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Benchmarking pipelines for subclonal
deconvolution of bulk tumour sequencing data
Georgette Tanner 1, David R. Westhead 2, Alastair Droop 3 & Lucy F. Stead 1✉

Intratumour heterogeneity provides tumours with the ability to adapt and acquire treatment

resistance. The development of more effective and personalised treatments for cancers,

therefore, requires accurate characterisation of the clonal architecture of tumours, enabling

evolutionary dynamics to be tracked. Many methods exist for achieving this from bulk tumour

sequencing data, involving identifying mutations and performing subclonal deconvolution, but

there is a lack of systematic benchmarking to inform researchers on which are most accurate,

and how dataset characteristics impact performance. To address this, we use the most

comprehensive tumour genome simulation tool available for such purposes to create 80 bulk

tumour whole exome sequencing datasets of differing depths, tumour complexities, and

purities, and use these to benchmark subclonal deconvolution pipelines. We conclude that i)

tumour complexity does not impact accuracy, ii) increasing either purity or purity-corrected

sequencing depth improves accuracy, and iii) the optimal pipeline consists of Mutect2,

FACETS and PyClone-VI. We have made our benchmarking datasets publicly available for

future use.
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Characterising genomic intratumour heterogeneity (ITH) is
important for understanding how tumours evolve as
cancers progress and in response to treatment. A common

approach is to estimate the cancer cell fraction (CCF) of each
somatic mutation from bulk sequencing data, and then attempt to
delineate the tumour subclonal architecture by assigning those
mutations into distinct clones. The different pipelines for per-
forming such analyses have been found to give highly conflicting
results1–3 so robust benchmarking is needed to determine which
to use. This, however, requires application of the methods to
dataset(s) for which the subclonal architecture, the ground truth,
is known. In cancer genomics studies, such benchmarking data-
sets are created via two approaches: (1) using real sequencing data
in which mutation calls or CCFs have been ascertained through
orthogonal approaches; or (2) using simulated datasets with a
pre-defined subclonal architecture. The first approach is impacted
by errors inherent to the orthogonal validation approaches used,
and the second is dependent on how well the adopted simulation
tools are able to recapitulate the complexity of tumour genomes
and the noise inherent within sequencing data.

Previous subclonal deconvolution benchmarking studies have
used a mixture of both approaches. The ICGC-TCGA DREAM
Somatic Mutation Calling - Tumour Heterogeneity Challenge
used a wrap-around script for BAMSurgeon, a programme that
inserts mutations directly into aligned sequencing reads from a
real high coverage input dataset and then uses down-sampling to
simulate copy number variation2,4. This, however, bypasses the
challenges that mutation-containing reads pose to the alignment
stage itself, as well as the inability to ascertain all true positive
mutations in any real data with complete certainty. An alternative
approach that was taken by the Pan-Cancer Analysis of Whole
Genomes Evolution and Heterogeneity Working Group was to
simulate mutation call sets that fit given ground truths, with
errors added from simple distributions to represent imperfect
mutation calling5–7. However, this negates assessment of the
different callers used to generate the mutation inputs and is
unlikely to fully capture the inaccuracies seen in real mutation call
sets. In addition, assumptions have been made to simplify the
simulation of call sets, meaning the complexity of real tumours is
not fully modelled. Such assumptions include not modelling
CNVs6, subclonal mutations only able to lie on one copy of a
chromosome5, or no more than two copy number states per
region. Other studies have instead used real data to draw com-
parisons between pipelines, allowing for biases to be identified but
with no certainty of the ground truths3.

In this study, we benchmark pipelines for subclonal deconvo-
lution, including methods for inferring and clustering of mutation
CCFs, as well as those needed upstream to produce the inputs;
mutation and copy number callers. We use a state-of-the-art
tumour genome simulation tool, HeteroGenesis, that we devel-
oped to overcome issues identified with previous simulation
tools8. We then apply w-Wessim2, which builds upon
w-Wessim8,9 to allow in silico whole-exome sequencing (WES) of
simulated genomes. w-Wessim2 produces reads with alignment
distributions that realistically mirror those of real datasets and
incorporates the sophisticated sequencing error models of the in
silico sequencer ReSeq to recapitulate errors in real data10.

Figure 1 shows the test datasets that were created for our study.
Three parameter sets (S1-3) were used to produce tumours with
increasing point mutation rates and copy number variations.
Three replicate genomes (R1-3) were simulated per parameter set.
Tumours were in silico sequenced to different sequencing depths
(30x, 60x, 100x and 250x). A corresponding germline genome was
simulated, per tumour, and in silico sequenced to 60x. This was
also used to incorporate normal cell infiltration to assess the effect
of tumour purity across a range of 25–100%. Figure 2 outlines the

process for test set generation and benchmarking of four muta-
tion callers (Mutect211, Strelka212, VarScan213 and Lancet14),
four copy number callers (Sclust15, FACETS16, Sequenza17 and
TITAN18) and five subclonal deconvolution tools (PyClone19,
PyClone-VI7, FastClone20, Ccube21 and Sclust15).

We have, therefore, performed the most comprehensive, robust
and accurate assessment of subclonal deconvolution analysis
pipelines to date and have made our series of highly realistic
tumour WES datasets, spanning a range of biological and dataset-
driven parameters, available to the wider community for future
benchmarking studies as new tools emerge.

Results
Somatic point mutation calling suggests Mutect2 is best for
subclonal variants. We applied four somatic variant callers
(Mutect211, Strelka212, VarScan213 and Lancet14) to a highly
mutated tumour dataset (S3R3) at 100% tumour purity across all
sequencing depths. Runtimes differed substantially between
methods, with Strelka2 being fastest and Mutect2 taking longest
(Supplemental Fig. 1). Performance was assessed on both unfil-
tered and filtered (an additional step attempting to triage muta-
tion calls based on the probability of being a technical artifact,
non-somatic or a sequencing error) call sets. Precision-recall
curves, using mutation probabilities or scores in thresholding,
show low recall rates for all callers, as expected due to the low
cellular frequency of many subclones (Fig. 3a). Nonetheless, most
mutations with a variant allele frequency (VAF) ≥0.1 were
detected by most callers at >100x coverage; the notable exception
being VarScan2 (Fig. 3b). Strelka2_filtered achieved the highest
F1 score (which conveys the balance between precision and
recall) of 0.526–0.738, followed closely by Mutect2_filtered
(0.484–0.723), while VarScan2 scored lowest of the filtered call
sets (0.246–0.319). The high precisions (0.882–0.896) achieved by
Strelka2_filtered pertained to calls within target exon regions, but
precision dropped substantially (0.360–0.660) when expanding to
calls across the whole genome, suggesting a high false positive call
rate in lower coverage regions. The other callers showed similar
precisions across exons and the whole genome (Supplemental
Tables 1 and 2). Two additional call sets consisting of the union
and intersect of calls from the best achieving variant callers,
Mutect2_filtered and Strelka2_filtered, were analysed to investi-
gate the benefits of ensemble approaches. Union call sets had
slightly improved F1 scores owing to small increases in recall with
minimal loss of precision. Intersect call sets, however, had
reduced F1 scores resulting from reduced recall (Fig. 3a, Sup-
plemental Table 1). To investigate potential differences between
WES and whole-genome sequencing (WGS), we created in silico
WGS reads for sample S2R2_B_100x and compared variant
calling performance from this with WES for the same sample. Of
note, Strelka2_filtered dropped in both precision and recall for
WGS compared to WES, whereas Mutect2_filtered maintained a
similar performance (Supplemental Table 3).

Subclonal somatic copy number calls are most accurately
quantified by FACETS. When used as input for subclonal
deconvolution, somatic copy number alteration (CNA) calls must
accurately denote regions of chromosomal gain or loss but also
the allelic copy numbers. We therefore assessed CNA callers in
three ways: (1) purity and ploidy estimates were assessed through
direct comparison to true values; (2) heatmaps of predicted and
true total and allelic copy numbers were generated to assess the
relative performance of methods and the factors affecting them;
(3) results from all the CNA callers were used with subclonal
deconvolution methods, and the accuracy of the resulting CCF
estimates were compared.
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We applied four somatic allele-specific CNA callers (Sclust15,
FACETS16, Sequenza17 and TITAN18) to samples from all nine
simulated tumours at 100 and 75% purity and across sequencing
depths of 30x–250x. We further included 50 and 25% purity
samples at 250x for three of the tumours. Ploidy and purity
estimates were largely accurate, particularly at ≥50% purity, with
the exceptions that TITAN often incorrectly assessed purity and
Sequenza frequently overestimated ploidy (Fig. 4, Supplemental
Table 3). None of the callers were able to reliably detect whole-
genome duplications, and instead estimated them as being
diploid. This is to be expected as all approaches must use relative
depth ratios across the genome to predict more focal CNAs,
making whole-genome duplications almost undetectable. Sequen-
cing depth was not found to affect ploidy or purity estimates
(Fig. 4, Supplemental Table 3).

Heatmaps of gains and losses along the genome for predicted
and true copy numbers also indicated that sequencing depth had
little effect on performance, with the majority of CNAs called at
250x also called at 30x (Supplemental Fig. 2). An exception was
with Sequenza, which falsely called multiple loss of heterozygosity
regions at 250x only, as a result of over-segmentation. Tumour
purity also had a limited effect on results. All methods, and
particularly Sclust, failed to detect CNAs present in low-
frequency subclones, where the total copy number remains close

to two, although FACETS was most sensitive. TITAN frequently
falsely called large regions of single allele whole-genome gains or
losses, particularly in the S1 samples, which have the lowest
variant frequencies. None of the methods were able to detect
subclonal whole-genome duplications with the exception of
Sequenza which, when it did, identified them as clonal.

CCF estimation is most accurate at higher sequencing depth
and following clustering. The performance of five subclonal
deconvolution methods (PyClone19, PyClone-VI7, FastClone20,
Ccube21 and Sclust15) was assessed on all tumours and sequen-
cing depths, at 100 and 75% purity. We used the Mutect2_filtered
variant calls combined with CNA calls, purity and ploidy esti-
mates from all four CNA callers as inputs for subclonal decon-
volution (Fig. 2). PyClone, PyClone-VI, FastClone and Ccube
were run with CNA inputs from Sequenza, FACETS and TITAN,
whereas Sclust was run using only its own CNA calls. PyClone-VI
performs clustering using either binomial or beta-binomial dis-
tributions so we ran it with both separately. PyClone was unable
to complete within 48 h (the time limit on our high-performance
computing system) for most of the highly mutated S3 samples
and these were, therefore, omitted. FastClone did not converge
for 61 of the 216 runs so these were also not included. The

Fig. 1 The ground truth datasets. a Tumour clonal architectures created by HeteroGenesis. Clones are denoted C1 to C8. Single chromosome aneuploid
events are indicated next to the clone in which they first appear, but are also present in all daughter clones. Three different parameter sets (S1 to S3) were
used to define total somatic mutation numbers in each tumour, with three replicates created for each set (R1 to R3). b Clone and germline proportions
represented in the bulk samples, with numbers in circles representing the relative proportions of reads from each, for 100 and 75% tumour purities. 50 and
25% samples were similarly created for a subset of tumours. CNV copy number variation, chr chromosome, Rep replication, Del deletion, SNV single-
nucleotide variation.
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performance of each pipeline was determined through compar-
ison of true variant CCFs (calculated by summing the tumour
proportions of clones that contained each variant) to both the
estimated non-clustered variant CCFs and the CCF of clusters
that the variants were subsequently assigned to, where applicable.
This enabled inspection of whether accuracy is impacted pri-
marily at VAF normalisation or during clustering.

To provide additional simplistic references upon which CCF
estimation methods should improve, we developed baseline
datasets via two approaches. For the non-clustered CCFs,
“doubled VAFs” was implemented in which CCFs were estimated
by simply doubling VAFs, dividing by true purity (which was
generally accurately estimated by all CNA calling methods) and
limiting to ≤1 i.e. assuming a purely heterozygous diploid
genome. As a baseline for comparing the clustered CCFs against,
we applied K-means clustering (n= 3) to the doubled VAFs.

The mean absolute differences (MADifs) between true and
predicted CCFs are shown in Fig. 5 for both non-clustered and
clustered CCF estimates with low values indicating better
accuracy. In addition, mean absolute adjusted Rand index is
calculated to indicate the accuracy of the variant clustering in
each pipeline (Supplemental Table 5). When using non-clustered
CCF estimates the best performing pipeline is FACETS with
PyClone, though this only marginally improves upon the baseline
of doubled VAFs and only at sequencing depths ≥100x (Fig. 5a).
When using clustered CCF estimates, the MADif and adjusted
Rand index metrics largely agreed, with the best performing
pipeline being FACETS with PyClone-VI run with beta binomial
used for clustering. The results do show that clustering CCFs
improves estimates, and most pipelines improve upon the
simplistic baseline, created by K-means clustering of doubled
VAFs, at all sequencing depths but, again, only marginally
(Fig. 5b, Supplemental Table 5).

The performance metrics did not vary much between pipelines
using different CCF estimation methods, with the exception of
FastClone which performed worse than any of the others. In
contrast, those using FACETS as CNA caller consistently showed
improved accuracy and those using TITAN performed the worst.
Both non-clustered and clustered CCF estimates increased in
accuracy with increasing sequencing depth, whereas, varying the
frequency of mutations (which increased from S1 to S3 tumours)
did not show a consistent influence (Supplemental Fig. 3).

We next sought to investigate the effects of lower tumour
purities on the top three performing tumours (S1R1, S2R1, S2R3),
using samples at 100, 75, 50 and 25% purity. This showed a
decrease in accuracy with decreasing purity, particularly at 25%
(Supplemental Fig. 2), which likely partially results from the
poorer purity estimates from CNA callers at that purity. To
further assess the robustness of our findings, we ran the pipelines
on additional WES datasets for samples with reduced numbers of
clones and altered clone topologies, as well as the WGS datasets
for the top (S1R1) and worst (S2R2) performing WES samples. In
all investigations, the relative performance of pipelines was largely
preserved, with FACETS with PyClone-VI_beta-binomial
remaining the top performers (Supplemental Figs. 4–6).

Discussion
We have benchmarked the performance of methods used in
subclonal deconvolution from bulk single tumour WES and
matched normal samples. This is an important goal, as subclonal
deconvolution pipelines have not been extensively benchmarked
previously, and the few studies that have attempted it include
approaches that may introduce certain biases2,5. We therefore
aimed to expand upon previous studies by recapitulating both the
complexity of tumour genomes and the noise introduced during

Fig. 2 Test sample generation and benchmarking processes. a Replicate tumour, and matched normal, genomes were simulated using HeteroGenesis
according to the parameter sets outline in Fig. 1. In silico WES data was created with w-Wessim2, with errors incorporated via ReSeq. Reads were
downsampled and merged to create bulk tumour sequencing data with varying purity and mean sequencing depths, before being aligned. b Bulk tumour
and matched normal alignments were used as input for somatic point mutation and copy number callers. Calls from the top performing point mutation
caller, Mutect2, were combined with output from all four copy number callers and input to five subclonal deconvolution methods. Sclust performs both
copy number calling and subclonal deconvolution and is therefore not tested with outputs from other copy number callers. The metrics used to assess the
performance of each algorithm is in italics. CNA copy number alteration, SNV single-nucleotide variation, CCF cancer cell fraction.
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whole-exome sequencing (WES) when simulating data on which
to test subclonal deconvolution pipelines. We did this through the
use of HeteroGenesis8, w-Wessim2, and ReSeq10, which together
allow for realistically complex tumour WES dataset generation.
This enabled us to carry out reliable assessment of all steps from
unprocessed reads through somatic point and copy number
mutation calling and through to CCF inference and clustering.
We did not attempt to assess methods for phylogenetic recon-
struction as often multiple trees are outputted requiring manual

curation, and which are not possible to categorically compare.
Nonetheless, the accuracy of phylogenies will be heavily impacted
by that of the inputted mutation CCF estimates.

Our results indicate that Mutect2 is the best performing
somatic point mutation caller. Ensemble callers, which combine
results from multiple programmes, can be used to generate high
confidence call sets22–24. We showed, by taking the union and
intersect of the two best performing individual callers in our
study, that such methods risk increasing errors or decreasing the

Fig. 3 Performance of variant callers applied to sequencing data from tumour S3R3 with 100% purity at 30x, 60x, 100x and 250x coverage. Each
variant calling method was assessed across target exon regions, both pre- and post-filtering (denoted with _filtered suffix). S2_fil-M2_fil_union is the call
set resulting from the union of results from Strelka2_filtered and Mutect2_filtered, with the intersect of results from those callers denoted by S2_fil-
M2_fil_intersect. a Precisions–recall curves. b Recall according to true variant allele frequency (VAF). c Precision according to called variant allele
frequency. Source data are provided as a Source data file.
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number of true positives compared to using single methods alone.
This could be especially detrimental when poorer performing
callers are included.

We quantified the accuracy with which pipelines estimate both
non-clustered and clustered mutation CCFs. While the choice of
CCF estimation method had an effect on this, our results suggest
the choice of CNA caller is equally important. FACETS was
found to be more sensitive in detecting CNAs than the other
methods, resulting in improved accuracy for CCF estimation.

PyClone is possibly the most widely used subclonal deconvo-
lution method but was designed for targeted sequencing and
suffers from lack of scalability to higher variant numbers. We
found that PyClone-VI was the best performing CCF estimation
tool but that Ccube performed similarly well, in agreement with a
recent study by Dentro et al.5. However, in contrast to the
DREAM study25 where FastClone performed well, it was found to
be least accurate when applied to our range of tumours with
different underlying biological and technical parameters.

Our results indicate that a sequencing depth of 250x is superior
to lower depths for calling subclonal point mutations present in
fewer than 10% of cells, in agreement with our previous work26,
and also enables the most accurate CCF estimates, but this should
be corrected for tumour purity where possible.

An important feature of tumour clones is that they continue to
develop new mutations as the cells divide and grow. This results
in a neutral tail of low VAFs, where the cumulative number of
variants has a linear relationship with the inverse of their allelic
frequency27. The neutral tail is distinct from the major peak of
VAFs present in every cell of a clone and with most CCF clus-
tering methods, it may wrongly be identified as primary peaks
from additional clones. MOBSTER is a programme that applies
evolutionary modelling to non-clustered CCFs in order to identify
and remove neutral tails during subclonal deconvolution, and
allow clusters of true clones to be determined more accurately28.
Neutral tails were not modelled in the datasets created in this
study, hence we did not apply MOBSTER but this may be useful
for real data after generating non-clustered CCFs using one of the
CCF estimation methods tested in this study.

Regardless of the computational tools used, somatic point and
copy number mutation calling, and subsequent subclonal
deconvolution are ultimately limited by current sequencing
technologies and depth29. In future, single-cell analyses may

overcome many of the issues with investigating intratumour
heterogeneity. Currently, these methods are expensive, produce a
substantial amount of noise due to drop-outs and are technically
challenging to apply to archived material30,31. Our benchmarking
of steps involved in subclonal deconvolution is, therefore,
necessary to inform researchers on the most suitable methods to
apply to bulk tumour sequencing data, which is still the most
pragmatic option for most studies. We have made our bench-
marking datasets freely available at https://www.ebi.ac.uk/ena/
browser/view/PRJEB28319 and https://github.com/
GeorgetteTanner/benchmarking to facilitate assessment of addi-
tional methods as they emerge.

Methods
Dataset simulation. HeteroGenesis (v1.5) was used to simulate nine sets of
tumour genomes from three parameter sets, indicated in Fig. 1. Other parameters
common to all tumours included: “snvgermline”:0.0014, “indgermline”:0.00014,
“aneuploid”:4, “wgdprob”:0.333, “cnvrepgermline”:160, “cnvdelgermline”:1000,
“cnvgermlinemean”:-10, “cnvgermlinevariance”:3, “cnvgermlinemultiply”:1000000,
“cnvsomaticmean”:-1, “cnvsomaticvariance”:3, “cnvsomaticmultiply”:1000000,
“indmean”:-2, “indvariance”:2, “indmultiply”:1, “cnvcopiesmean”:1, “cnvco-
piesvariance”:0.5, “dbsnpsnvproportion”:0.9, “dbsnpindelproportion”:0.5, “chro-
mosomes”:[“all”], “structure”:“-
clone1,2,germline,clone2,1,clone1,clone3,3,clone1,clone4,1,clone2,clone5,1,clone2,-
clone6,1,clone4,clone7,1,clone5,clone8,1,clone5”.

The human reference genome hg38 (chromosomes 1–22) formed the basis of
simulations. Germline variants were taken from dbsnp_146.hg38.vcf. A basic local
alignment tool (BLAT) alignment32 (pBlat33) of real WES data (NCBI Sequence
Read Archive, accession no. SRR2103613, cleaned and filtered for a high mapping
score) was provided to w-Wessim2 to define regions for sequencing. Simulated
genome sequences for each germline and subclone in the tumours were in silico
whole-exome sequenced to produce 151 bp paired-end reads using w-Wessim2
(v1.0) and ReSeq (v1.1) to ~134x mean sequencing depth across target exon
regions. Sequencing errors were incorporated through the seqToIllumina module
of ReSeq, using an error profile for NovaSeq 6000 (Hs-Nova-TruSeq.reseq from
https://github.com/schmeing/ReSeq-profiles). WGS reads were created using
Reseq’s illuminaPE command. Resulting fastq files were down-sampled and
merged to create heterogeneous bulk samples at required depths, as indicated in
Fig. 2. Sequencing depths were determined from the mean target coverage
identified by Picard CollectHsMetrics (v2.19.1-SNAPSHOT-all) (http://
broadinstitute.github.io/picard/). Reads were cleaned with cutadapt (using the
parameters: -a AGATCGGAAGAGC -A AGATCGGAAGAGC -m 20 -O 1 -q 20)
and aligned to the with BWA-MEM34.

Point mutation calling. Mutect2 (GATK v4.1.7.0) was run under default para-
meters, with af-only-gnomad.hg38.vcf.gz provided as the germline_resource. Fil-
terMutectCalls was run under default parameters. Strelka2 (v2.9.10) was run under
default parameters with the addition of the “--exome” flag (for WES data only) and

Fig. 4 Accuracy of purity and ploidy estimates from tested somatic copy number alteration (CNA) callers. Dashed lines denote accurate ploidy and
purity estimates, and dotted lines indicate ploidy estimates where the caller misclassed samples as tetraploid instead of diploid, or vice versa, but were
otherwise accurate. Source data are provided as a Source data file.
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the full lengths of chromosomes 1–22, X, Y, M provided to “--callRegions”. Lancet
(v1.1) was run under default parameters. VarScan2 (v2.4.4) was run with the flag
“--dream3-settings 1”, on samples that had been realigned in pairs of tumour-
normals by GATK (v3.8-1-0)35 and converted to mpileup format with samtools
(v1.9). VarScan2’s fpfilter was run using the input from bam-readcount (v0.8.0)
and with the flags “--dream3-settings 1 --keep-failures 1”. All alleles in the bam-
readcounts output were converted to uppercase to avoid an error we encountered
with lower case allele not being recognised by fpfilter. The scikit-learn package was
used to create precision-recall curves (v0.23.1)36. Targeted exon regions are defined
as the Agilent SureSelect All Exon v5+UTR kit covered regions. WGS variant calls
were limited to those outside of blacklist regions, from https://github.com/Boyle-
Lab/Blacklist/raw/master/lists/hg38-blacklist.v2.bed.gz.

CNA calling. Sequenza (v3.0.0, sequenza-utils v3.0.0) was run with the provided
pype pipeline. All default settings were used, including a binning size of 50. TITAN
(v1.23.1, ichorCNA v0.3.2, HMMcopy v1.26.0) was run using the provided sna-
kemake workflow with default parameters, with the following exceptions: para-
meters were set for use with the hg38 human reference genome; a BED file of
regions covered by the S04380219 Agilent SureSelect All Exon v5+UTR probes was
provided to define target regions (ichorCNA_exons); chromosome X was removed
from the analysis; initial normal contamination values were set to
“c(0,0.1,0.2,0.3,0.4,0.5,0.6)”; the maximum number of clusters was set to 8; a sta-
tistical parameter was adjusted to accommodate WES datasets (TitanCNA_alphaK:
2500). FACETS (v0.5.14) was run using the wrap around script, cnv_facets
(v0.15.0) (https://github.com/dariober/cnv_facets). Default parameters were used,

Fig. 5 True CCF (x-axis) versus predicted CCF (y-axis) from subclonal deconvolution pipelines applied to tumours sequenced to different depths. Plots
are separated by predictions based on a non-clustered CCFs, for which ‘Doubled VAFs’ represents the simplistic baseline from which to assess
performance; and b clustered CCFs, for which K-means provides the simplistic baseline. N= 18 samples at each depth. MADif: weighted mean absolute
difference of true vs. predicted CCFs with the depths of colour corresponding to the value. CCF cancer cell fraction, VAF variant allele frequency. Source
data are provided as a Source data file.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-26698-7 ARTICLE

NATURE COMMUNICATIONS |         (2021) 12:6396 | https://doi.org/10.1038/s41467-021-26698-7 | www.nature.com/naturecommunications 7

https://github.com/Boyle-Lab/Blacklist/raw/master/lists/hg38-blacklist.v2.bed.gz
https://github.com/Boyle-Lab/Blacklist/raw/master/lists/hg38-blacklist.v2.bed.gz
https://github.com/dariober/cnv_facets
www.nature.com/naturecommunications
www.nature.com/naturecommunications


with the exception of automatically detecting an appropriate insert size with
“--nbhd-snp auto”. A bed file specifying target exon regions was provided. CNA
cellular fraction taken from the CF_EM field. Sclust (v1.1) was run as described in
Cun et al.15, with “-indel” added to the cluster module to include indels. Para-
meters for CNA callers were adjusted where appropriate for use with WGS data-
sets, including adding “--cval 25 400” for FACETS. Sclust required the addition of
“-lambda 0.0000002” to complete on WGS_S1R1_100x. Heatmaps were generated
using a customised version of CNVkit in which three script files were altered
(altered files are present in the GitHub repository associated with this paper) to
enable bespoke figure formatting37.

CCF estimation. Purity estimates for all subclonal deconvolution methods were
taken from the same CNA caller used to provide copy number inputs. PyClone
(v0.13.1) was run with the addition of ‘--init_method connected --num_iters
100000’ as recommended when more than a few hundred variants are present.
PyClone-VI (v0.1.0) was run with a maximum of 10 clusters and 100 random
restarts, with both binomial and beta-binomial probability densities separately.
When PyClone, PyClone-VI or FastClone were used with outputs from FACETS
and TITAN, only CNAs estimated to be in ≥50% cells were incorporated into the
inputs. Ccube (v1.0) was run with the command, ‘RunCcubePipeline(ssm= data,
numOfClusterPool= 1:10, numOfRepeat= 1, runAnalysis= T, runQC= T, mul-
tiCore= F)’ as indicated in https://github.com/keyuan/ccube/blob/master/inst/
test_subclonal_cn_snv.R, and providing either clonal copy number estimates from
Sequenza or clonal and subclonal estimates from TITAN/FACETS. Sclust details
are described above with CNA callers.

K-means clustering was performed with scikit-learn (v0.23.1)36. MADif metrics
for comparing true vs. predicted CCFs were calculated with each sample weighted
equally so that those with the highest variant numbers did not dominate the results:

MADif ¼ 1
n
∑
n

i¼1

∑
m

j¼1
jTSij

�ESij
j

m

where n is the number of samples (S) in a group, m is the number of called true
variants, and T and E are the true and estimated CCF values for a variant.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The simulated sequencing data generated in this study have been deposited in the
European Nucleotide Archive database under accession code PRJEB28319. The simulated
sample and clone mutation profiles and HeteroGenesis inputs generated in this study
have been deposited on GitHub [https://github.com/GeorgetteTanner/
benchmarking]. Source data are provided with this paper.

Code availability
The code used to generate the datasets in this study is publicly available at https://
github.com/GeorgetteTanner/HeteroGenesis38 and https://github.com/GeorgetteTanner/
w-Wessim2 39.

Received: 6 May 2021; Accepted: 20 October 2021;

References
1. Abécassis, J. et al. Assessing reliability of intra-tumor heterogeneity estimates

from single sample whole exome sequencing data. PLoS ONE 14, e0224143
(2019).

2. Salcedo, A. et al. A community effort to create standards for evaluating tumor
subclonal reconstruction. Nat. Biotechnol. 38, 97–107 (2020).

3. Liu, L. Y. et al. Quantifying the influence of mutation detection on tumour
subclonal reconstruction. Nat. Commun. 11, 1–15 (2020).

4. Ewing, A. D. et al. Combining tumor genome simulation with crowdsourcing
to benchmark somatic single-nucleotide-variant detection. Nat. Methods 12,
623–630 (2015).

5. Dentro, S. C. et al. Characterizing genetic intra-tumor heterogeneity across
2,658 human cancer genomes. Cell 184, 1–16 (2021).

6. Miura, S. et al. Predicting clone genotypes from tumor bulk sequencing of
multiple samples. Bioinformatics 34, 4017–4026 (2018).

7. Gillis, S. & Roth, A. PyClone-VI: scalable inference of clonal population
structures using whole genome data. BMC Bioinforma. 21, 571 (2020).

8. Tanner, G., Westhead, D. R., Droop, A. & Stead, L. F. Simulation of
heterogeneous tumour genomes with HeteroGenesis and in silico whole
exome sequencing. Bioinformatics 35, 2850–2852 (2019).

9. Kim, S., Jeong, K. & Bafna, V. Wessim: a whole-exome sequencing simulator
based on in silico exome capture. Bioinformatics 29, 1076–1077 (2013).

10. Schmeing, S. & Robinson, M. D. ReSeq simulates realistic Illumina high-
throughput sequencing data. Genome Biol. 22, 67 (2021).

11. Benjamin, D. et al. Calling somatic SNVs and indels with Mutect2. Preprint at
bioRxiv https://doi.org/10.1101/861054 (2019).

12. Kim, S. et al. Strelka2: fast and accurate calling of germline and somatic
variants. Nat. Methods 15, 591–594 (2018).

13. Koboldt, D. C. et al. VarScan 2: somatic mutation and copy number alteration
discovery in cancer by exome sequencing. Genome Res. 22, 568–576 (2012).

14. Narzisi, G. et al. Genome-wide somatic variant calling using localized colored
de Bruijn graphs. Commun. Biol. 1, 1–9 (2018).

15. Cun, Y., Yang, T. P., Achter, V., Lang, U. & Peifer, M. Copy-number analysis
and inference of subclonal populations in cancer genomes using Sclust. Nat.
Protoc. 13, 1488–1501 (2018).

16. Shen, R. & Seshan, V. E. FACETS: allele-specific copy number and clonal
heterogeneity analysis tool for high-throughput DNA sequencing. Nucleic
Acids Res. 44, e131–e131 (2016).

17. Favero, F. et al. Sequenza: allele-specific copy number and mutation profiles
from tumor sequencing data. Ann. Oncol. J. Eur. Soc. Med. Oncol. 26, 64–70
(2015).

18. Ha, G. et al. TITAN: inference of copy number architectures in clonal cell
populations from tumor whole-genome sequence data. Genome Res. 24,
1881–1893 (2014).

19. Roth, A. et al. PyClone: statistical inference of clonal population structure in
cancer. Nat. Methods 11, 396–398 (2014).

20. Xiao, Y. et al. FastClone is a probabilistic tool for deconvoluting tumor
heterogeneity in bulk-sequencing samples. Nat. Commun. 11, 1–11 (2020).

21. Yuan, K., Macintyre, G., Liu, W. & Markowetz, F. Ccube: a fast and robust
method for estimating cancer cell fractions. Preprint at bioRxiv https://
doi.org/10.1101/484402 (2018).

22. ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium. Pan-
cancer analysis of whole genomes. Nature 578, 82–93 (2020).

23. Anzar, I., Sverchkova, A., Stratford, R. & Clancy, T. NeoMutate: an ensemble
machine learning framework for the prediction of somatic mutations in
cancer. BMC Med. Genomics 12, 63 (2019).

24. Wang, M. et al. SomaticCombiner: improving the performance of somatic
variant calling based on evaluation tests and a consensus approach. Sci. Rep.
10, 12898 (2020).

25. Lee, A. Y. et al. Combining accurate tumor genome simulation with
crowdsourcing to benchmark somatic structural variant detection. Genome
Biol. 19, 188 (2018).

26. Stead, L. F., Sutton, K. M., Taylor, G. R., Quirke, P. & Rabbitts, P. Accurately
identifying low-allelic fraction variants in single samples with next-generation
sequencing: applications in tumor subclone resolution. Hum. Mutat. 34,
1432–1438 (2013).

27. Williams, M. J., Werner, B., Barnes, C. P., Graham, T. A. & Sottoriva, A.
Identification of neutral tumor evolution across cancer types. Nat. Genet. 48,
238–244 (2016).

28. Caravagna, G. et al. Subclonal reconstruction of tumors by using machine
learning and population genetics. Nat. Genet. 52, 898–907 (2020).

29. Shi, W. et al. Reliability of whole-exome sequencing for assessing intratumor
genetic heterogeneity. Cell Rep. 25, 1446–1457 (2018).

30. Gawad, C., Koh, W. & Quake, S. R. Single-cell genome sequencing: current
state of the science. Nat. Rev. Genet. 17, 175–188 (2016).

31. Martelotto, L. G. et al. Whole-genome single-cell copy number profiling from
formalin-fixed paraffin-embedded samples. Nat. Med. 23, 376–385 (2017).

32. Kent, W. J. BLAT—the BLAST-like alignment tool. Genome Res. 12, 656–664
(2002).

33. Wang, M. & Kong, L. pblat: a multithread blat algorithm speeding up aligning
sequences to genomes. BMC Bioinforma. 20, 28 (2019).

34. Li, H. Aligning sequence reads, clone sequences and assembly contigs with
BWA-MEM. Preprint at https://arxiv.org/abs/1303.3997 (2013).

35. Van der Auwera, G. A. et al. From fastQ data to high-confidence variant calls:
the genome analysis toolkit best practices pipeline. Curr. Protoc. Bioinforma.
11, 11.10.1 (2013).

36. Pedregosa, F. et al. Scikit-learn: machine learning in python. J. Mach. Learn.
Res. 12, 2825–2830 (2011).

37. Talevich, E. et al. CNVkit: genome-wide copy number detection and
visualization from targeted DNA sequencing. PLOS Comput. Biol. 12,
e1004873 (2016).

Acknowledgements
We would like to acknowledge S. Schmeing, the author of ReSeq, for his support in using
that software. This work was undertaken on ARC3, part of the High Performance Com-
puting facilities at the University of Leeds, UK. This work was made possible owing to
funding from UK Research and Innovation (UKRI) grant number MR/T020504/1 (L.F.S.).

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-26698-7

8 NATURE COMMUNICATIONS |         (2021) 12:6396 | https://doi.org/10.1038/s41467-021-26698-7 | www.nature.com/naturecommunications

https://github.com/keyuan/ccube/blob/master/inst/test_subclonal_cn_snv.R
https://github.com/keyuan/ccube/blob/master/inst/test_subclonal_cn_snv.R
https://www.ebi.ac.uk/ena/browser/view/PRJEB28319
https://github.com/GeorgetteTanner/benchmarking
https://github.com/GeorgetteTanner/benchmarking
https://github.com/GeorgetteTanner/HeteroGenesis
https://github.com/GeorgetteTanner/HeteroGenesis
https://github.com/GeorgetteTanner/w-Wessim2
https://github.com/GeorgetteTanner/w-Wessim2
https://doi.org/10.1101/861054
https://doi.org/10.1101/484402
https://doi.org/10.1101/484402
https://arxiv.org/abs/1303.3997
www.nature.com/naturecommunications


Author contributions
G.T. aided in design of the work, created the software used and acquired, analysed and
interpreted the data and drafted the manuscript. D.R.W. aided in the design of the work
and reviewed the manuscript. A.D. aided in the design of the work and the analysis of
data and reviewed the manuscript. L.F.S. conceived the work, aided in the design,
supervised the data analysis and substantially revised the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s41467-021-26698-7.

Correspondence and requests for materials should be addressed to Lucy F. Stead.

Peer review information Nature Communications thanks the anonymous reviewer(s) for
their contribution to the peer review of this work.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adaptation,

distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons
license, and indicate if changes were made. The images or other third party material in
this article are included in the article’s Creative Commons license, unless indicated
otherwise in a credit line to the material. If material is not included in the article’s Creative
Commons license and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright
holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2021

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-26698-7 ARTICLE

NATURE COMMUNICATIONS |         (2021) 12:6396 | https://doi.org/10.1038/s41467-021-26698-7 | www.nature.com/naturecommunications 9

https://doi.org/10.1038/s41467-021-26698-7
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications
www.nature.com/naturecommunications

	Benchmarking pipelines for subclonal deconvolution of bulk tumour sequencing data
	Results
	Somatic point mutation calling suggests Mutect2 is best for subclonal variants
	Subclonal somatic copy number calls are most accurately quantified by FACETS
	CCF estimation is most accurate at higher sequencing depth and following clustering

	Discussion
	Methods
	Dataset simulation
	Point mutation calling
	CNA calling
	CCF estimation

	Reporting summary
	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




