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Abstract

The system states of battery energy storage systems (BESSs) such as state of

charge (SOC) and state of health (SOH) are essential for the functions of the

system, such as frequency support services and energy trading. However, the

complexity of a large-scale battery system makes the estimations more difficult

than at the cell-level. This is further compounded by real-world limitations on

system monitoring data granularity, accuracy and quality. In this paper it is

shown how cell-level state estimation techniques can be utilised on large-scale

BESSs using experimental data from a 2MW, 1MWh BESS. The results show

how a Dual Sigma point Kalman Filter (DSPKF) SOC estimation provides

more accurate results compared to the commercial BESS battery management

system SOC. It is shown how the DSPKF parameters can be tuned by a genetic

algorithm to simplify selection and generalise the approach for different BESSs.

Furthermore, it shows how this method of SOC estimation can be combined

with a total least-squares (TLS) method for capacity estimation to less than 1%

error. Online system state estimation is demonstrated using both designed tests

and real-world operational profiles where the BESS has provided contracted

frequency response services to the national electricity grid in the UK.
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Total least squares

Nomenclature

ABS Absolute value

ANN Artificial neural networks

BESS Battery energy storage system

BMS Battery management system

DEKF Dual extended Kalman filter

DSPKF Dual Sigma point Kalman filter

GA Genetic algorithm

KF Kalman filter

LTO Lithium titanate

OCV Open-circuit-voltage

RMSE Root mean square error

SOC State of charge

SOH State of health

SPKF Sigma point Kalman filter

TLS Total least squares

WESS Willenhall Energy Storage System
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1. Introduction

Global warming and pollution caused by burning fossil fuels is widely recog-

nised as an imminent threat to the planet[1]. Renewable energy sources like

wind and solar power can help to mitigate these problems, but their unpre-

dictability and variability of generation capacity can cause instabilities in volt-

age and frequency of electricity networks[2]. The amount of power generated

from these renewable sources depends on natural conditions, where generation

exceeds demand, reliable methods are needed to store this excess energy. Con-

versely, where demand exceeds supply, energy storage may be used to provide

support and stability to the grid whilst additional generation capacity becomes

available.

Large-scale battery energy storage systems (BESSs) have recently emerged

as a solution to provide a variety of grid support services [3], thereby helping to

mitigate the instability problems from renewable energy resources noted above.

A range of UK national grid frequency response services such as firm frequency

response and fast reserve can be achieved by BESSs [4], they can also be used to

achieve price arbitrage and balancing services. The recent advances in battery

chemistry technologies have improved the performance of BESS in terms of

higher volumetric energy capacities, better round-trip efficiencies, and longer

lifetime. To make effective use of these advances, to successfully provide grid

support and maximise the return on investment for battery owners, advanced

battery management systems (BMS) need to be developed.

State of charge (SOC) and state of health (SOH) are the two essential in-

dicators that need to be estimated by the BMS. Capacity, that represents the

maximum electrical charge that a battery can store presently, is directly related

to these two indicators. SOH is the quotient of the actual capacity and the

nominal capacity, whereas, SOC is the percentage of charge held by the battery

presently with respect to the actual capacity. The capacity of a battery reduces

over time and its rate of degradation is predominantly dependant upon the type

of usage. The accuracies of SOC [5] and SOH [6] estimations at the cell-level
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have improved significantly over recent years from numerous researchers. How-

ever, for large-scale battery systems, the accurate estimation of SOC and SOH

is a relatively new topic.

The accurate estimation of a BESS’s capacity and SOC are critical for its

operation. Batteries have limited lifespans; when the criterion of the end of

life, often around 70% or 80% of nominal capacity, is reached, the battery will

no longer serve the need of the application. Moreover, as the efficiency of the

battery decreases, there is a higher risk of permanent failure of cells within

the battery system. As providing services reduces the SOH, the service must

be financially beneficial when taking into consideration the loss of capacity in-

curred. Accurate SOH prediction allows for an estimation of the cost in terms

of battery degradation of a service to be compared against the profit earned by

performing the service. In this way, it is possible to optimise the control and

availability of the services provided, to generate maximum profit whilst causing

minimum degradation of the BESS. It is also important to be able to predict the

capability of the system to store energy going forward, thus being able to avoid

services that require more energy than the BESS can provide. The necessities

for accurate SOC estimation are more straightforward: the owner of a BESS

needs to know how much energy is currently stored to provide grid services and

actively manage the SOC to remain within the service requirements.

There are already a wide variety of methods to estimate battery capacity

and SOC, but most of them focus at the cell-level (section 2). Plett. et al. [7]

proposed a Bar-Delta filtering method for estimating the battery pack states,

not only estimating the pack-average states but also the differences between the

cell and pack-average states. In [8], an online estimation technology based on KF

methods for SOC of all cells in the pack was proposed. Authors in [9] achieved

accurate SOC estimation of a battery pack using an adaptive extended Kalman

filter. Although the above methods could work well for battery packs, they

would be much slower to be implemented for large-scale battery systems due to

the significantly higher number of cells. Recently, a digital twin method [10] for

online SOC and SOH estimation was proposed. A series of studies on a sample of
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Spanish photovoltaic household-prosumers [11] showed factors that could affect

a battery system’s lifetime [12] and predicted a battery bank’s lifetime based on

fixed battery degradation parameters, under fluctuating loads [13]. To conclude,

battery systems that previous studies use to demonstrate their methodologies

contain a very small number of cells relative to large-scale grid connected BESS.

A large-scale BESS system will be made up of storage units that can contain

in excess of 20k-100k cells each and with it come challenges in measurement,

data granularity, accuracy and data quality. The state estimation of an entire

large-scale BESS for increased accuracy, beyond commonly used methods, has

not been presented in the literature.

This paper first demonstrates the implementation of a Dual Sigma point

Kalman (DSPKF) on a BESS for SOC estimation, and exploits a genetic algo-

rithm (GA) to solve the parameter selection problem. For online system capacity

estimation, a total least-squares (TLS) solution is experimentally demonstrated

for a large-scale BESS that will highlight the need for data selection and cleans-

ing. The TLS solution requires an SOC estimation input, to demonstrate the

accuracy of the DSPKF alogirthm this is used and compared against the BMS

provided SOC. Finally, a method to improve SOC estimation and capacity ac-

curacy as the BESS degrades is proposed. System-level OCV-SOC and degra-

dation experimental results are also presented to validate the system-level state

estimation results. Fig. 1 provides an overview of how the various methods

interact, with the numbers in each box indicating the relevant sections in this

paper. All data from the BESS is obtained at the highest level in the system as

compared to interfacing at lower levels that would produce faster sampled and

consistent data. This is representative of asset owner access to data in a real-

world system and demonstrates the potential for the methodologies presented

in this paper to process data both locally and remotely, for example in cloud

based systems.

2. Methods for SOC and SOH Estimation

Commonly cited methods for SOC and SOH are listed below:
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Fig. 1: Battery system state estimation flowchart

i Coulomb counting;

ii Kalman filter algorithms;

iii Machine learning algorithms;

Coulomb counting is the most often used method in industry and commer-

cial applications to estimate SOC. The equation of calculating SOC is shown

in Eq. (1)[14]. The change in SOC is calculated by accumulating the charge

transferred in or out of the battery, therefore, the initial SOC must be available

to estimate SOC in this method.

SOC(t0 + τ) = SOC(t0) +
1

CratedSOH

∫ t0+τ

t0

−Idt (1)

where SOC(t0) is the initial SOC, Crated the rated(nominal) capacity, τ the

time duration of charge or discharge, and I is the input or output current. Note

that in this paper, discharge current is defined as positive, which is in line with

convention.

Coulomb counting may be suitable for capacity estimation only when a full

discharge is available (or almost full discharge, to be proposed later) and when

accurate current sensors are available. This method cannot be utilised when

a BESS is in operation for grid services and therefore requires the BESS to
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go offline to carry out a full discharge. Similar to Eq. (1) , the calculation of

capacity is shown in Eq. (2) by integrating the discharge current.

C =

∫ tend

tstart

IDdt (2)

where tstart is the start time of the discharge process and tend is the end time.

ID is the discharge current.

The advantage of Coulomb counting is the simplicity and that it is a di-

rect method, with the SOC and capacity can be estimated requiring only the

measurement of the current [15]. However, it can be very inaccurate. There are

losses during charging and discharging, and these, in addition to self-discharging,

result in errors. The measurement of current is another problem since the cur-

rent sensors can be affected by offset errors or noisy measurements, and these

combined errors accumulate into increasingly large errors as time passes. The

estimated SOC will diverge from the actual SOC, although a reset mechanism

using the open-circuit voltage and SOC relationship (OCV-SOC relationship),

discussed in more detail in section 3 can mitigate this but only under ideal

conditions not necessarily witnessed by an online operational BESS.

Kalman filter (KF) methods can provide very accurate indirect estimations of

SOC. They compute a weighted average of the measured value and the predicted

value by utilising a set of recursive equations to minimise the noise values [16].

The weighted average (Kalman gain) is calculated by placing heavier weights

on more likely values according to the error covariances. Estimates of both the

state and the error covariance matrices to be minimised are the heart of the

solution in KF methods. Prediction and correction are the two main steps in

KF: in the prediction step, the state of the system is estimated using the previous

measurement, while in the correction step, the estimated state is updated with

the measurement.

Battery systems are nonlinear so a standard (non-extended) Kalman filter

cannot be used. The Extended Kalman filter (EKF) was first proposed [16], but

the Sigma-point Kalman filter (SPKF) [17] is more advanced than EKF, and

is seen as the state-of-art of KF algorithms. SPKF computes the covariance
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matrix by using the results of a number of function evaluations, which decrease

the error of linearisation significantly. Moreover, it can achieve higher accuracy

with similar computational complexity to EKF. There are various sigma-point

methods, and among them the Central Difference Kalman Filter (CDKF) is

chosen in this work because it is simpler to be implemented and has higher

theoretical accuracy [18].

Dual Sigma point Kalman filter (DSPKF) [19] and dual extended Kalman

filter (DEKF) [20] can realise the estimation of both state and parameter values

with two separate filters. The two filters in these methods are called state filter

and weight filter respectively, and the weight filter is designed for equivalent

circuit parameter estimation since the parameters only vary slowly with time

for a battery. Therefore, DSPKF is more accurate than a single SPKF that has

fixed parameters. The two filters run in parallel, they adapt the parameters and

the state respectively with some information exchange.

There is a range of studies that use KF methods to estimate SOC and ca-

pacity. In [16], a KF was first proposed for battery applications, the inputs

include the current, voltage and temperature experienced by the cell, and the

output is the SOC. The SOC is first predicted using a battery model then, the

open-circuit voltage can be formulated according to the OCV-SOC relation-

ship. Thereafter, the OCV is used to calculate the terminal voltage, which is

compared with the measured voltage to correct the prediction. Zou et al.[21]

proposed a novel combined SOC and SOH estimator, and in this work, SOC

was estimated in real-time using a second-order EKF (two state variables), and

SOH was updated offline using a fourth-order EKF. Authors in [22] proposed a

multi-scale DEKF algorithm for lithium-ion batteries to significantly reduce the

computational burden, based on that the parameters estimated in the weight

filter do not change fast.

KF methods are not complex and can be implemented with a systematic

approach offering high accuracy and robustness against poor initialisation. The

disadvantages are that they are sensitive to modelling accuracy; the battery op-

eration environment should be in the zero-mean noise condition (Gaussian)[23].
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Data-driven methodology has drawn significant attention recently, thanks to

the rapid development of machine learning. A complicated but accurate model

of a system can be trained first, using sufficient data, after which the model is

used to predict the required values, such as SOC and SOH in battery systems.

These methods can be even more accurate than the Kalman filtering, includ-

ing artificial neural network (ANN), support vector machine (SVM) etc. [24],

but they require a significant amount of data and demand higher computation.

They are frequently applied for the prediction of SOH and remaining useful life

(RUL)[25].

Among various SOH only algorithms [26], total least-square based methods

can be relatively simply implemented, without the sacrifice of accuracy, if the

data quality is guaranteed. In [27], the relationship between current integra-

tion and SOC variation was used as the foundation of total least-square based

methods for capacity estimation. These algorithms, which include weighted to-

tal least squares (WTLS), total least squares (TLS) and approximate weighted

total least squares (AWTLS), attempt to find an estimated capacity that min-

imises the sum of squared errors, which is done recursively. TLS is used in

this work for system-level capacity estimation and the details of applying this

method are in section 4.

3. DSPKF implementation on large battery system

3.1. The model and equations

In this chapter cell-level DSPKF techniques are going to be demonstrated

on a large scale BESS called the Willenhall Energy Storage System (WESS).

WESS is the largest research based grid-connected lithium titanate energy stor-

age facility (11 kV) in the UK [4], which was launched in 2016. Lithium titanate

(LTO) batteries are safer, offer high charge/discharge rates, low-temperature op-

eration and significantly longer lifespans [28] by comparison with conventional

lithium-ion batteries. The disadvantages of these cells are their higher cost and

that they operate at a lower voltage, however this can be overcome in BESSs

by connecting more cells in series.
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Fig. 2: System diagram of WESS.

The system consists of 21,120 Toshiba LTO cells and the highest power and

energy throughput are 2 MW and 1 MWh respectively. The nominal capacity

of a single cell is 20 Ah and for the system is 1600 Ah. The system consists of 40

racks in parallel, 22 modules in series in every rack, and 24 cells in each module

in a 2P12S configuration. The modules in each rack communicate over CAN bus

to a rack management unit (RMU) that collects the voltages of all the parallel

connected cells (12 voltage measurements). The RMU also measures the total

current in/out of each rack, which is then communicated back over CAN bus

along with voltage information (cell Min/Max and rack voltage) to a system

BMS. The system BMS measures the overall dc-link voltage and current that

is connected to the inverter. The BMS reports over Modbus TCP/IP various

system parameters, those important for this paper are, dc-link voltage, current

and SOC. An air-conditioning system maintains the temperature of the cells to

a narrow range of between 22-30 ➦C under normal operation and therefore the

effects of extended temperatures are not considered in this paper. A diagram

of the system is shown in Fig. 2.

The BMS reported SOC of WESS is an estimate using a Coulomb-counting

method and uses the OCV-SOC relationship for correction when the battery is

at a predefined condition during voltage relaxation. As previously discussed,

the SOC therefore suffers from error accumulation over periods of sustained

charge/discharge. The DSPKF method, introduced earlier, has achieved high

accuracy for SOC estimation at the cell-level in the literature. In this section it

is shown how this method can be applied to a large-scale BESS such as WESS.

Table 1 shows the equations for a multi-scale DSPKF implementation [19,
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22]. They describe the whole procedure of initialisation, time update (predic-

tion) and measurement update (correction) for both state and weight filters. k

is the sample rate of the system data, and m is the macro scale, which is a quan-

tity of samples. The parameters in the first order equivalent circuit model and

the battery capacity are slowly time-varying so using a macro scale to estimate

them is deemed efficient [29]. The SOC is estimated every sample while the

parameters including capacity are estimated each time there are m new data

samples.

In Table 1, forms of X are for the states estimation (SOC), forms of θ battery

equivalent circuit parameters, forms of L the Kalman gains, forms of P the error

covariance and noise covariance matrices, and E represents the expectation. uk

and yk are the measured current and voltage respectively. wk and υk are the

process and observation noises. For the calculations of α
(m)
i , α

(c)
i and lower

triangular matrix see [19]. The state vector is augmented to include the noise

effects so that the new vector length is p. f(•) and h(•) are the non-linear state

transition and observation models’ functions, respectively. They are derived

from the first-order equivalent circuit model [30] of a battery cell for the battery

system, as shown in Fig. 3.
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Table 1: Multi-scale DSPKF implementation

Definitions:

xa
k = [xk

T , ωk
T , vk

T ]
T
, Xa

k = [(Xx
k )

T
, (Xω

k )
T
, (Xυ

k )
T
]
T

p = 2× dim(xa
k)

Initialisation: for k=0, set

θ̂+0 = E[θ0], P+

θ̃,0
= E[(θ0 − θ̂+0 )(θ0 − θ̂+0 )

T
]

x̂+
0 = E[x0], x̂

a,+
0 = E[xa

0 ] = [(x̂+
0 )

T
, ω̄, ῡ]

T

P+
x,0 = E[(x− x̂+

0 )(x− x̂+
0 )

T
]

P a+
x,0 = E[(xa

0 − x̂
a,+
0 )(xa

0 − x̂
a,+
0 )

T
] = diag(P+

x,0, Pω, Pυ)

State filter equations, for k=1,2,... compute:

Time-update equations for state filter

X
a,+
k−1 = {x̂a,+

k−1, x̂
a,+
k−1 +

√

P
a,+
x̃,k−1, x̂

a,+
k−1 −

√

P
a,+
x̃,k−1}

X
x,−
k,i = f(Xx,+

k−1,i, uk−1, X
ω,+
k−1,i, θ̂

−

k
, k − 1) x̂−

k =

p
∑

i=0

α
(m)
i X

x,−
k,i

P−

x̃,k =

p
∑

i=0

α
(c)
i (Xx,−

k,i − x̂−

k )(X
x,−
k,i − x̂−

k )
T

Output estimate, state filter

Yk,i = h(Xx,−
k,i , uk, X

υ,+
k−1,i, θ̂

−

k , k) ŷk =

p
∑

i=0

α
(m)
i Yk,i

State filter gain matrix

Pỹ,k =

p
∑

i=0

α
(c)
i (Yk,i − ŷk)(Yk,i − ŷk)

T

P−

x̃ỹ,k =

p
∑

i=0

α
(c)
i (Xx,−

k,i − x̂k)(Yk,i − ŷk)
T

Lx
k = P−

x̃ỹ,kP
−1
ỹ,k
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Measurement-update equations for state filter

x̂+
k = x̂−

k + Lx
k(yk − ŷk) P+

x̃,k = P−

x̃,k − Lx
kPỹ,k(L

x
k)

T

Weight filter equations,for k mod m = 0 compute:

Time-update equations for weight filter

θ̂−k = θ̂+k−1 P−

θ̃,k
= P+

θ̃,k−1
+ Pr

Output estimate, weight filter

Wk = {θ̂−k , θ̂
−

k +
√

P−

θ̃,k
, θ̂−k −

√

P−

θ̃,k
}

Dk,i = h(f(x̂+
k−1, uk−1, ω̄k−1,Wk,i, k − 1), uk, ῡk,Wk,i, k)

d̂k =

p
∑

i=0

α
(m)
i Dk,i

Parameter filter gain matrix

Pd̃,k =

p
∑

i=0

α
(c)
i (Dk,i − d̂k)(Dk,i − d̂k)

T

P−

θ̃d̃,k
=

p
∑

i=0

α
(c)
i (Wk,i − θ̂k)(Dk,i − d̂k)

T

Lθ
k = P−

θ̃d̃,k
P−1

d̃,k

Measurement-update equations for weight filter

θ̂+k = θ̂−k + Lθ
k(yk − d̂k) P+

θ̃,k
= P−

θ̃,k
− Lθ

kPd̃,k(L
θ
k)

T

There could be n RC branches, and the model accuracy is higher with more

branches, but it increases calculation burdens. Both models with 1-RC pair and

2-RC pairs have been tried but the SOC results were very similar, because of

the dominant diffusional impedance effects in LTO cells [31]. Thus, the model

with only one RC branch is chosen for LTO batteries in the paper, which is
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Fig. 3: Equivalent first-order circuit model of WESS.

considered as having sufficient accuracy at low computational complexity.

f(•) =





x1

x2



 =





SOCK+1

VRCk+1



 =





1 0

0 e
−∆t

τ1









SOCK

VRCk



+





− η∆t
Qactual

0

0 R1(1− e
−∆t

τ1 )



 Ik

(3)

θk = [Rs, R1, τ1]
T

(4)

h(•) = Vk = VOC(SOCk)− VRC1K−IkRs (5)

Eq. (3) to Eq. (5) [30] are used for the DSPKF implementation based on

the chosen model. η is the battery Coulombic efficiency and ∆t is the sample

period of data. In the RC branch, the changes in C1 are suitable indicators

of the changes in SOH [32], R1 the self-discharge resistance, and τ1 = C1R1 is

the time constant of the RC branch. The last equivalent circuit parameter Rs

represents the resistance of the battery’s terminals and inter-cell connections.

Qactual is the actual capacity in Coulombs and VOC (SOC) is the OCV-SOC

relationship which is obtained by experiments: the results shown in this work use

the scaled OCV-SOC experimentally measured of a single LTO cell, although

the system-level OCV-SOC relationship was also experimentally captured as
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Fig. 4: OCV-SOC relationships: scaled from cell-level vs system-level.

Table 2: GA settings

Parameter Value

Number of generations 10
No. individuals in a population 200

Selection operator NSGAII
Independent probability for each attibute to be mutated 0.05

Crossover probability 0.5
Mutating probability 0.1
Fitness function 1 ABS( BMS SOC - DSPKF estimated SOC)
Fitness function 2 ABS( scaled Rs - DSPKF estimated Rs)

shown in Fig. 4. The state vector (to be estimated) contains the SOC and

VRC1. The value of ∆t depends on the sample rate of the system which for

WESS is nominally 1Hz but in reality this varies.

The input parameters of the DSPKF algorithm are sampled current and

voltage data, the OCV-SOC relationship, battery Coulombic efficiency, mea-

sured capacity of the battery system, initial state and estimated equivalent

circuit parameter values. The outputs of the algorithm are the system SOC and

updated estimates of the equivalent circuit parameters. The initial equivalent

parameter values are selected as scaled values from cell-level electrochemical

impedance spectroscopy experimental results. The topology of the cells con-

nected to form the battery is known, it is therefore possible to calculate scaled

values from a simple circuit model.
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The error covariance matrices for process noise and sensor noise are an

important selection for successful implementation of a DSPKF [16]. Genetic

Algorithms (GA) are excellent for solving searching and optimisation problems

[33] and are viewed as a “universal optimizer”. The simplicity and ease of

implementation allow, with careful selection of parameters, a good balance of

exploration and exploitation of the search space. Whilst other heuristic tech-

niques could be applied to this problem, finding the most efficient heuristic is

out of scope of this paper as the optimisation is only ran once. Thus, in this

work the DSPKF parameters are automatically tuned by a GA using the Dis-

tributed Evolutionary Algorithm in Python (DEAP) library. The GA settings

are shown in Table 2. Note that the values in the table are not unique and

were discovered through trial and error using the experience of the authors and

tracking progress through generations. To make sure a significant proportion of

the search space is explored, the population should be large whilst consideration

is taken for the computation time. The number of generations and the possi-

bilities do not affect the efficiency of GA significantly for this application. The

parameters include elements of process noise matrices in both state and weight

filters, sensor noise, elements in error covariance matrices of both filters. The

GA is multi-objective with two fitness functions defined and the non-dominated

sorting genetic algorithm (NSGA-II)[34] is applied to select the Pareto front as

candidates of the optimums. The first fitness function is designed to minimise

the mean average error (MAE) between the DPKF SOC estimation and BMS

SOC data known to be of acceptable accuracy (cycles that are known by expe-

rience of using the BESS not to cause large SOC discrepancies). The second

fitness function is defined to minimise the error of the DPKF estimated Rs

equivalent circuit parameter against the calculated value. The authors investi-

gated additional fitness functions to include other equivalent circuit parameters

but found no significant improvements beyond optimising for Rs.

Applying f(•) and h(•) and equations in Table 1 recursively, with the

system parameters and KF parameters stated above, DSPKF can converge to

provide an estimated battery SOC.
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3.2. Results of DSPKF SOC estimation for WESS

Fig. 5 shows the SOC estimation results of constant cycling, a mixed profile

and grid frequency response service. The DSPKF and BMS results are a good

match with the RMSE calculated to be smaller than 1.5%. In (a) and (b), the

DSPKF and BMS estimated SOC are very close because the two datasets are

with almost constant current. In (c) the differences are larger and this is due

to the BESS delivering Dynamic Frequency Response (fluctuating load), with

various and fast-changing current values, so the BMS fails to provide accurate

estimations (demonstrated in section 6). The SOH of the system will affect the

SOC estimation accuracy significantly (Eq. (1)). For the shown SOC results, η

is assumed to be 100% [35], and the SOH is set to 100% since WESS’s SOH is

currently still very high and the degradation too small to measure (detailed in

section 4 ).

4. Capacity estimation on large system

4.1. Total least-squares algorithm

Battery capacity can be estimated by total least-square based methods [27]

by using the relationship between the variation of SOC and current integration,

as shown below:

∫ t2

t1

−ηI(τ)

3600
dτ = Q(SOC(t2)− SOC(t1)) (6)

where η is again the Coulombic efficiency and assumed to be 100%, I the charge

or discharge current and Q is the capacity value that needs to be calculated.

This equation is based on Eq. (2), the only difference is that it refers to the

condition when a full discharge is not available.

For the simplicity of calculation:

y =

∫ t2

t1

−ηI(τ)

3600
dτ and x = SOC(t2)− SOC(t1) (7)

The total least squares (TLS) method is used in this work, which assumes errors

in both y and x data, but the error variances are proportional. Therefore,

σ2
yn

= k2σ2
xn
. The equations below show the iterative calculations of TLS.
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(a) (b)

(c)

Fig. 5: SOC estimation results of (a) constant cycling and (b) mixed profile and (c) dynamic
frequency response.
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The data is divided into n segments to do the recursive calculations, σ2
yn

the

error variance in y of every segment and σ2
xn

is the error variance in x of every

interval. They are guesses of the errors on both y and x respectively. The

equations below show the iterative calculations of the method [27].

c1,n = c1,n−1 +
x2
n

σ2
yn

;

c2,n = c2,n−1 +
xnyn

σ2
yn

;

c3,n = c3,n−1 +
y2n
σ2
yn

;

(8)

Q̂n =
−c1,n + k2c3,n +

√

(c1,n − k2c3,n)
2
+ 4k2c22,n

2k2c2,n
; (9)

where c1,n, c2,n and c3,n are quantities to help calculations.

4.2. Capacity estimation results using BMS SOC

In this section several datasets of measured current and BMS SOC from

WESS are used to estimate the system capacity and compare it with offline

experimentally measured capacity using Coulomb counting.

4.2.1. The actual capacity estimation of WESS

Table 3 and Table 4 show the actual capacity measurements of WESS sys-

tem. Ideally full constant discharges are needed but the operational window of

the system is limited to 95% - 5% SOC. Therefore, the capacity tests were done

between 95% and 5% SOC in May 2018 and between 90% and 10% SOC in Oct.

2019. The system was cycled with constant powers of 0.5MW(∼ 0.5C), 1MW(∼

1C) and 2MW(∼ 2C), and tested 3 times for each power rate. Based on Eq. (6)

the capacity was calculated by taking the integral of current and dividing this

by 90% or 80%. These results show that the capacity degradation of the sys-

tem over 16 months is negligible and the variations seen are likely measurement

noise. Some results are higher than 1600 Ah and this is because actual cell

capacities from manufacturer were higher than the nominal at installation.
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Table 3: WESS Actual capacity calculations in May 2018

Results for 3 cycles 0.5C 1C 2C

Average Capacity (Ah) 1600.03 1614.43 1601.33
Standard deviation (Ah) 0.92 2.06 5.22

Relative standard deviation (%) 0.057 0.13 0.33

Table 4: WESS Actual capacity calculations in Oct.2019

Results for 3 cycles 0.5C 1C 2C

Average Capacity (Ah) 1601.03 1605.17 1598.9
Standard deviation (Ah) 1.17 5.2 1.7

Relative standard deviation(%) 0.073 0.324 0.106

4.2.2. Capacity estimation results with different datasets

Fig. 6 shows the capacity results of the same profiles in Fig. 5. Note that for

these results the number of data points for each interval is tuned and fixed, and

the noise on the current measurement is estimated based on empirical knowl-

edge. The assumed capacity is 1600 Ah and the error borders refer to this value.

In (a) and (b), the algorithm takes some time to converge because the estimated

capacity was initialised as 0 (for worst-case demonstration), and the reason of

no results at the beginning of (a) is that the SOC values were maintained at

50%, so there were no SOC variations, which is the denominator for calculat-

ing Q using Eq. (6). After that, these results are stable and mostly within

the error borders. In comparison, the results in (c) show that the algorithm’s

performance is affected by the quality/type of data. There are several reasons

for the worse results: a relatively flat SOC profile, this is because the error is

relatively significant with small SOC variation, according to Eq. (6); sharp and

short spikes in current data, which leads to inaccurate current integration due

to sampling rate.

4.3. Data selection for online capacity estimation

The development of “online” capacity estimation is essential for the inves-

tigation of the degradation of large-scale battery systems during any different

operational modes. For online estimation, the data is first obtained from time-
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(a) (b)

(c)

Fig. 6: Capacity estimation results of (a) constant cycling (∼ 6.5 hours) and (b) mixed profile
(∼ 9 hours) and (c) dynamic frequency response (∼ 7 hours). The red dotted lines show ±1%
error around the 1600 Ah assumed capacity.
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series data, followed by the capacity estimation using the TLS algorithm. There

are some restrictions for data to achieve online accurate capacity estimation:

1. Continuous availability of significant variations in SOC data to maintain

accuracy as discussed above.

2. A large interval size for calculation: The data is divided into a range of

intervals with a size of m, this value can be different from the macro scale

in the multi-scale DSPKF introduced above. This makes sure there are

some SOC variations for every calculation. This value is set to 500 samples

for the results shown in Fig. 6.

3. Sufficient data: the data length should not be less than a day so that the

algorithm has enough time to converge.

4. No sharp, short spikes of current data: as discussed, such current data

leads to inaccurate current integration.

A battery’s capacity is not changing rapidly, so there is no need for esti-

mating capacity frequently, which makes the selection of data that meets the

above requirements possible.

5. Comparison of using BMS SOC or DSPKF SOC for TLS capacity

estimation

In this section a comparison for accuracy between using the BMS SOC

and the DSPKF SOC as an input for the TLS capacity estimation algorithm.

Fig. 7 (a) and (b) show the capacity estimation results using WESS operational

data from 01/06/2018 to 01/06/2019, using the DSPKF SOC and the BMS

SOC respectively. The dataset (current, BMS SOC, voltage and time) were

divided into chunks (the time duration of every chunk is just over a week) to

be processed. The DSPKF algorithm is ran on these sets of data to provide an

estimate of SOC with the capacity parameter set to the nominal capacity (1600

Ah) of the system.

It can be seen that the errors of TLS capacity estimation results using the

DSPKF SOC are mostly within the 1% error bounds of the measured capacity,
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(a)

(b)

Fig. 7: Capacity results of one year using (a) DSPKF estimated SOC (b) BMS SOC
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but the errors of using BMS SOC are much higher. Therefore, it could be

concluded that replacing the BMS SOC with the DSPKF SOC can significantly

improve the accuracy. However, it can be argued that this result is achieved

when the system is relatively healthy using the nominal capacity as an initial

capacity for SOC estimation, for a degraded system there would be significant

error according to Eq. (3). When the battery system is degraded, the Qactual

in the equation will be larger than it actually is, this affects the accuracy of

DSPKF SOC algorithm, thereafter decreasing the accuracy of TLS capacity

estimation algorithm.

The practical and simple way to account for degradation is to use the

Coulomb counting method. Despite stating that this is not good enough for ac-

curate SOC estimation, accurate capacity information for DSPKF is not needed,

since only a crude estimation is enough to ensure the SOC converges to a good

enough value.

The multi-scale DSPKF algorithm introduced above makes the capacity

correction based on SOC prediction possible. After every macro time duration,

the SOC can be predicted using Coulomb counting with estimated capacity, and

to be compared with the micro time scale estimated DSPKF SOC or the BMS

SOC (reference SOC). Eq. (10) shows the calculation of predicted SOC [22].

SOCk,L = SOCk,0 +
T

C−

k

L−1
∑

j=0

−Ik,j (10)

where SOCk,0 is the SOC estimation at the beginning of a macro scale, k the

number of micro SPKF estimations, T the sample rate in the micro SPKF,

C−

k the initialised or last estimated capacity, L the number of samples in every

macro scale estimation and SOCk,L is the projected SOC. The correction of

capacity is shown in the equation below:

C+
k = C−

k +K(SOCk,L − SOCk) (11)

where K is a gain, SOCk the reference SOC, and C+
k is the corrected SOC.

The purpose of using K is to accelerate the convergence since the SOC is a

value between 0 and 1. K is tuned to control the correction speed, and is a
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Fig. 8: Capacity tracking using capacity correction technique over one year of data

positive value when the system is charging and negative when the system is

discharging. For example, assuming the last estimated capacity is larger than

actual when the system is charging, according to Eq. (10), the projected SOC

would be smaller than the micro SPKF estimated SOC or BMS SOC, so the

SOC difference in the bracket in the equation above is a negative value, which

multiplies a positive K. Thus, the last estimated capacity value will be decreased

toward the actual capacity.

The results of capacity tracking over the year are illustrated in Fig. 8. The

initial capacity was set as 1760 Ah, which is 10% higher than the actual capacity

to simulate degradation. The errors are mostly within the 1% error bounds

again for the year from 01/06/2018 to 01/06/2019. These capacity results can

be provided regularly to update the DSPKF algorithm, creating a reliable input

for the TLS algorithm; more accurate capacity estimation can then be obtained.

Long-time results of this method are generally acceptable but the disadvantage

is that the gain (K ) is difficult to tune and it relies on the quality of the data.

For example, if K is too large, the capacity could be over-corrected without

good quality data, and if K is too small, this method requires a long time to

converge to be within an acceptable range.
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6. Conclusions

This work aims to provide methods for the state estimation of BESSs, which

are essential for maximising their technical potential and return on investment.

It has been proposed, and experimentally validated, that modelling a BESS as

a single cell it is possible to achieve accurate estimation of SOC and capacity for

the entire system. The advantage of these methods is that they respect the lim-

its of data measurement accuracy and granularity in the real-world application

as BESSs are scaled-up. However, it is clear that data selection is necessary,

particularly for capacity estimation to achieve convergence and accurate results,

and whilst selection criteria are presented in this paper, the techniques for opti-

mal selection should be an area for future research. Another advantage of this

methodology compared to alternative approaches where cell-level models are

scaled-up, is that this approach is significantly less computationally demand-

ing and requires minimal cell-level knowledge. For example, it is shown that

either the OCV-SOC relationship measured at the system-level or at cell-level

(and scaled appropriately) can be used, making this methodology suitable for

situations where cell testing/data is not available. The overall methodology as

presented in Fig. 1 has been implemented in real-time on a large-scale LTO

BESS and demonstrated to provide reliable results. Future work will be re-

quired to assess the effectiveness of the capacity estimation with degradation on

other types of BESSs and possible estimation of equivalent circuit parameters,

especially the series resistor, as an output of the weight filter, for degradation

modelling and end of life prediction.
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