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Abstract

Finding out the physical structure of neuronal circuits that governs neuronal responses is an

important goal for brain research. With fast advances for large-scale recording techniques,

identification of a neuronal circuit with multiple neurons and stages or layers becomes possi-

ble and highly demanding. Although methods for mapping the connection structure of cir-

cuits have been greatly developed in recent years, they are mostly limited to simple

scenarios of a few neurons in a pairwise fashion; and dissecting dynamical circuits, particu-

larly mapping out a complete functional circuit that converges to a single neuron, is still a

challenging question. Here, we show that a recent method, termed spike-triggered non-neg-

ative matrix factorization (STNMF), can address these issues. By simulating different sce-

narios of spiking neural networks with various connections between neurons and stages, we

demonstrate that STNMF is a persuasive method to dissect functional connections within a

circuit. Using spiking activities recorded at neurons of the output layer, STNMF can obtain a

complete circuit consisting of all cascade computational components of presynaptic neu-

rons, as well as their spiking activities. For simulated simple and complex cells of the primary

visual cortex, STNMF allows us to dissect the pathway of visual computation. Taken

together, these results suggest that STNMF could provide a useful approach for investigat-

ing neuronal systems leveraging recorded functional neuronal activity.

Author summary

It is well known that the computation of neuronal circuits is carried out through the

staged and cascade structure of different types of neurons. Nevertheless, the information,

particularly sensory information, is processed in a network primarily with feedforward

connections through different pathways. A peculiar example is the early visual system,

where light is transcoded by the retinal cells, routed by the lateral geniculate nucleus, and

reached the primary visual cortex. One meticulous interest in recent years is to map out

these physical structures of neuronal pathways. However, most methods so far are limited

to taking snapshots of a static view of connections between neurons. It remains unclear

how to obtain a functional and dynamical neuronal circuit beyond the simple scenarios of
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a few randomly sampled neurons. Using simulated spiking neural networks of visual path-

ways with different scenarios of multiple stages, mixed cell types, and natural image sti-

muli, we demonstrate that a recent computational tool, named spike-triggered non-

negative matrix factorization, can resolve these issues. It enables us to recover the entire

structural components of neural networks underlying the computation, together with the

functional components of each individual neuron. Utilizing it for complex cells of the pri-

mary visual cortex allows us to reveal every underpinning of the nonlinear computation.

Our results, together with other recent experimental and computational efforts, show that

it is possible to systematically dissect neural circuitry with detailed structural and func-

tional components.

Introduction

One of the cornerstones for developing novel algorithms of neural computation is to utilize

different neuronal network structures extracted from experimental data. The connectome, wir-
ing diagrams, becomes an increasingly important topic, especially, for those relatively simple

neuronal circuits that are well-studied, such as the retina [1–6]. Based on certain experimental

techniques, the wiring diagram of neuronal connections has been identified for simple animal

models, including Caenorhabditis elegans [7], Drosophila [8], and tadpole larva [9]. So far,

most of these methods can only take a static view of connection strengths for neural circuits by

imaging data, and the dynamics of synaptic strengths, which is a unique and essential feature

of neural computation, is hardly estimated.

The function of neuronal computation has been shown to be highly dynamics in the tempo-

ral domain with strong adaptation to stimulus statistics [10, 11], nonlinear temporal integra-

tion [12, 13], trial specific temporal dynamics [14, 15]. The question of how to obtain a

functional and dynamical neuronal circuit has been studied experimentally [16] and computa-

tionally [17, 18] with great efforts in recent years. Spike-triggered non-negative matrix factori-

zation (STNMF) is one of the methods proposed to infer the underlying structural

components of the retina based on temporal sequences of spiking activities recorded in gan-

glion cells [17]. STNMF takes the advantage of machine learning technique NMF, which has a

great capacity to capture local structures of given datasets [19]. It has been used recently to

identify functional units localized in space and time in neuronal activities [20–26]. STNMF

takes a step further to analyze the mapping between stimuli and neural responses leveraging

neural spikes while leaving out non-responsive stimuli [17, 27], with an assist of spare coding,

as neurons generally fire with a low rate of spikes [28].

However, it is not clear whether the STNMF is applicable to dissecting a complete neural

circuit with multiple stages or layers all formed by multiple spiking neurons. Here we address

this question by comparing the true dynamic connection and strengths in a model and those

estimated by STNMF. The model is a spiking neural network mimicking the feedforward con-

nection at multiple stages in early visual systems, including the retinal ganglion cells (RGCs),

lateral geniculate nucleus (LGN), and primary visual cortex (V1). We first demonstrated

STNMF can reliably infer presynaptic spikes from postsynaptic spikes and obtain presynaptic

strengths and dynamics for multiple spiking neurons projecting to a single postsynaptic neu-

ron. Then we showed that when there are more than one postsynaptic neurons, STNMF is

able to map out the entire neural circuit by analyzing each individual postsynaptic neuron.

With a multiple layer neural network, STNMF can identify each layer in the model. Particu-

larly, STNMF is applicable to the complex stimulus of natural images. Finally, we show that
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STNMF is applicable to V1-like simple and complex cells of neural networks with mixed cell

types. Taken together, our results indicate that STNMF is an effective approach to describe the

underlying neural circuits using neural spikes of single cells.

Methods

Neural network model

We simulated a simple version of the early visual pathway, from the retina ganglion cells

(RGCs) to the lateral geniculate nucleus (LGN) and primary visual cortex (V1), by feedforward

layered neural networks with spiking neurons, under different scenarios of network

connections.

We first employed a two-layer spiking neural network to illustrate the workflow of STNMF.

There are four presynaptic RGCs in the first layer, where each RGC was modeled as a linear-

nonlinear Poisson spiking neuron [29] with an OFF type spatiotemporal receptive field filter k,

consisting 2x2 pixels in space and a biphasic temporal filter, together with a nonlinearity f, as

its specific computational components. The input stimulus s(t) was given by a sequence of ran-

dom binary black-white checkers with 8x8 pixels typically used for visual neuroscience experi-

mentalists to map the receptive field of neurons. The nonlinearity f is expressed as f(x) = x if

x>= 0, f(x) = 0 if x< 0. The model output was the firing probability r = f(k � s(t)), where � rep-

resents spatiotemporal convolution. A sequence of spikes was generated by the Poisson pro-

cess. Each presynaptic neuron has a different spatial filter where the focus is located at

different parts of images. As a result, output spike trains are different between presynaptic neu-

rons. The spiking output of each neuron was sent out to one postsynaptic neuron in the second

layer with specific synaptic weights.

In the second layer, a postsynaptic LGN neuron was modeled by a leaky integrate-and-fire

neuron as τm dV/dt = −(V(t) − Vrest) + RI(t) + Vnoise where V(t) is the membrane potential at

time t, Vrest as the resting potential, τm = 10 ms as the membrane time constant. R = 1 is the

finite leak resistance. I represents the postsynaptic current received by the neuron. Vnoise repre-

sents the noise that obeyed the normal distribution with a mean value of 0 and a standard devi-

ation of 0.02 mV. The LGN neuron collected information from all the RGCs in the first layer

by synaptic connections, such that its postsynaptic current I ¼
P

iwi

P
j Isynðt � tjiÞ, where the

neuron i is one of the RGCs, wi is the synaptic weight from the RGC i to the LGN, and Isyn is

the synaptic current when there is a spike j occurring at tji . For simplicity, Isyn was modeled as

an alpha function as Isyn ¼ A expð� ðt � tjiÞ=t0ÞYðt � tjiÞ, where A = 1, τ0 = 10 ms and Θ(x) is

the Heaviside step function. When the accumulated membrane potential achieved the thresh-

old, the LGN neuron fired a spike. This network can be considered as a minimal model of a

LGN consisting of four presynaptic RGCs.

We then extended this two-layer network to include multiple neurons and layers. We first

included two LGNs in layer 2. We then considered a three-layer network, where there were six

RGCs in layer 1, two LGN neurons in layer 2 and one V1 neuron in layer 3. We also examined

a four-layer network. For the network model with mixed ON and OFF cells, we fixed temporal

filters as negative, while adopting different polarities of spatial filter to indicate the sign of ON

or OFF cells, such that OFF cells have positive spatial filters, while ON cells have negative spa-

tial filters. As a result, the spatiotemporal filter as a multiplication of spatial and temporal filters

is positive for ON cells and negative for OFF cells.

In all network models, neural models for RGCs, LGNs, and V1 were the same as above, e.g.,

neurons in layer 1 were modeled as linear-nonlinear Poisson neurons, while neurons in layer 2

and 3 were modeled as integrate-and-fire neurons. Spatial receptive fields of RGCs have
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different locations on stimulus images. For simplicity, synaptic weights were fixed as 1, except

for those specific cases with the mentioned values.

Spike-triggered non-negative matrix factorization analysis

The STNMF method is inspired by a simple and useful method of system identification in

visual neuroscience, named spike-triggered average (STA) [29], which uses every response

spike to reversely correlate input stimuli. Briefly, for a spike ri occurring at time ti, one can col-

lect a segment of stimuli s(τ)i = s(ti − τ) that precede that spike, where the lag τ denotes the

timescale of history, into an ensemble of spike-triggered stimuli {s(τ)i}, then averages it overall

spikes to get the STA filter k(τ) = hs(τ)iii. When stimuli are spatiotemporal white noise, the 3D

STA filter can be decomposed by singular value decomposition to obtain the temporal filter

and spatial receptive field [30].

The STNMF analysis was introduced in [17] and extended in [27]. Briefly, to reduce

computational cost, we first applied pre-processing for the spike-triggered stimulus ensemble:

for the i-th spike, the corresponding stimulus segment s(τ)i is weighted averaged by temporal

STA filter kt: �si ¼
P

t
sðtÞi � ktðtÞ, such that time dimension τ is collapsed to a single frame of

stimulus image for the i-th spike, termed effective stimulus image �si. With the ensemble of

effective stimulus images S ¼ f�sig for all spikes, one can apply a semi-NMF algorithm [31],

similarly to the analysis of a set of face images [19].

Specifically, the ensemble of effective stimulus images S ¼ f�sig can be rewritten as S = (sij),
a N × P matrix with indexes i = 1, � � �, N for all N spikes, and j = 1, � � �, P for all the pixels in P
images. NMF allows us to decompose the matrix as S�WM, where weight matrix W is N × K,

module matrix M is K × P, and K is the number of modules. Both stimuli S and weights W
can be negative, but modules M are still non-negative. The function to be minimized is

F ¼k S � WM k2
F þl

PP
j¼1
k Mj k

2
1
, where the sparsity parameter λ = 0.1, and kvk1 is the L1

norm of a vector v. k.kF denotes the Frobenius norm of a matrix. The sparsity constraint here

is to control the overall contribution to each spike from a set of modules in each column of M,

rather than directly control the size of the receptive field. One can implement the minimiza-

tion of F as an alternating optimization of W and M based on the NMF toolbox [32]. The result

of STNMF decomposition is a set of modules corresponding to spatial receptive fields of neu-

rons, and one single weight matrix including information of synaptic wights and presynaptic

spikes.

Inferring presynaptic spikes

The STNMF weight matrix is specific to each individual spike of postsynaptic neurons. Thus,

one can reconstruct all the possible spikes contributed by each presynaptic neuron [27]. In the

two-layer model, LGN spikes were represented by incoming four RGCs, thus, each spike of

LGN could be contributed by one of the RGCs. Inspired by the clustering viewpoint of

STNMF, STNMF can classify all the LGN spikes into four subsets of spikes such that each sub-

set of spikes is mainly, if not completely, contributed by one specific RGC. As each row corre-

sponds to one individual spike, every spike can be classified according to the weight value

of the STNMF matrix. For the model with OFF cells, and since modules are always non-nega-

tive, one can take the minimal value per row in weight matrix wij, for instance, min(w1k) =

minj(w1j) for the first row and first spike. The index j indicates which presynaptic RGC should

be for this specific spike. For ON cells, the maximal values were used to obtain the ON spikes.

After lopping all rows/spikes, we can obtain a set of spikes belonging to a specific presynaptic

RGC.
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For the single LGN model, we obtained four subsets of spikes for four RGCs respectively.

For the two-layer model with two LGNs, we have six subsets of spikes for six RGCs. For the

three-layer model with two LGNs, we extracted six subsets of spikes for six RGCs in layer 1. To

obtain spikes for each neuron in the middle layer, we pooled the spikes of RGCs into two

pools, such that each pool collects four of six RGCs corresponding to one of the LGNs.

For the model with mixed ON and OFF cells, a similar approach was used. Instead of find-

ing all minimal values, we computed both the minimum and maximum of each spike, then

compared the absolute values of these two and used the maximal one to indicate the final

index for presynaptic cells, e.g., if the absolute value of minimum is larger, the spike is from an

OFF cell, otherwise, it is from an ON cell. In this way, all spikes can be attributed to either ON

and OFF cells in the model. Otherwise, one can collect both sets of minimums and maximums

as spikes to take into account the noise effect of neurons. Both approaches are applicable to

extract spikes of upstream neurons.

Similarly, each individual element wij is also the strength between the i-th postsynaptic

spike and the presynaptic cell j. By averaging each column of the weight matrix, one can obtain

a single weight value for each synaptic connection from presynaptic to postsynaptic cells.

Mutual information carried by spikes

In order to characterize the quality of spikes inferred by STNMF, we computed mutual infor-

mation (MI) carried by spikes for a given stimulus. Instead of Pearson correlation coefficients

between two spike trains, MI is to quantify how much information is carried by spikes. We

employed a previous approach to compute MI [11]. For a given spike train spki, the MI was

computed as MIk(spki) =
R
dsP(sk|spki)log2(P(sk|spki)/P(sk)). In our model, each presynaptic

neuron has the given spatiotemporal filter k to convolve stimulus, then we name the convolved

stimulus signal as sk, which is also the project of the stimulus along with the direction of the fil-

ter. P(sk) is the probability distribution of the prior stimulus set along the filter k direction, and

P(sk|spki) is the probability distribution of spike-triggered stimuli in this direction given the

spike train spki. The integral was evaluated by discretizing the convolved stimulus values s with

a bin size as 0.1 of the stimulus standard deviation. All information values were corrected for

bias due to finite sampling following previous studies by using subsections of the data (80%-

100%) and linear extrapolation to estimate the information value at infinite sample size [33,

34]. In our model, there are a number of presynaptic neurons with different filters. We have

the corresponding spike trains generated by the model and inferred by STNMF. Thus, we can

compute the MI between a pair of the filter k and the spike train spk, either modeled or

inferred spike trains. In the end, for each presynaptic neuron, we can evaluate the information

carried by different spike trains for each filter. As a result, we can construct a MI matrix for dif-

ferent pairs of filters and inferred or modeled spike trains.

White noise and natural image stimulus

Most of our analysis was conducted using white noise stimulus, as it is the preferred stimulus

used for neuroscience experiments [17] and can be analyzed by STA ideally [29]. White noise

images were generated as independent checkers of black pixel (-0.5) and white (0.5), similar to

those used in experiments [17]. To test that STNMF has no restriction on the type of stimulus

used to generate neural responses, we randomly selected 420000 images from ImageNet [35].

For each image, two image patches with 32x32 pixels were cropped to form a set of 840000

images, which were transformed into gray images and normalized to [-0.5 0.5] for all pixels.

As a result, the magnitude of natural image intensity is similar to white noise while the texture

shows rich natural scenes.
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Results

Presynaptic spikes revealed by STNMF

The STNMF, inspired by spike-triggered analysis [29], was proposed to identify non-spiking

bipolar cells from spike responses of RGCs [17]. Here we demonstrate that STNMF is able to

reconstruct fully spiking neuron networks. For this, we created a model of the LGN neuron

driven by four presynaptic RGCs, as shown in Fig 1A. The four presynaptic RGCs were mod-

eled as linear-nonlinear Poisson neurons with different spatial receptive fields to compute

local luminance. The LGN cell was modeled as an integrate-and-fire neuron receiving spikes

of the four RGCs to produce spike trains in response to given sequences of stimuli (see Meth-

ods). Using visual stimuli consisting of a sequence of white noise as black and white checkers

randomly distributed in space and time, the receptive field of such a neuron can be computed

from spiking responses with reverse correlation or spike-triggered average (STA) [29]. How-

ever, the STA is equivalent to an average characteristic of the LGN cell as a combination of all

RGCs in space, which can not provide any information about individual presynaptic RGCs.

Instead of averaging over spikes, the STNMF characterizes the spikes of the LGN cell as a

nonlinear integration of all presynaptic RGCs, where each RGC computes stimulus in the first

case. Thus, STNMF decomposes the LGN response using each output spike and input stimulus

image as illustrated in Fig 1B. As a consequence of matrix factorization, we obtained a single

weight matrix and a number of modules, where the number of modules is exactly the number

of presynaptic cells in the model. The benefit of STNMF is that the modules are corresponding

to the spatial receptive fields of upstream presynaptic cells [17], and the weight matrix encodes

the information of synaptic connections [27]. In addition, the STNMF can separate all spikes

of a postsynaptic neuron into different subsets of spikes for each presynaptic neuron, as illus-

trated in Fig 1C.

To illustrate the workflow of STNMF, we applied it to the model and analyzed the LGN

spikes. Fig 1D(i)–1D(iii) shows the results of the STNMF analysis. It allows us to find four

exact presynaptic RGCs with spatial and temporal filters modeled as in Fig 1Di. Using these fil-

ters, we recovered the nonlinearity component for each presynaptic RGC in Fig 1Dii, where

different amplitudes are related to synaptic weights. The most notable feature of STNMF is

that the weight matrix contains useful information about synapses. Two features can be

extracted from the weight matrix, according to columns and rows, respectively. The first one is

the synaptic weight from the RGC to the LGN cell in the model. To compute it, we averaged

each column of the weight matrix to obtain the weight Wj for each RGC j, which is exactly the

synaptic weight from the presynaptic RGC, and matches the model component very well, even

with different strengths between RGCs (Fig 1Dii). These results indicate that the STNMF

weights provide a good estimate of actual synaptic connection weights from the RGCs to the

LGN cell.

The second feature is based on the rows of the weight matrix. In the model, LGN spikes

were contributed by four synaptic RGCs, thus, each spike of LGN cell could be triggered by

one of the RGCs. We found that STNMF can classify all the LGN spikes into four subsets of

spikes, where each subset of spikes is mainly, if not completely, contributed by one specific

RGC. As each row corresponds to one individual spike, every spike can be attributed to one

RGC as in Fig 1Diii. For this particular LGN model, we have four subsets of spikes for four

RGCs respectively. To quantify the similarity between the RGC model spikes and STNMF

inferred spikes, we computed pairwise cross-correlation to get a correlation matrix (Fig 1Diii,

bottom left), which shows a good match between model spikes and STNMF inference. Inter-

estingly, the correlation values of RGCs, the diagonal elements of the correlation matrix, are

also positively correlated with synaptic weights. The RGCs with larger weights have a higher
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Fig 1. Workflow of STNMF. (A) Illustration of a minimal neural network model with four presynaptic RGCs and one postsynaptic LGN neuron. (B)

Illustration of STNMF analysis. Averaging of the ensemble of spike-triggered stimulus images yields a single STA filter. STNMF reconstructs this

ensemble by approximating it with a set of modules and a matrix of weights. One of the modules is strongly correlated to one of the spikes/images

indicated by stronger (black lines) or weaker (gray lines) weights. (C) Illustration of STNMF weight analysis. Synaptic weights inferred by each column

of the STNMF weight matrix, and spikes contributed by each presynaptic neuron inferred by each row of the matrix. (Di-iii) STNMF outputs. (i)

Receptive field (RF) components of presynaptic neurons. Spatial filters (top) as subunit components of STNMF, and the corresponding temporal filters.

(ii) Nonlinearity and synaptic weights from presynaptic neurons to the postsynaptic neuron. Ground-truth values of the model (green). The values

computed from the weight matrix (red). Here weights were set as [2 1.5 1.8 1.3] for four neurons. (iii) STNMF separates the whole set of postsynaptic

spikes into a subset of spikes contributed by each presynaptic neuron. Model spikes (gray) and inferred spikes (colored) of each presynaptic neuron.

Correlation matrix of spike trains from model and STNMF (left). (Right) The matrix of mutual information (MI) carried by inferred spikes for each

presynaptic neuron indicates that inferred spikes are similar to model spikes.

https://doi.org/10.1371/journal.pcbi.1009640.g001
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correlation for inferred spikes. We then computed mutual information carried by inferred

spikes (Spike MI, Fig 1Diii, bottom, right) for each model RGC (see Methods). Higher values

of MI along the diagonal line indicate that the inferred spikes of each RGC are more close to

the target model RGC, but dissimilar to other non-target model RGCs. Mutual information

gives similar results to quantify the spikes inferred by STNMF, thus through this study, we

used the correlation between spikes as a measure in the results below.

These results suggest that the STNMF is feasible to dissect the network structure of spiking

neural networks and allow us to obtain a complete set of functional components of the net-

work related to spike responses. Particularly, spike trains inferred by STNMF are close to

ground-truth spikes in the model.

Inferring shared presynaptic neurons from multiple postsynaptic neurons

We then extended the LGN model to have multiple neurons in both layers, in which two

LGNs share one part of visual space with overlapped receptive fields. The model was set up as

follows (Fig 2): the first layer consists of six RGCs, each of which was modeled as previously

with the identical temporal filter and nonlinearity, but spatial receptive fields are distributed at

different locations of visual images. The output spikes are fed into two LGNs on the second

layer, in which, the first LGN (L2–1) received spikes from RGC 1–4, and the second LGN (L2–

2) received spikes from RGC 3–6. Thus, RGC 3–4 send information to both LGN cells.

Using a similar white noise input, we collected spikes of both LGN cells. Receptive fields of

these two LGNs were obtained by STA as in Fig 2A. Leveraging the STNMF to both LGN cells,

spatial receptive fields of each RGC (Fig 2A) are recovered as those in the model. Here we

highlighted spikes inferred by STNMF for each RGC, which are similar to those in the model

RGCs (Fig 2B). The similarity of spikes between model and inference was quantified by corre-

lation coefficients as in Fig 2C, which shows that correlations are higher when paired with

each own RGC. The same results were found for the LGN cell 2. Shared RGCs (No. 3 and 4)

also show higher correlation values between inferred spikes from each individual LGN cell,

even spikes were inferred by STNMF separately from each LGN cell. Taken together, these

results imply that STNMF is able to reconstruct multiple spike trains within a network of mul-

tiple neurons.

Inferring multilayered neurons using stimuli of white noise and natural

images

Next, we extended the model to be three layers to simulate a neural circuit from RGC to LGN

and V1. In this model, the first two layers are the same as that of the multi-LGN model, and in

the third layer, a V1 neuron received spikes from both LGN cells (Fig 3A). The output spikes

of the V1 neuron were collected for STNMF analysis. Using the white noise stimulus and STA

to spikes of V1 neuron, the receptive field of the V1 neuron is an integration of receptive fields

of six RGCs where shared RGCs show higher strengths. Whereas, we recovered all the spatial

receptive fields of six RGCs using STNMF (Fig 3B). Surprisingly, when the STNMF was

applied to the cell in the third layer, we actually recovered a set of the receptive fields of RGCs

in the first layer directly. The number of captured cells converged and was independent of the

subunit number assigned to STNMF (S1 Fig). It indicates that the nonlinear computation in

the cascaded network perseveres information of stimulus from the input layer directly [17]. To

verify that the STNMF captures the nonlinear computation of layer 1 cells, we reconstructed

all the spike trains of six RGCs as in Fig 3C. The examination of the quality of RGC spikes was

characterized by the correlation matrix between inferred and model spikes, with higher corre-

lations for target RGCs (Fig 3C). To further examine this in layer 2, we pooled inferred spikes
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of a set of four RGCs for individual LGN cells in layer 2. The LGN L2–1 pools over RGC 1–4,

while LGN L2–2 over RGC 3–6, as in the model. Correlations between model and inferred

spikes for layer 2 LGN cells show the similarity of spikes. Note here the self-correlation of the

model and inferred spikes was included. However, the cross-correlation between the model

and inferred spikes quantifies the similarity correctly.

We also considered various variations of the network model and found that STNMF is

capable to infer a large number of cells (S2 Fig) and separate overlapped cells (S3 Fig), as well

as works well on networks with more layers (S4 Fig). Furthermore, STNMF is still applicable

to networks with weak recurrence (S5 Fig) and feedback (S6 Fig). Altogether, these results

indicate that the STNMF works well for different scenarios of multilayer spiking networks, as

Fig 2. STNMF inference of shared presynaptic cells from different outputs of postsynaptic cells. (A) (Left) Illustration of a 2-layer network with two

output neurons. Layer 1 (L1) has six cells, where the cell 3 & 4 target to both cells in layer 2 (L2). (Right) Inferred presynaptic cells independently from

both cells (L2–1 and L2–2) of layer 2. Receptive fields computed by STA for cell L2–1 and L2–2 and inferred L1 cells. (B) Spike trains generated from

layer 1 model cells (gray) and inferred by STNMF (colored). (C) Correlation matrices of spike trains for each cell of layer 1 computed between model

cells and inferred spikes from L2–1 cell (left) and L2–2 cell (right), as well as between inferred spikes (middle).

https://doi.org/10.1371/journal.pcbi.1009640.g002

PLOS COMPUTATIONAL BIOLOGY STNMF for multilayer SNNs

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009640 November 29, 2021 9 / 23

https://doi.org/10.1371/journal.pcbi.1009640.g002
https://doi.org/10.1371/journal.pcbi.1009640


long as nonlinear computation, rather than linear computation, is manifested in neural

networks.

To consider the generalization ability of STNMF to the complex stimulus images, we used a

large set of natural images randomly selected from the ImageNet dataset [35] as stimuli in a

3-layer network (Fig 4). Unlike white noise stimulus, natural images make the STA analysis

Fig 3. STNMF analysis of a 3-layer model. (A) Illustration of a 3-layer network. Layer 1 (L1) has six cells, where cell 3 & 4 target to both cells in layer 2

(L2). The layer 3 cell receives two layer 2 cells. STNMF was applied to the layer 3 cell. (B) Inferred presynaptic cells from the layer 3 cell. (Top) STA of

cell L3–1. (Bottom) STNMF subunits are RFs of inferred L1 cells. (C) (Left) Spike trains generated from layer 1 model cells 1–6 (gray) and inferred from

layer 3 cell by STNMF (colored). (Right) Matrices of corresponding correlation of spike trains between model and STNMF inference. (D) (Left) Spike

trains generated from layer 2 model cells 1–2 (gray) and combined spikes inferred from layer 3 cell by STNMF (cell 1: red, cell 2: blue). (Right)

Correlation matrices of spike trains between model and STNMF inference.

https://doi.org/10.1371/journal.pcbi.1009640.g003
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Fig 4. STNMF analysis using natural image stimulus. (A) Similar network model as in Fig 4 but with natural images instead of white noise as stimuli.

The STA failed to obtain the RF of Layer 3 cell. (B) Modeled RFs of Layer cells (top) and the STNMF inferred results with 17 subunits (bottom). (C)

Dot product matrix of the model RFs and STNMF subunits showing that the first subunits resemble the model cells.

https://doi.org/10.1371/journal.pcbi.1009640.g004
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failed to get the RF. Indeed, using a large set of natural images, the RF of the Layer 3 cell can

not be obtained by STA (Fig 4A). In contrast, the STNMF is capable to infer all the RFs of

Layer 1 cells in the model (Fig 4B). The quantitative metric using the dot product between the

RFs of model cells and the subunits inferred by STNMF confirms that the model RFs are

highly overlapped with the STNMF inferred results (Fig 4C). These results show that STNMF

enables us to disentangle the nonlinear computation of the network under complex natural

images in an interpretable way.

Inferring simple and complex cells

So far we considered the model with the same type of cells as OFF cells. There are different cell

types in neural systems. In the retina, there are at least two functionally distinct cell types, ON

and OFF cells, where ON cells are more sensitive to light increments resulting in an opposite

sign for the receptive field, whereas OFF cells are functionally opposite for light decrements.

To examine the feasibility of STNMF for a network with mixed cell types, we designed a net-

work with both ON and OFF cells showing different polarities of the receptive field as in Fig

5A. As the entire receptive field filter is a multiplication of spatial and temporal filters, we fixed

the temporal filter as negative, while flipped the spatial filter as positive for ON cells.

Following the steps as above for the OFF-cell network, the STNMF was applied to the out-

put spikes of the layer 2 cell, which received inputs from both ON and OFF RGCs. We found

STNMF can retrieve individual presynaptic ON and OFF components, whereas the receptive

field of layer 2 cell computed by STA shows a mixture of ON and OFF features. Since the spa-

tial filters as STNMF modules are always positive, the corresponding temporal filters show dif-

ferent polarities according to the ON and OF cell types (Fig 5B). Consequently, the spikes

associated with each presynaptic neuron were extracted using the maximal values of the weight

matrix for each spike (see Methods). In this way, we have a set of spikes for all presynaptic neu-

rons, yet maintaining cell types. To justify the cell types, we computed the receptive field of

each RGC applying the standard STA to inferred RGC spikes. The obtained receptive fields of

each RGC in Fig 5C show typical ON and OFF features. The sum of weight values, either the

specific values of each RGC, or all weights in the STNMF weight matrix (Fig 5D) confirms that

ON and OFF cells can be determined by weight values as the minimums for OFF and the max-

imums for ON cells. The quality of inferred spikes for each RGC was characterized well by the

correlation of spike trains between model and inference.

Finally, we simulated V1-like simple and complex cells using a 3-layer network, where

there are both ON and OFF RGCs in the first layer receiving a mixture of light information as

in Fig 6A. The V1 simple cell at layer 3 has a typical receptive field with mixed ON and OFF

features (Fig 6B). STNMF was applied to the layer 3 cell to retrieve a set of subunits, which

resemble the layer 1 ON and OFF cells, where the polarities of ON and OFF type are indicated

by the signs of the peaks in temporal RF filters (Fig 6B). The spikes of the V1 cell were decom-

posed into a set of spikes as in Fig 6C, each of which is closely associated with the layer 1 RGC

spikes, assessed by the correlation between spike trains. The spikes of layer 2 LGN cells in Fig

6D were achieved by pooling the spikes of corresponding layer 1 RGCs. These results indicate

that we can utilize STNMF for V1-like simple cells to decouple the mixture of cell types in the

network.

To model V1-like complex cells, we used a similar 3-layer network with two sets of layer 1

RGC cells Fig 7A. Each set of layer 1 cells was distributed in four spatial locations, however,

both sets have the opposite polarity of ON and OFF receptive fields, resulting in two different

layer 2 LGN cells located at the same space but opposite RFs. As a result, the layer 3 cell is simi-

lar to a V1 complex cell, for which the standard STA analysis fails to generate the RF (Fig 7A).
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Remarkably, the analysis of STNMF can retrieve a set of subunits resembling layer 1 cells.

When using eight modules in STNMF, we found there are four subunits converging to layer 1

cells, while other subunits are noise (Fig 7B). Due to the nature of the non-negative analysis,

the subunits resulting from STNMF are always positive, thus, these four meaningful subunits

represent all layer 1 cells.

To further separate ON and OFF layer 1 cells, the spikes of the V1 complex cell were

extracted using each subunit. For each subunit, the set of spikes was obtained by the minimal

values of the STNMF weight matrix for OFF cells, whereas spikes by the maximal values for

ON cells as in Fig 7C. Therefore, we recovered eight spike trains from four subunits, and the

correlation matrix of spikes shows that they are highly linked to layer 1 cells. To assure that

these spikes are meaningful, we used the standard STA analysis for each set of spikes and

Fig 5. Mixture of ON and OFF cell types identified by STNMF. (A) Illustration of a neural network with ON and OFF cells. Similar to Fig 1, except that

there are both ON and OFF presynaptic neurons. (B) ON and OFF cells are separated from STNMF. The RF of the postsynaptic neuron computed by

STA (left). RFs of presynaptic neurons identified as STNMF subunits (top) with their corresponding temporal filters (bottom). (C) Presynaptic RFs

computed by spikes inferred from STNMF. (D) Using STNMF weight matrix to classify spikes, the relationship among spikes, weights, and subunits is

established, seen from (left) sum of specific weights of each subunit, and (right) sum all weights in each column of the weight matrix. (E) Spikes from the

model and inferred by STNMF (left), and the corresponding matrices of spike correlation.

https://doi.org/10.1371/journal.pcbi.1009640.g005
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obtained the spatial and temporal filters as in Fig 7D. Both the spatial and temporal filters are

similar to the model cells of layer 1, and the polarity of spatial filters determines the ON and

OFF cells. Altogether, these results demonstrate that the STNMF is applicable to not only the

cells in the retina but also in the LGN and V1 parts of the visual system. The intricacy of non-

linear complex cells in V1 can also be unfolded by STNMF.

Fig 6. STNMF analysis of a V1 simple cell. (A) Illustration of a model simple cell as a 3-layer neural network with ON and OFF cells. (B) ON and OFF

cells are separated from STNMF. The RF of the simple cell computed by STA. RFs of layer 1 cells were identified as STNMF subunits with their

corresponding temporal filters. (C) (Left) Spike trains generated from layer 1 model cells 1–6 (gray) and inferred from layer 3 cell by STNMF (colored).

(Right) Matrices of corresponding correlation of spike trains between model and STNMF inference. (D) (Left) Spike trains generated from layer 2

model cells 1–2 (gray) and combined spikes inferred from layer 3 cell by STNMF (cell 1: red, cell 2: blue). (Right) correlation matrices of spike trains

between model and STNMF inference.

https://doi.org/10.1371/journal.pcbi.1009640.g006
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Discussion

In this study, we demonstrated that the STNMF is capable to dissect functional components of

spiking neural networks and reconstruct spike trains of presynaptic neurons by analyzing

spikes of the output neurons. Within feedforward networks with multiple stages or layers and

multiple neurons, applying STNMF to spikes of neurons at the final layer allows us to recover

the entire neural network, not only the structural components of neurons and synapses, but

neuronal spikes of cascaded layers, which transfer the input stimulus to final output neurons.

Fig 7. STNMF analysis of a V1 complex cell. (A) Illustration of a model complex cell as a 3-layer neural network with ON and OFF cells. There are

eight cells in layer 1, of which the first four cells 1–4 have mixed ON and OFF types, and the second four cells 5–8 are similar with the same locations

but with opposite polarity. Layer 2 cells are simple cells as in Fig 5. Layer 3 cell is a V1 complex cell. (B) The RF of the complex cell calculated by STA. 8

Subunits obtained by STNMF. (C) (Left) Spike trains generated from layer 1 model cells 1–8 (gray) and inferred from layer 3 cell by STNMF (colored).

For each meaningful subunit, spikes are separated by minimal values of the weight matrix as OFF spikes, and minimal as ON spikes, respectively.

Totally, there are 8 classified spike trains. (Right) Matrices of corresponding correlation of spike trains between model and STNMF inference. (D)

Spatial and temporal filters obtained by STA analysis using classified spikes.

https://doi.org/10.1371/journal.pcbi.1009640.g007
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These results suggest the STNMF is a useful technique for interpreting neural spikes and

uncovering the relevant functional and structural components of neuronal circuits.

0.1 The role of presynaptic neurons in postsynaptic neural spikes

Here we demonstrated the scenarios where a postsynaptic neuron receives a few presynaptic

neurons that all are firing spikes and contribute to the firing of the postsynaptic neuron. It is

well known that a neuron has morphology with a dendritic tree receiving nonlinear inputs

from presynaptic neurons [36]. The neuronal morphology varies significantly, depending on

the cell type, location, and brain area [37]. Similarly, the firing rate of cells also varies remark-

ably depending on the dynamic states of synaptic strength [38]. A typical cortex cell with thou-

sands of synapses maintains a very low firing rate [39].

Recent evidence, using advanced experimental techniques recording the activity of single

synapses in vivo, shows that single synapses could be active, while the population of synapses is

rather spare [40]. This indicates that, in terms of spikes of a postsynaptic neuron, only a small

subset of synapses actively contribute to the somatic firing at one time, while most of the syn-

apses are silent. Experimental observations and theories utilizing this feature suggest complex

scenarios of the interaction of spare synaptic firing and dendritic computation at the single-

cell level [40], and spare neural coding at the level of neural circuits [41]. The STNMF may

have an advantage in utilizing these shreds of evidence for understanding the computational

principle of neural coding.

0.2 Reconstruction of the dynamics of neuronal networks

Recent experimental advances provide tools to reconstruct large-scale neural circuits [8, 9]

and relatively stereotyped retinal circuits [1, 3, 4]. However, these static connectomic struc-

tures can not explain ever-changing neuronal dynamics and reveal valuable functions per-

formed by neurons. Taking the example of direction selectivity in retinal neurons, the

structure basis was suggested as the asymmetrical distribution of inhibitory amacrine cells

around ganglion cells [42], however, direction selectivity is rather dynamical and reversible

[43]. Thus it is important to reconstruct the functional dynamics of neural networks.

The methods that can analyze network connectivity using neural response are still limited.

Granger causality [44], dynamic causal modeling [45], and transfer entropy [46]) are popular

methods used for this purpose yet with certain limitations [47–50]. The STNMF, as a relatively

new method, provides a different means to systematically investigate functional neural circuits

using spikes. Together with other recent studies focusing on dynamical structures of neural

networks [16, 18], it is possible to incorporate dynamic components, such as synaptic strengths

and presynaptic spikes, to reveal detailed functional organization of neural circuits.

0.3 Inferring neural spikes

The complexity of dendritic organization in neurons depends on the type of neurons. For

some neurons, such as Purkinje cells in the cerebellum, there is a large dendritic tree receiving

tens of thousands of presynaptic inputs [51]. However, some neurons, such as unipolar cells of

the cerebellum, have only one dendrite receiving one presynaptic input [52]. Yet, the underly-

ing computations in both types of neurons are rich [53]. It is thought that many synapses are

silent, perhaps at particular time points, during the spike dynamics of postsynaptic neurons.

Thus, it is meaningful to extract the contribution of presynaptic neurons from the viewpoint

of postsynaptic neurons. Here we noticed that STNMF can classify spikes of postsynaptic neu-

rons into a set of spikes, where each set is considered as ab overall contribution of presynaptic

neurons.
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The results of STNMF are meaningful, in that it allows us to obtain the dynamic strengths

of presynaptic cells, according to whether they deliver the effect on spike dynamics of postsyn-

aptic cells. Therefore, the outcome of STNMF is naturally for inferring spikes to capture the

underlying dynamics of neural circuits, rather than static connections between neurons. In

this sense, STNMF could provide more information than Granger causality, which tells the

direction of information between neurons [54].

For experimental data where no spike can be exacted, such as graded signals in retinal bipo-

lar cells [55, 56], or the coarse version of neural signals, such as neuronal calcium imaging data

[15, 26], and local field potentials representing a small or large network of neural population

[57, 58], STNMF could be potentially applied to extract useful information within neural cir-

cuits, as long as neural signals are dynamics with meaningful states reflecting neural spikes.

Given recent advances in experimental techniques for simultaneously recording multiple

brain areas with single cell resolution [59], these data could yield interesting protocols for uti-

lizing STNMF on the level of large scale neural circuits.

0.4 Multilayered neuronal networks

A ubiquitous feature of neural circuits in the brain is that neurons are organized by layers or

stages. Although there are dramatic feedback and/or recurrent connections between neurons

[60], the information flow within recurrent neural networks could reinforce neurons to form a

prevailing feedforward format of dynamics, utilizing synaptic plasticities [61, 62]. One promi-

nent example is the neural trajectory, in which different neurons fire at particular time points

so that the overall dynamics of neural populations becomes a trajectory spanning over time,

such as songbird neural dynamics [63], and space, such as memory dynamics of place cells

[64].

Nevertheless, the dynamics of the neural network is controlled by multiple layers and path-

ways [65, 66]. In some neural systems, feedforward networks are more prominent. The typical

example is the visual pathway modeled here, starting the retina to LGN and visual cortex. The

relatively simple organization of the retinal circuit makes it a perfect system for dissecting the

dynamics and computations of the the multilayered neural network [67, 68]. Leveraging the

feature of macaque retina with less dense distribution and large size of photoreceptors away

from the fovea, the STA analysis, using fine-size white noise checker images, can infer photore-

ceptors of the input layer while analyzing the spikes of ganglion cells of the output layer [67].

However, such an approach is difficult for analysis of general retinal neural systems, and STA

analysis can not detect bipolar cells of the hidden layer [17]. The STNMF was introduced to

consider the restricted two-layer network of bipolar cells and ganglion cells, where there are

no spikes in bipolar cells [17, 27]. Here we demonstrated that STNMF is applicable to fully

spiking neural networks with multiple layers. It is well known that a simple three-layer percep-

tron with one hidden layer can greatly expand the computational power of artificial neural net-

works. Similarly, multilayered neural network presents many interesting features, such as

synfire chains [69], of neural activities in neuroscience, resembling some experimental obser-

vations, such as songbird neural dynamics [63]. STNMF could serve as a tool for understand-

ing these dynamics.

Much effort has been made to characterize the neuronal receptive fields in LGN and visual

cortex [70–74]. However, the computation in the visual pathway is carried out by different lay-

ers and stages [65, 75], and there is no efficient way to dissect them systematically across multi-

ple layers [76]. Here we demonstrated that the STNMF is able to identify the receptive fields of

neurons in the input layer, even the STNMF was applied to output neurons in the final layer.
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Such an across-layer analysis of STNMF is a manifestation of nonlinear computation within

neuronal networks. Spike response of neurons is an indication of the nonlinear computation

using various ion channels in neurons [52]. Thus, the STNMF, leveraging the advantage of

NMF for describing local structures of images, can naturally fit in the neuronal systems with

spikes.

The ultimate goal of reconstructing neural circuits is to utilize those neural and synaptic

components for neural computation. In recent years, detailed neuroscience knowledge

strengthens the bottom-up approach of neural network modelling [77], in which one promi-

nent feature is to utilize neuroscience-revealed network structures to design, rather than hand-

craft, possible artificial network architectures [78]. Here we indicated that the STNMF can

detect computational components across layers or stages of cascade neural networks. Recent

studies show that NMF variants can be combined with the framework of multilayer architec-

ture [79, 80] to learn a hierarchy of attributes between layers. Thus, one future direction is to

extend STNMF to infer all the computational components simultaneously in multilayered

neural networks. Therefore, further extension of STNMF is likely to be fruitful for understand-

ing the hierarchical architecture of neuronal systems in the brain.

0.5 Limitations

A variety of advanced experimental techniques in neuroscience can measure different types of

functional neural signals. Spiking signal is one of the many formats. Other continuous signals

measured for single cells, such as two-photon calcium imaging, as well as for coarse-scale cell

ensembles, such as electroencephalogram and functional magnetic resonance imaging, can not

infer spikes directly. Further effort is needed to adapt STNMF to investigate these non-spiking

signals. Meaningful neural responses are often defined as peaks of these signals. Recent studies

imply there is a close correlation between peaks of a neural signal of two-photon calcium imag-

ing with spikes [81, 82]. Thus, extracting peaks as spikes can make STNMF work for neural

calcium imaging signals. Systematic studies are deserved for detailed examination of the

coarse-scale non-spiking neural signal using STNMF.

Although neural circuits are organized by layers across the brain and sensory informa-

tion flows in a feedforward way, recurrent connections between neurons are also prevailed

and useful for dynamic coding [83, 84]. We showed that STNMF can work well in networks

with weak recurrence and feedback. Future work is needed to extend STNMF to take into

account recurrence. However, these structure indices are rather static. Dynamical routing

of information in a network is more dramatic, which makes networks be in a regime of

feedforward dynamics with recurrent structures [61]. Recent studies using graph theory

suggest that neural network in the brain contains multiple ensembles of local community

or module subnetworks [85]. One possible way is to utilize the coding principle of sparse fir-

ing and ensemble firing in a large network to separate the whole network into a set of local

networks. One can apply STNMF iteratively and hierarchically through subsets of local net-

works for disentangling the effect of recurrent and feedforward connections on the informa-

tion flow.

Supporting information

S1 Fig. Related to Fig 3. The inferred results of STNMF converge to the right number of

presynaptic neurons if K is set to be a larger value. The receptive fields of extra modules are

noisy.

(TIF)
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S2 Fig. Related to Fig 3. STNMF is able to infer more cells across layers in a network. The

three-layer network has 16 cells in Layer 1. Among them, neurons 1–8 are connected to the

first neuron of Layer 2, and neurons 9–16 are connected to the second neuron of Layer 2. The

STA shows the receptive field of the Layer 3 cell. The receptive fields of modeled Layer 1 cells

are recovered by the STNMF inference.

(TIF)

S3 Fig. Related to Fig 3. STNMF enables to infer presynaptic cells with overlapped recep-

tive fields. There are four Layer 1 cells with overlapped receptive fields. The STA shows the

overall receptive field of the Layer 3 cell, while the STNMF separates them into individual ones

of Layer 1 cells.

(TIF)

S4 Fig. Related to Fig 3. STNMF inference in a four-layer network. Similar to Fig 3 but with

a four-layer structure. The STA shows the receptive field of the Layer 4 cell, while the STNMF

obtains the receptive fields of Layer 1 cells.

(TIF)

S5 Fig. Related to Fig 3. STNMF is able to infer cells in the network with weak recurrence.

Similar to Fig 3 but with a recurrent connection from the Layer 3 cell to cell 2 in Layer 2. The

recurrent connection weight is 0.1, compared to other weights as 1. STNMF can infer the

receptive fields of Layer 1 cells.

(TIF)

S6 Fig. Related to Fig 3. STNMF is able to infer cells in the network with weak feedback.

Similar to Fig 3 but with a feedback connection from the Layer 3 cell to cell 1 in Layer 2. The

feedback connection weight is 0.1, compared to other weights as 1. STNMF can infer the

receptive fields of Layer 1 cells.

(TIF)

Author Contributions

Conceptualization: Zhaofei Yu, Jian K. Liu.

Data curation: Shanshan Jia, Jian K. Liu.

Formal analysis: Shanshan Jia, Zhaofei Yu, Jian K. Liu.

Funding acquisition: Dajun Xing, Zhaofei Yu, Jian K. Liu.

Investigation: Shanshan Jia, Dajun Xing, Zhaofei Yu, Jian K. Liu.

Methodology: Shanshan Jia, Zhaofei Yu, Jian K. Liu.

Project administration: Zhaofei Yu, Jian K. Liu.

Resources: Shanshan Jia, Jian K. Liu.

Software: Shanshan Jia, Jian K. Liu.

Supervision: Zhaofei Yu, Jian K. Liu.

Validation: Shanshan Jia, Dajun Xing, Zhaofei Yu, Jian K. Liu.

Visualization: Shanshan Jia, Dajun Xing, Zhaofei Yu, Jian K. Liu.

Writing – original draft: Shanshan Jia, Dajun Xing, Zhaofei Yu, Jian K. Liu.

Writing – review & editing: Shanshan Jia, Dajun Xing, Zhaofei Yu, Jian K. Liu.

PLOS COMPUTATIONAL BIOLOGY STNMF for multilayer SNNs

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009640 November 29, 2021 19 / 23

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1009640.s002
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1009640.s003
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1009640.s004
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1009640.s005
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1009640.s006
https://doi.org/10.1371/journal.pcbi.1009640


References
1. Helmstaedter M, Briggman KL, Turaga SC, Jain V, Seung HS, Denk W. Connectomic reconstruction of

the inner plexiform layer in the mouse retina. Nature. 2013; 500(7461):168–174. https://doi.org/10.

1038/nature12346 PMID: 23925239

2. Zeng H, Sanes JR. Neuronal cell-type classification: challenges, opportunities and the path forward.

Nature Reviews Neuroscience. 2017; 18(9):530. https://doi.org/10.1038/nrn.2017.85 PMID: 28775344

3. Marc RE, Jones BW, Watt CB, Anderson JR, Sigulinsky C, Lauritzen S. Retinal connectomics: towards

complete, accurate networks. Progress in Retinal and Eye Research. 2013; 37:141–162. https://doi.

org/10.1016/j.preteyeres.2013.08.002 PMID: 24016532
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