
from raw camera responses by feature-selected expansion items under two illumination
conditions using an iteratively reweighted regulated model. The performance of the pro-
posed method is evaluated using ColorChecker charts. The results show that our proposed
method achieves good accuracy in terms of both spectral and colorimetric estimation. The
factors that contributed to the proposed method are discussed in detail; downweighting
the influence of the outliers in the training set and selecting some of the most important
features obviously improves the performance of spectral estimation. However, there are
still problems to be solved in the future. For example, our method can be slightly worse
than some local weighted regression methods, although it is less computationally expensive
than the traditional methods. The tradeoff between accuracy and computational complexity
is the most common shortcoming for nearly all adaptive methods. The proposed method
has potential applications for spectral reflectance measurement in many fields including
textiles, printing, and cultural heritage.
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