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Abstract

In this work, the problem of bootstrapping knowledge in language and vision for autonomous robots
is addressed through novel techniques in grammar induction and word grounding to the perceptual world.
In particular, we demonstrate a system, called OLAV, which is able, for the first time, to (1) learn to
form discrete concepts from sensory data; (2) ground language (n-grams) to these concepts; (3) induce
a grammar for the language being used to describe the perceptual world; and moreover to do all this
incrementally, without storing all previous data. The learning is achieved in a loosely-supervised manner
from raw linguistic and visual data. Moreover, the learnt model is transparent, rather than a black-box model
and is thus open to human inspection. The visual data is collected using three different robotic platforms
deployed in real-world and simulated environments and equipped with different sensing modalities, while the
linguistic data is collected using online crowdsourcing tools and volunteers. The analysis performed on these
robots demonstrates the effectiveness of the framework in learning visual concepts, language groundings and
grammatical structure in these three online settings.

Keywords: Language and Vision, Language Acquisition, Language Grounding, Grammar Induction.

1. Introduction

We aim to provide a machine with the ability to incrementally bootstrap its knowledge in natural
language and perception. By doing so, we provide robotic agents with the ability to learn from their own
experiences about objects and activities in their environments.

1.1. The Language Acquisition Problem5

Language acquisition is the process by which an agent acquires the knowledge needed to comprehend
natural language, as well as to produce meaningful words and sentences to communicate with others. The
quest to find solutions to this problem has raised many issues. In this work, we attempt to tackle some
of these by addressing the problem of learning perceptual categories, how language elements map to these,
and what grammatical structures are used to talk about the perceptual categories. This is achieved by10

building a system which uses loosely-supervised learning of a language’s syntax and semantics from a corpus
of videos and descriptions featuring robots performing various tasks. This requires incremental learning
methods that can operate on the outputs of various sensing modalities, such as RGB and depth cameras,
language, etc. The outcome of this learning process is a collection of concepts, such as objects, relations
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and activities that occur in the robot’s environment, as well as their mapping to/from natural language15

such that the robot can understand given commands and be able to interact with humans. We have built a
system that implements this approach, and for convenience of reference below, we name this system OLAV

(Online Language Acquisition from captioned Video). Figure 1 illustrates the main functionalities of OLAV.

Discretisations of perceptual spaces

(colour, shape and direction shown)

d
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Probabilistic grammar

event →0.7 action, entity, destination
event →0.3 action, entity
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Figure 1: An overview of OLAV’s functionality. (top) OLAV receives a video and a textual annotation describing the com-
mand being performed. (middle) OLAV incrementally learns conceptualisations of the input, including (left) discretisations
of perceptual spaces such as colour, shape and direction), (centre) groundings of the n-grams found in the annotations, and
(right) a probabilistic grammar induced from the annotations. (bottom) These learned representations can then be used to
parse a novel sentence, and then transform it to an abstract relational graph-based perceptual representation. This could then
be used to guide a trajectory planner, for an actual robot hand – this functionality is not currently part of OLAV– hence the
shaded arrow to this final component. (This last functionality is not dissimilar from the functionality present in [1] where a
low level manipulation trajectory is produced from a high level plan; but in OLAV the representation is entirely emergent from
the examples over time.)

1.2. Structure of the Paper

In Section 2 we survey prior work in the field of language acquisition. In Section 3 we present the20

overall learning framework. In Section 4 we show how perceptual concepts are acquired incrementally, while
in Section 5 we describe how language n-grams are grounded to these acquired perceptual concepts. In
Section 6 we show how a probabilistic context free grammar can be acquired without any further human
input in an online fashion. In Section 7 we validate the entire framework in three robotic settings and then
draw the paper to a close and discuss possible future research directions in Section 8.25

This paper represents an expansion and integration of portions of previous work published by the au-
thors [2, 3, 4, 5]. It also includes material from the PhD thesis of the first author[6].

2. Related Work

One of the earliest computer systems capable of understanding natural language commands to perform
tasks was SHRDLU [7], which was equipped with all the knowledge needed to understand linguistic com-30
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mands in a simulated robotic world. Since then, there have been many systems which learn at least some
aspect of the knowledge that SHRDLU was pre-given, but to the best of our knowledge all these systems also
exploit pre-given knowledge. A principal novelty of OLAV is that it makes very few assumptions compared
to other work. Below, we first briefly survey some of this work, focusing on grounding language for robots,
and then in Table 1 we summarise the difference in assumptions made by OLAV compared to other systems.35

The field of language acquisition contains within it a large number of research areas, including: (i) The
grounding of language to vision (learning a semantic representation of language), and (ii) the grammar
rules of language (learning a syntactic representation of language)1. These two areas, which are surveyed in
Section 2.1 and Section 2.2 respectively), are essential for understanding simple natural language commands
such as ‘pick up the red block’, and therefore, are a good starting point to bootstrap our robot’s knowledge.40

Moreover, it has been argued [8] that in general, learning language without experience grounding the meaning
of language severely hampers language understanding research.

2.1. Language grounding

Spranger and Beuls [9] note that referential uncertainty is often thought to be the most important
aspect of word learning. Quine [10] describes referential uncertainty as the problem of how words get their45

meanings, which is a general question anyone faces when trying to learn a new language. The space of
possible meanings for a new word is unbounded. A word can be used to refer to anything from a physical
object (e.g. book), a feeling (e.g. love), etc. The language grounding problem can be thought of as a subset
of the referential uncertainty problem, where the space of possible meanings is limited to concrete observable
ones, such as learning about physical objects.50

Siskind [11] focused on understanding how children learn their native language, and how their language
is mapped to their visual representation of the world. In many ways, his research is the closest in spirit to
our present proposal. Later work from Siskind’s lab includes Yu et al [12] which uses a pre-given grammar
but otherwise presents a comprehensive framework for language grounding.

Needham et al. [13] used language grounding as part of a system to teach artificial agents to play table-55

top card games. The system observed two people playing the game, and recorded audio-video data of how
the game is played and learned from it. The language in the audio was limited to one word at a time.

Whereas most work considers only the grounding of objects, and their properties, and sometimes actions
and spatial relations too, there has been some work on other aspects of language such as comparatives,
quantifiers and proportions, for example Pezelle et al [14], and Rahgooy et al [15]. Moreover, some research60

has addressed the problem of learning the grounding of specific action words or verbs (e.g. [12, 16, 17]).

2.1.1. Language acquisition in robots

An early work to try and learn language grounding for robotics applications is Roy et al. [18]: their system
was capable of learning objects’ names, which used mutual information criteria from recorded images and
audio data. Since then, there has been a great deal of further such work.65

One work sharing some similarities with OLAV is that of Sinapov et al [19], who present a system in which
a robot learns various object properties and binary relations by using programmed robot exploration and
supervised labelling. A similar approach is taken in Thomason et al [20] where the robot learns groundings
via an I spy game, which provides input for a supervised SVM-based model. This approach was used in
subsequent work such as Thomason et al [21] who use word embeddings to help ground novel words2.70

Another approach which has a number of similarities toOLAV is that of Yu et al [16]; they assume a
fixed lexicon and a pre-existing parse (and thus do not attempt grammar induction) but present method
which exploits the compositionality of events and language which is able to learn meanings of words and
some n-grams covering objects, spatial prepositions and some actions. Whereas most work aims to learn

1This is not to suggest that syntax and semantics are completely separate; indeed it is a basic purpose of grammar to
help map from form to meaning, and meaning may influence a speaker’s choice of grammatical form. But it is still useful to
distinguish between these two aspects of language in our review.

2An interesting aspect of this work is that non visual predicates such as heavy, or rattles, are learnt as well as visual ones.
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language grounding from real world data, others consider learning from synthetic data. A disadvantage of75

this is that there can then be discrepancies or misalignment between the learned model and real world data.
One attempt to bridge this gap is Can et al. [22] who investigate how to reason about the grounding of an
instruction and a robot’s world representation. Researchers have also used web-available descriptions and
images to teach robots how to perform different tasks. For example, Beetz et al. [23] implemented a system
that used descriptions from a wikihow website to teach a robot to make pancakes.80

A recent survey of language use and learning in robotics is Tellex et al [24]. Two classifications of work
in this area are offered: (i) by technical approach and (ii) by problem addressed. Learning is one of the three
technical approaches covered (the others being logic-based methods), and methods that focus on HRI. They
list ten common datasets3 used for language grounding in robotics; of these, most only contain static images
and do not support action learning; of the others, they are largely focused on navigation rather than the85

table top manipulation worlds we focus on in this paper, though the SLU dataset4 does include manipulation
actions for a forklift truck. They note that many of the learning approaches use already defined languages,
rather than learning the language as we do here with OLAV. They also distinguish between systems that
learn a mapping to prespecified visual concepts, and those that learn new visual concepts, and that the latter
is more challenging as a learning problem. They also note the increasing amount of work based on deep90

learning. Some of this treats the problem as a language translation problem (from language to a sequence
of actions or goals); in general the set of tokens to ground to is prespecified (unlike in our work). Common
to all these deep learning based approaches is that they are not online, i.e. do not support incremental
learning, require large training datasets (and hence are not particularly suitable for robotic applications
where acquiring such data can be problematic), and are black-box methods. Like them, we do not delve95

further into this area, as the methods and goals of such work differ markedly from ours.

2.2. Grammar induction

Grammar induction refers to the process of learning a formal grammar from a set of observations, usually
as a collection of re-write rules or productions or alternatively as a finite state machine or automaton of
some kind, thus, constructing a model for the syntactic or semantic structure of natural language.100

Most researchers have tackled the grammar induction problem in a supervised manner to enable their
robots to understand natural language commands. The learning is achieved by providing the robot with
input sentences along with their manually annotated grammar trees, be it syntactic or semantic trees. For
example, the works of Dukes [26] and Wang et al. [27] used a supervised approach to learn how to parse
natural language commands for manipulation tasks into a formal representation that a robot can understand.105

Another example of grounded language acquisition and grammar induction is that of Ross et al [28] who
used paired sentences and videos to help train a semantic parser, which already has knowledge of Part-of-
Speech (POS) syntactic types for its lexicon. In Matuszek et al [29] it is shown how to jointly learn language
and perception models, but the approach is demonstrated for object property learning, but not for actions,
or spatial relations. A follow on work [30] built on this system and demonstrated its application to other110

languages (Spanish and Hindi).
There has also been a small amount of work on unsupervised learning techniques to tackle the grammar

induction problem from unlabelled sentences. For example, Chen and Mooney [31] implemented a system
that learns to transform natural-language navigation instructions into executable formal plans. The trans-
formation from language to plans is achieved using a grammar parser that was trained without using direct115

supervision. However, the parser was provided with natural language instructions such as ‘Place your back
against the wall of the ‘T’ intersection. Turn left. Go forward’, and their human-annotated plans that the
robot can understand and execute such as Turn(), Verify(back:WALL), Turn(LEFT), Travel(). While un-
supervised grammar induction techniques enable learning from unlabelled data, their performance is usually
significantly worse than those of the supervised techniques.120

3A new challenge dataset for which a state-of-the-art neural baseline performs poorly is presented in Shridhar et al [25].
4http://people.csail.mit.edu/stefie10/slu. Last accessed 24 Aug. 2020.
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2.3. Summary

There has not been space here to have provided a comprehensive summary of the field, but we have
aimed to cover representative approaches and methods. In all the works described above, and indeed all
other research we are aware of, the language acquisition problem was simplified by using at least one of the
following 10 assumptions – Table 1 shows which systems made which assumptions.125

1. The presence of a stop word list to filter out unwanted words, such as function words: a word whose
purpose is to contribute to the syntax rather than the meaning of a sentence, for example the in pick
up the ball.

2. Only individual words are to be grounded rather than n-grams composing a phrase to be grounded.
3. Predefined syntactic or semantic grammar rules used to parse input sentences and extract key words130

such as verbs, nouns, etc. rather than learning from raw textual descriptions.
4. A set of predefined atomic actions, spatial relations, and/or object classes that are used as the space

of possible meanings of language, rather than learning from raw vision data.
5. A teacher that supervised the learning of language grounding and provides constant feedback to correct

any mistakes.135

6. A very limited number of objects in the world, sometimes just one or two, greatly simplifying the
grounding problem.

7. A 1:1 correspondence between words and semantic concepts.
8. Only certain aspects of language are to be learned (e.g. only object properties, but not actions or

spatial relations).140

9. The learning is non-incremental – i.e. all training data is supplied in batch mode, rather than incre-
mentally with the model being updated in an online manner.

10. Background world knowledge is exploited in the learning process.
Exploiting one or more of these assumptions (and in most cases more than one) simplifies the learning of

language in each system discussed above and may have enabled a focus on learning more complex concepts,145

such as making pancakes. However, in this paper, we focus on natural language acquisition itself, and present
novel techniques capable of acquiring semantic meanings of words and phrases from unlabelled linguistic
and vision data, all in an online fashion, (without storing all previous instances). Our contribution is best
regarded not as an improvement on the state of the art surveyed above, but rather a radical alternative
methodology to address the language grounding and acquisition task since there is no previous work which150

requires so little supervision and so little in the way of predefined knowledge and assumptions.

3. Learning Framework

We aim to answer the following two questions: (i) can a robot bootstrap its knowledge in language and
vision? (ii) can a robot ground language to concepts in vision? In this paper we present OLAV, a novel
approach capable of acquiring symbolic knowledge of both language and vision concurrently, incrementally155

and in a loosely supervised manner. Furthermore, we also regard it as desirable that the outcome of the
learning process in OLAV is representable in a human understandable form.

The learning is accomplished using a show-and-tell procedure, by presenting OLAV with snippets of data
consisting of videos and text. The learning videos come from recording volunteers controlling a robot to
perform a variety of table top tasks. The videos were subsequently annotated with appropriate linguistic160

descriptions as shown at the top of Figure 2. The recorded videos and descriptions are used as input data to
OLAV to learn three key components: (i) the visual representation of the world; (ii) the groundings of words
and phrases to the learned visual representation; and (iii) grammar rules which generate the language. To
the best of our knowledge, this is the first system that learns all these three components, and with only
minimal prior knowledge of any of them.165

Figure 2 illustrates the main steps which OLAV performs in order to incrementally update its representa-
tions with a new video accompanied by an annotation while Figure 3(b) shows all the components of OLAV.
The framework is applied on every video-sentence input, and the cumulative knowledge in language and
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Ref.
Assumption

1: Stop
words

provided?

2: Only
1-grams?

3:
Grammar
provided?

4: Predef.
perceptual
concepts?

5: Strong
supervision?

6: Limited
number

of objects?

7: 1:1
groundings?

8: Which
groundings
learned?

9: Batch
mode?

10:
Background
knowledge?

Siskind (1996)
[11]

N Y N
Y

(no vision
component)

N N *:* O,P,A N N

Needham et al (2005)
[13]

n/a Y n/a N N Y 1:1 O,A,R N
Mode

declarations

Yu et al (2018)
[12]

Y N Y
Learnt by
supervision

N N 1:1 O,P,R,A Y N

Yu et al (2015)
[16]

Y

Only as
defined
by the

grammar

Y
Y, or

learnt by
supervision

N Y 1:1 O,P,R,A Y
Defns of
actions

and relns.

Roy et al(1999)
[18]

N N n/a N N Y 1:1 O Y N

Sinapov et al(2014)
[19]

n/a N n/a N Y Y 1:1 O,R,P N N

Thomason et al(2016)
[20]

Y Y n/a N N Y 1:1 O,P N N

Can et al (2019)
[22]

Y

Only as
defined
by the

grammar

Learnt by
supervision

Y N Y 1:1 O,P,R,A N N

Nevens et al (2020)
[32]

n/a N N N Tutor N *:* O,P N N

Lauria et al(2002)
[33]

n/a Y Y Y Y Y 1:1 O,A N Y

Huang et al (2017)
[34]

n/a

Only as
defined
by the

grammar

Y Y Y N 1:1 O,R,A Y N

Tellex et al (2011)
[35]

Y N Y N N N *:1 O,R,A y N

Matuszek et al (2013)
[36]

Y N Y Y N N 1:1 O,P,R,A Y

Barrett et al (2018)
[37]

Y N Y
Learnt by
supervision

N N 1:1 O,R Y N

Patki et al (2019)
[38]

n/a Y Y
except
objects

Y N Y O N N

Roesler et al (2019)
[39]

N N N Y N Y *:1 O,P,R,A N N

Thomason et al (2017)
[40]

Y Y N N
Active
learning

Y 1:1 O,P N N

Steels et al (2000)
[41]

n/a Y n/a N N Y 1:1 O N
Action
models

Guadarrama et al (2013)
[42]

Y Y Y
Learnt by
supervision

Y N 1:1 R Y N

She et al (2014,2017)
[43, 44]

Y

Only as
defined
by the

grammar

Y N Y n/a 1:1 O,A N Y

Spranger et al (2015)
[45]

N Y N N N Y 1:1 O,R N N

Thomason et al (2020)
[46]

Y Y
CCG

lexicon &
categories

Y Y N *:1 O,P N ontology

Matuszek et al (2012)
[29]

Y Y

Categories
provided for
all but object
(attributes)

N

Supervised
initialisation.

Pointing
to objects

N *:1 O,P N N

Roy et al (2002)
[47]

N N N N N N 1:1 O,P,R N N

OLAV N N N N N N *:* O,P,R,A N N

Table 1: A table showing, for the works most closely related to OLAV discussed above, which of the assumptions 1-10 are
made. OLAV makes none of these assumptions. Note that we only include models with a learning component and where the
main learning mechanism is non-neural in this comparison, i.e. methods which learn a transparent model. In the 1:1 groundings

column, an entry of 1:1 means both of these must be unique; 1:* means that an n-gram can refer to multiple concepts, and
*:1 that multiple n-grams can refer to a single concept, and *:* that neither need be unique. In the Which groundings learned

column, the letters have the following meanings: O=Objects, A=Actions, R=Spatial Relations, P=Object Properties. In some
cases the source paper did not make the answer explicit, so the entry was inferred to the best of our ability from our reading.
Note that there are other distinguishing aspects of some systems which are not tabulated here. For example, some systems
ground places descriptions – here we have treated these as objects (O). In the table we include some work for which there was
not sufficient space to explicitly discuss it above, but which is still related to the goals of our research.

vision is updated incrementally with each processed video-sentence pair. It should be noted however, that170

while learning visual concepts starts from the very first video-sentence pair, it may take a number of these
before there is sufficient evidence for grounding hypothesis generation to commence, and then for grammar
induction to start.

We presuppose that the robots can visually analyse the environment in order to extract a multitude
of features and incrementally recover useful classes of features, which are referred to as visual concepts:175

abstractions of the feature spaces generated by the robot modalities which carry a human-level meaning,
for example the colour red, or the the spatial relation left of. As the robot learns the visual concepts, the
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Forming perceptual concepts by incrementally 

clustering shapes, colours, directs, actions…

Annotation of the video sequence:

“Place the red apple in the white bowl”

colours locations shapes directions actions

place, place the,  place the red, ..

the, the red, the red apple…
red, red apple, red apple in,…
apple, apple in, apple in the,…

n-grams

video sequence

C1 L1 S1
D1

A1

colour →0.16 ʽredʼ
colour →0.13ʽwhiteʼ
colour →0.09ʽorangeʼ
shape →0.2 ʽappleʼ
shape →0.3ʽbowlʼ
shape →0.07ʽorangeʼ
action →0.16 ʽplaceʼ
action →0.21ʽmoveʼ
...

Abstraction of 
video sequence to 
a sequence of 
states encoded 
using relational 
graphs whose 
nodes are  
perceptual cluster 
tokens.

Correlation matrix 
updated with new 
n-gram/perceptual 
concept co-
occurrences.

Extraction of 
graphlets 
representing 
perceptual 
concepts 
which are 
candidates 
for 
grounding.

Extracting  n-grams to form potential linguistic concepts

Integer linear programming used to 
form grounding hypotheses.

Refinement
of grounding 
hypotheses.

Incremental 
update of 
PCFG

(A)

(C)

(B)

(D)

(E)

(F)

(G)

(H) (I)

Figure 2: The process by which OLAV incrementally updates its representations to learn perceptual categories, groundings of
n-grams to these, and a Probabilistic Context Free Grammar (PCFG). (A) Objects are recognised in the RBG-D frames and
subsequently tracked. (B) Perceptual categories are formed from these objects by incrementally clustering the properties (such
as colours, locations and shapes) and relationships (such as distance and direction) between them; one example (labelled C1, L1,
S1, D1, A1 ) of each kind of depicted category is illustrated in the front ‘tile’. (C) A video sequence can now be abstracted as
a sequence of states each of which is represented as a relational graph whose nodes are the perceptual categories formed in (B).
(D) Graphlets (i.e. subgraphs of the state graphs) are extracted as these are candidates for grounding. (E) Potential linguistic
concepts are extracted from the annotation by forming n-grams. (F) A correlation matrix which represents the frequency
of co-occurence of n-grams (rows) and perceptual categories (columns) is updated. (G) Integer Linear Programming is used
to decide which correlations should form grounding hypotheses. (H) The hypotheses are filtered to eliminate inconsistent
possibilities. (I) New rules can be added to the current PCFG, and probabilities updated for existing rules. Note that it is
possible for a single linguistic concept (e.g. ‘orange’ to refer to two different perceptual concepts. This process is repeated for
each new annotated video.

natural language descriptions are then analysed to ground words and phrases to their most relevant visual
concepts, followed by learning simple syntactic rules (i.e. a grammar) that govern the sentence structure.

We summarise here the inputs and outputs of each of the boxes (labelled B1-B11) in Figure 3. We also180

give pointers to the sections where each of the boxes are explained in more detail below – the overview here
is necessarily very brief, and intended principally to catalogue the input-output relationships between the
different components of the architecture. It also serves as a road map to the rest of the presentation of the
architecture below. We mark with “(*)”, those aspects we regards as being particularly novel.
B1 Object detection and tracking. Input: Video represented as a sequence of RBG-D frames. Output:185

tracked objects located in time and space. See Section 4.2
B2 Learning simple visual concepts. Input: tracked objects from (B1) and the current clusters for each

space learned from previous videos. Output: Updated sclusters of each simple concept perceptual
space (e.g. properties of objects such as colour, shape, distance, and relationships between objects,
such as distance and direction). Each perceptual space is a continuous space, but is discretised as190

a result of this step, with new concepts being added as further videos are processed, and existing
concepts adjusted. Incremental Gaussian Mixture Models (IGMMs) are used to perform this clustering
incrementally. See Section 4.4. (*)
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Place the red apple in the white bowl

(a) Input data (b) Learning framework

Object detection

and tracking

Learning simple

visual concepts

Learning complex

visual concepts

Linguistic
concept

extraction

Language and
vision concept
associations

Grounding
hypothesis
generation

Grounding
hypothesis

filtering

Grounding
hypothesis
validation

Language

Extract vision trees Generate RCL trees Learn PCFG rules
b

b

Video

clip

B1 B2 B3

B4 B5 B6 B7 B8

B9 B10 B11

Figure 3: (a) Examples of input video clips annotated with natural language commands. (b) Our learning framework,
consisting of three main components: (i) learning of visual concepts (the orange block), (ii) natural language grounding (the
purple block) and (iii) grammar induction (the green block). The framework is applied to every video-sentence input pair,
which can then be discarded after processing. (Best viewed in colour.)

B3 Learning of complex visual concepts. Input: tracked objects from the current video (B1) and the
perceptual categories from (B2) for each object (e.g. colour and shape) and each pair of objects (e.g.195

distance and relative direction). Output: a sequence of relational graphs; each graph represents a
qualitative temporal state and the objects involved and their discretised perceptual categories; if the
sequence is not novel, the action space is not updated. See Section 4.5.

B4 Linguistic concept extraction. Input: the annotation for the current video and the list of n-grams
from all previous videos. Output: all the n-grams from the annotation (with n ≤ 3) are added to the200

overall list of n-grams. See Section 5.2.
B5 Language and vision concept associations. Input: (i) A correlation matrix, K, computed from all pre-

vious video-language pairs which has recorded the frequency of co-occurence of each n-gram/perceptual
category pair; (ii) the list of n-grams in the current video from (B4); (iii) the list of perceptual cat-
egories in the current video from (B2) and (B3). Output: An updated correlation matrix K′. See205

Section 5.3.
B6 Grounding hypothesis generation. Input: the correlation matrix, K, from (B5). Output: Integer

Linear Programming is used to turn each square in the correlation matrix, K, into either a 1 (repre-
senting the hypothesis that that row (n-gram) can mean that column (perceptual concept), or a 0,
representing that the n-gram is not associated with that perceptual concept; we call this map, A; it is210

represented visually as a 0-1 (white/black) matrix. See Section 5.4. (*)
B7 Grounding hypothesis filtering. Input: A map, A, (i.e. the output of (B6). Output: A modified

map, A′, possibly with some entries which were 1 now 0. See Section 5.5.
B8 Grounding hypothesis validation. Input: A map, A, (B7); also the sequence of relational graphs for

the current video from (B3) Output: A modified map, A′, possibly with some entries which were 1215

now 0. See Section 5.6. (*)
B9 Extract vision trees. Input: The sequence of relational graphs for the current video from (B3).

Output: A vision tree for the current video. A vision tree which is a tree which contains the
three main components of a command to the robot (the action, the entity and the destination) – see
Figure 14.220

B10 Generate RCL trees. Input: the vision tree from (B9); the text annotation of the current video.
Output: An RCL (Robot Control Language) tree which matches the input vision tree – see Section 6.2
(*).

B11 Learn PCFG rules. Input: The existing PCFG so far (an empty grammar initially); the RCL tree
from (B10). Output: a modified PCFG. See Section 6.4.1.225

3.1. Assumptions and Limitations

In our learning framework we make several assumptions, some of which are purposeful and serve to
usefully delimit the scope of the investigation while others are more problematic and are left as open
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research questions for future work in language acquisition in robotics. The main assumption we make is on
loosely-supervised learning, while some further assumptions are discussed in the remainder of this paper. We230

use the term loosely-supervised to describe the learning process that requires the videos and sentences to be
temporally aligned beforehand i.e. for each video there is specific text that is associated with it, in our case
which describes the action in the video; the question as to how continuous activity is segmented into discrete
video-text pairs is not addressed in this paper – but see the comments in further work, Section 8.4.1. We
consider the learning in OLAV to be loosely-supervised rather than supervised or unsupervised: the videos235

in the datasets described below are all fairly short and depict a single action, or a very short sequence
of connected actions, and the linguistic annotation describes precisely these action(s), with no distracting
uncommented actions (though there may be objects in the scene not described). An unsupervised system
would be able to learn from longer non-segmented videos and documents, or even learn from a constant
stream of audio-video data, which remains an ambition for the future. A fully supervised system would240

require a specification of precisely which words correspond to which perceptual objects and actions, thus
also pre-defining the parts of speech for words, such as those systems labelled “Y” in Table 1, column 4.

4. Visual Concepts

In this section, we introduce our notion of visual concepts: abstractions of the feature spaces generated
by the robot sensing modalities which carry a human-level meaning. For example, a colour represented as a245

cluster of values in the HSL colour space is considered a visual concept. We present in the following sections
the robots, sensors and feature spaces used, along with the unsupervised methods employed to generate
such concepts.

4.1. Robots and Sensors

Three different robots are used to validate our learning approach: (i) A Baxter robot from Rethink-250

Robotics (named LUCAS) that has two arms and two fingered grippers; (ii) A custom made mobile manip-
ulator by Sinapov et al. [48] that uses a 6-DOF Kinova Mico arm5; and (iii) A simulated 3-DOF robotic
arm with a two fingered gripper in a chess-board simulation environment that we developed and presented
in Alomari et al. [2]. The three robots are shown in Figure 8 which appears in Section 5.1. The robots are
equipped with at least one sensor that allows mapping of the environment, such as a Kinect26 that allow255

collecting RGB video streams in addition to depth point clouds.

4.2. Low-Level Processing of Input Data

The robots are used to collect short video clips of the environment, where each video contains one action
performed, e.g. a robot moving an object, a robot dropping an object, etc. Each recorded video clip is
processed to detect and track objects in the scene. For each video clip, OLAV encodes a number of visual260

representations by initially detecting objects in the video using a table-top object detector [49]. Once an
object is detected in a video clip, the location of this object is tracked across all remaining frames using a
particle filter tracker presented by Klank et al. [50].

4.3. Concept Extraction

Concepts are learned automatically by clustering the low-level sensory input of each of the robot’s sensor265

modalities after an appropriate encoding. This clustering operation results in a collection of classes that
are candidate concepts within each feature space. Because OLAV has no prior knowledge of the structure of
the sensor feature spaces, it uses probabilistic modelling techniques for each feature space independently to
elicit meaningful classes that are supported by the observed data.

We differentiate between two kinds of visual concepts, (i) simple concepts : ones that can be detected in270

a single observation. For example, objects are simple concepts that can be segmented from 3D point clouds

5Robotnik, http://www.robotnik.eu/robotics-arms/kinova-mico-arm/ – last accessed in November 2018.
6Microsoft, http://www.microsoft.com/en-us/kinectforwindows/meetkinect/features.aspx – last accessed in October 2017.
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using geometrical and textural cues. On the other hand, (ii) complex concepts: ones that manifest over
longer sequences of observations. For instance, temporally-extended robot actions are examples of complex
concepts. For these, a more elaborate encoding and more sophisticated clustering mechanism is needed. We
discuss both simple and complex concepts below.275

4.4. Simple Concepts

Our simple concept acquisition is demonstrated by extracting two types of concepts from raw data. The
two types are: (1) object properties, and (2) spatial relations.

4.4.1. Object properties

For each detected object, OLAV aims to learn about its properties (shape, colour, and location). This is280

achieved by clustering the values in these continuous feature spaces into a number of visual concepts. This
set of features is not intended to be exhaustive, but rather to demonstrate our approach. Other features
could be easily added, such as size and texture of objects.

To learn shapes, OLAV uses the fast point feature histogram (FPFH) representation [51]. AFPFH is
a multi-dimensional histogram of features which describe the local geometry around a point p in a 3D285

point cloud. The FPFH values from each scene are clustered to generate visual concepts using Gaussian
mixture models and a Bayesian Information Criterion (BIC) as shown in Figure 4. The resulting Gaussian
components are used as concepts to represent unique shapes in the environment. Similarly, for colours and
locations, the values for these two are extracted for every object and clustered. Colours are measured in
HSL space, while locations are measured by the centre location (x, y, z) of each object.290

Figure 4: Left: Examples of Fast Point Feature Histograms for four objects in a point cloud. Right: Examples of two different
object clusters with the averaged (mean) values of each of the 33 bins of FPFH shown in the centre of each cluster.

4.4.2. Spatial relations

For every pair of detected objects in a scene, two pair-wise spatial relations are computed from their
centroids: Euclidean distance, and relative direction (azimuth and altitude angles), where distance : object×
object → R and direction : object × object → [0, 360) × [0, 360). OLAV computes the azimuth and altitude
angles from the point of view of the observer (the robot) as it assumed that the individual objects do not295

have a main or principal axis or a front face to compute such angles from. Thus the learning of spatial
relations such as left and right is limited to egocentric rather than allocentric relations at present. Also,
learning is presently limited to simple pair-wise directions and distances as opposed to learning comparatives
or superlatives too, such as further right, rightmost, etc. as learning these concepts requires a more complex
representation and inference mechanism than is present in the current version of OLAV.300

4.5. Complex Concepts

We define complex concepts as ones that manifest over longer sequences of observations. In this paper
we restrict OLAV’s task to learning about robot activities; see [52] for how we built a system that shares
much of its architecture with OLAV and learns about human activities.
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To learn about complex concepts, i.e. robot-action concepts, the robot is controlled by volunteers to305

demonstrate how to perform different table-top tasks. The learning happens in the following manner: we
think of a command for the robot such as ‘move the blue egg onto the mug’ and record this as textual
annotation; then a volunteer drives the robot arm using a joystick to perform this action while the robot
records the environment using an RGB-D sensor. Using the recorded videos, the robot learns about the
different actions using three processes: first, encoding the visual world into a number of predicates; second,310

abstracting the changes in the visual world using spatio-temporal graphs; third, mining these graphs to
obtain sub-graphs (or graphlets) that are used as representation for the robot actions.

Visual world encoding: The objects and relations that are involved in each action are represented
using a number of predicates. Each video clip is processed to extract the unique spatial and object related
concepts. The representation is made using a collection of predicates of the form: object-concept(object)315

for object properties; and spatial-concept(object1, object2) for spatial relations. To extract these predicates,
first, each detected object is assigned a unique number (an id = 1, . . . ,m) while the robot gripper is assigned
a unique id = GR, and each visual concept is assigned an internal symbol, e.g. the cluster representing the
red colour is colour1. Each object and relation is represented using these internal symbols, which is decided
using the Mahalanobis distance [53]; the observation in our case is a measured value of an object property320

(colour, shape, location) or a spatial relation (direction, distance) at a single frame in a video clip, and the
distribution is an extracted Gaussian component that represents a simple concept. This process is repeated
for every object and relation at every frame in the video clip. The next step in learning robot-action concepts
is to represent changes in object properties and spatial relations using spatio-temporal graphs.

Spatio-temporal graphs: Spatio-temporal graphs are Directed Acyclic Graphs (DAGs) [54] comprising325

three layers. These graphs have been used in the literature to model human activities as presented by
Sridhar et al. [55, 56], Gatsoulis et al. [57] and Duckworth et al. [58]; an example of these graphs is shown
in Figure 5. The three layers of the spatio-temporal graphs are: (1) the object layer: used to represent the
objects in the scene with a single node per object, (2) the spatial layer: used to represent the Qualitative
Spatial Representations (QSRs) between pairs of objects with a single node per spatial relation, and (3) the330

temporal layer: used to represent changes in spatial relations using Allen’s Interval Algebra [59].

Figure 5: Spatio-temporal DAGs. (top-left): two objects o1 and o2 moving away from each other with every frame. (bottom-
left): the QSRs between the two objects at every frame using RCC5 [60] with relations Proper-Part (PP), Partially-Overlapping
(PO) and Discrete-Regions (DR). (right): the spatio temporal DAG for this scene, the temporal relations between the QSRs
using Allen’s Interval Algebra. The temporal relations are meets (m) and before (<).

Our spatio-temporal graphs differ in three ways: first, more properties and relations are encoded into
each layer to allow for more complex representation of the world; second, our graphs use extracted concepts
that OLAV learns by clustering the video clips as opposed to predefined ones such as the RCC5 in Figure 5;
third, temporal relations are abstracted into a sequence of states holding over a maximal interval, where each335

state represents a constant qualitative configuration of the visual world; rather than using Allen’s relations.
An example demonstrating OLAV’s graph representation is shown in Figure 6.

Extracting concepts from spatio-temporal DAGs (graphlets) The principle OLAV uses for learn-
ing the mapping between language and vision is to seek frequent co-occurrences of words and sub-graphs
extracted from the spatio-temporal DAG of each video clip. The idea is to relate words to fragments of the340

visual representation of the world. Ideally, learning might perhaps be performed on all possible sub-graph
structures, but this remains an ambition for the future. In the research reported here, learning is steered
towards (1) object properties, by extracting all connected sub-graphs involving objects nodes and their prop-
erties, (2) spatial relations between pairs of objects, by extracting all connected sub-graphs from relational

11



Figure 6: Extended DAG representation for two moving objects with changing properties: (top-left) two objects o1 and o2
moving away from each other, and object o1 is changing its colour from white to black (bottom-left) this video has two colour
concepts (C1=white, and C2=black), and three distance concepts (d1= touch, d2=near, and d3=far). The three rows show
the values of object colours (o1, o2) and distance (D) at every frame, forming a number of intervals. By splitting the intervals
whenever a change occurs in any of them, a sequence of states is generated.

nodes R and their properties, and (3) robot actions, by extracting sequences of sub-graphs that contain the345

gripper, the moving object, and the relational nodes that connects the gripper node with this object node.
We will refer to these sub-graphs as graphlets, where each graphlet has at least one connection node used to
connecting different graphlets together, thus, enabling the robot to reconstruct a complete spatio-temporal
DAG. This ability will be used later to enable learning of word meanings, and grammar rules.

4.6. Continual Learning of Visual Concepts350

In our incremental learning process, the robot is introduced to new visual concepts over time, e.g. new
colours, spatial relations, etc. We utilise unsupervised incremental modelling techniques to update the
learning of simple visual concepts. Note, we do not cover the incremental updating of complex concepts,
i.e. robot activities, since, in our current representation when an activity is identified in a video it is either
identical to a previous one, or not – we leave it for future work to consider how variants of robot activities355

could be learned; some work in this direction includes [56, 61]. OLAV uses the Incremental Gaussian Mixture
Model (IGMM) technique presented by Song and Wang [62]. An IGMM is used to create Gaussian models
to represent newly observed concepts and update previously learned ones, thus allowing OLAV to link varied
observations across videos. This variation can happen owing to a number of reasons such as different lighting
conditions when the videos were recorded, observing concepts from different view points, occlusions, etc.360

The IGMM technique is illustrated in Figure 7. The use of IGMMs to model concepts allows OLAV to
efficiently update its models using a single pass over the data, optimising both storage and computation
complexity, making it ideal for incremental learning.

(a) Old Concepts (b) New Concepts (c) Merging/Creating (d) Merged Concepts

Ai

Bi
Ci

1
Ai-1

Bi-1
Ci-1

Figure 7: IGMM operating over Gaussian components in a hue-saturation colour space. (a) There are three colour concepts
resulting for all video clips to date (red, green and blue, with frequencies Ai−1, Bi−1, and Ci−1 respectively, assuming this
is the ith video that is now being processed. (b) In this ith video, there are three clusters observed. (c) These are then
merged with the previous concepts. Finally (d) shows the new, merged clusters, with their updated frequencies Ai, Bi, and Ci

respectively. The new concept yellow, with an initial frequency of 1, is also shown in (d). (Best viewed in colour.)
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5. Language Grounding

The robot has to learn the meaning of words without being able to ask direct questions as the robot is365

assumed not to know the language initially, and therefore it has to learn the meanings from observations.
To enable the learning, the space of possible meanings is limited to concepts that can be measured when a
word is mentioned. More precisely, it is limited to concepts that have the following three properties: i) are
related to physical entities and relations between these entities as opposed to abstract concepts like social
facts; ii) exist in the scene when the word is mentioned; and, iii) can be measured with the available sensors370

on the robot. Next, we discuss the Language Grounding framework.

5.1. Grounding Framework

The grounding is achieved by learning a correspondence of words and phrases to some of the learned
visual concepts in each scene. Ideally the robot would record the sound of speech and learn how components
of this relate to the learned perceptual categories, but this remains an ambition for the future. At present, we375

collect multiple textual descriptions of video snippets recorded by the robot. The descriptions are provided
by volunteers and online crowd-sourcing tools such as Amazon Mechanical Turk. Examples of the collected
natural language descriptions are shown in Figure 8 from each of the recorded datasets used in this work.

place the green prism on the 
red cube

pick up the orange and place
it in the white bowl

push the red cylinder to the left

Figure 8: Examples of natural language descriptions collected for three different datasets. Each video clip is annotated with
multiple sentences.

The aim is to learn the meaning of key words in the sentences by grounding them to visual concepts that
represent their meaning. For example, OLAV should learn that the grounding of the word ‘bowl’ shown in380

Figure 8 (right) is the visual concept (i.e. Gaussian model) in the shape feature space (i.e. FPFH space) that
represents how a bowl looks. The language grounding is achieved by following these five steps: 1) building
a language-vision 2-D correlation matrix K(δ, v) that measures the probability of associating linguistic (δ)
and visual (v) concepts together; 2) using Integer Linear Programming to extract hypotheses from K(δ, v)
to create a map (A) from language concepts to concepts in vision. 3) filtering the generated hypotheses385

using case analysis; 4) validating the remaining hypotheses through graph matching techniques and learn the
correct grounding from language to vision; and, finally 5) updating the probability Φ(δ, v) for each n-gram
δ and visual concept v when they are matched. These steps are described in more detail in the following
sections.

5.2. Preparing the linguistic and visual concepts for language grounding390

For the vision domain, the input video clip is processed to generate a set of visual concepts as described
in Section 4. The set of all learned visual concepts from all feature spaces are accumulated together into a
single list V = {v1, . . . , v|V|}, where vi is a visual concept, e.g. a colour, a relation, a robot action, etc. I.e.
the list V holds the cumulative knowledge the robot has gained about the visual world and is updated with
every new video clip.395

For the language domain, each sentence is processed independently from other sentences even if they
are describing the same video. The process starts by converting the input text to all lower case and
removing any punctuation. OLAV then extracts all possible n-grams from a sentence with n ≤ M (in our
experiments in Section 7, M=3). The use of n-grams allows the learning of multi-word descriptions such as
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‘pick up’,‘bottom left corner’, etc. The list of all unique n-grams across all input sentences are combined400

into a list N = {δ1, . . . , δ|N |}, where δi is an n-gram. The list N is updated with every new input sentence.
The robot now has two lists V and N acting as an intermediate representation for both vision and

language domains. This representation transforms knowledge from continuous spaces to bounded discrete
ones, and allows for the mapping between language and vision as we describe in following section.

5.3. Language and Vision Concept Association405

As others have before, we rely on repetitions between words and visual concepts to teach our robots
the meaning of words in the vision domain. As an example, the word ‘apple’ and the apple shape concept
will appear repeatedly and consistently together throughout the input videos and text; therefore the two
concepts should be wired together (grounded), while the word ‘the’ is not solely consistent with any visual
concept in OLAV’s representation and therefore it should not be grounded to anything7.410

To measure the consistency of repetitions between concepts in language and vision, OLAV follows the
frequentist approach presented by Everitt and Skrondal [63]. It keeps track of the number of times an
n-gram and a visual concept appear individually, and the number of times the two appear together, across
all observed instances. Given the set of all learned visual concepts V, and the set of all observed unique
n-grams N , we define a concepts correlation matrix K of size b × u and with n-grams as rows and visual415

concepts as columns.
The values in the concepts correlation matrix K are computed using Equation 1 that contains two parts:

the maximum of two frequentist terms representing strength of association between an n-gram (δ) and
a vision concept (v), and an exponential function representing the learning curve, where λ(.) is a count
function, and τ is the decay rate constant.420

K(δ, v) = max

(
λ(δ, v)

λ(δ)
,
λ(δ, v)

λ(v)

)

︸ ︷︷ ︸

strength of association

(

1− e−
min(λ(δ),λ(v))

τ

)

︸ ︷︷ ︸

learning curve

(1)

The first part of Equation 1 computes the strength of associating an n-gram (δ) to a vision concept (v).
The value of this part of the equation ranges between 0 and 1. It is equal to 1 if both concepts v and δ are
always appearing together, and is equal to 0 if they are never seen together in the same pair of inputs.

The second part of Equation 1 (the exponential component) represents the certainty, or the learning
curve of concepts. The aim is to penalise the learning of concepts that have been observed only a few times.425

Consider the scenario where the robot observes an apple for the first time, every word in the input sentence
is equally likely to be describing this new shape, and the probability of associating this visual concept with
all the words in the input sentence is equal to 1 (i.e. the first part of Equation 1 is equal to 1). The same
applies for linguistic concepts observed for the first time. The learning curve component in Equation 1 is an
exponentially decaying function towards a limiting value that acts as a mechanism to penalise the learning430

of such concepts. The decaying rate constant value (τ) is chosen to be in the range of 5 to 10; a concept
has to be observed 25 to 50 times in order for the second part of Equation 1 to equal 1.

Once the new input video-sentence pair is processed, the elements of the concepts correlation matrix
K are updated according to Equation 1. Each element in the matrix K(i, j) represents the strength of
association between the ith n-gram to the jth visual concept. This information is used in the next section435

to generate the initial hypotheses that ground natural language to vision.

5.4. Hypotheses Generation for Language Grounding

A particular challenge is that mapping between words and vision concepts is not always one-to-one. For
example, visual concepts can be described with different words, e.g. a block shape can be referred to in
the English language by block, brick, slab, bar, etc. Moreover, as already observed above, words may be440

7Of course ‘the’ could indeed be visually significant, indicating that the following referring expression is expected to be
unambiguous; we leave this however for future work.
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homonyms and refer to different kinds of entity, e.g. ‘orange’ might be a shape or a colour. To learn the
grounding of language to vision, OLAV searches for the highest correlations between n-grams and visual
concepts that feature in each video clip and description, allowing multi-to-multi associations to preserve
the richness of natural language. Defining a target function A which has A(δ, v) = 1 if the association
(δ, v) is selected as a grounding candidate and 0 otherwise, we can formulate the problem of multi-to-multi445

language-to-vision grounding as solving an integer program with the objective function:

max
A

∑

N×V

A(δ, v)K(δ, v). (2)

We maximise the objective function with the following constraints:
•

∑

N×V A(δ, v)/(|N | ∗ |V|) < ǫ, keeping sparsity of the groundings by forcing the number of selected
groundings to be below some small ǫ (set between 5 and 10%) of the total number of possible ground-
ings. A sensitivity analysis on ǫ is performed in Section 7.3.2.450

•

∑

N A(δ, v) > 1, ∀v ∈ V, forcing the assignment of at least a single n-gram to each of the learned
visual concepts. This helps to ensure that each visual concept gets at least one word to describe it.
The reason why we do not enforce the same rule on n-grams is because some words can relate to no
vision concepts in the scene, such as function words, e.g. articles, pronouns, auxiliary verbs, etc. Note
that this constraint might create ‘false-positives’ of groundings, but these will be filtered out in the455

validation step below.
Solving this integer program results in assigning a number of highly-correlated n-grams to each visual
concept. An example for solving the integer program for matrix K is shown in Figure 9(right), where
A(i, j) = 1 (black) for every chosen grounding, and A(i, j) = 0 otherwise. The error in this process gets
rectified through filtering, validation and continual learning processes.460
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Figure 9: Grounding hypotheses generation. (left) The concepts correlation matrix K. The value of each element varies from
0 to 1, where 0 means the two concepts were never observed together. (right) The target function A that results from solving
the integer program for the matrix K. Integer programming allows for multi-to-multi associations between n-grams and vision
concepts. For example, ‘up’, ‘apple’ and ‘red apple’ are each mapped to two visual concepts.

5.5. Grounding Hypotheses Filtering

By using n-grams as linguistic concepts, we end up with a number of n-grams that map to the same
visual concept, some of which are incorrect. For example, the n-grams (‘red’, ‘the red’, and ‘the red apple’)
will all be connected to the same red colour visual concept with high probability. Therefore, OLAV needs
to filter out the incorrect ones (‘the red’ and ‘the red apple’) from the target function A and keep only the465

correct groundings between the red colour and the word ‘red’. This is achieved by case analysis. Consider
the case of whether to accept the assignments in A of n-gram ab, consisting of smaller n-grams a and b (e.g.
the 2-gram ‘the red’ consists of the 1-grams ‘the’ and ‘red’). Let vab, va, vb be the visual concepts assigned
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to the n-grams δab, δa and δb respectively. There are four possible cases shown by the rules below (3 to 6)
from which we can infer which ones of these n-grams are incorrect. The accepted assignment hypotheses are470

shown on the right side of the arrow. For example, in Equation 3 all three n-grams are assigned to the same
visual concept (vab = va = vb), then OLAV can accept the hypothesis for the biggest n-gram A(δab, vab) = 1
and filter out the smaller n-grams A(δa, va) = A(δb, vb) = 0.

vab = va = vb → A(δab, vab) (3)

vab = va 6= vb → A(δa, va),A(δb, vb) (4)

vab = vb 6= va → A(δa, va),A(δb, vb) (5)

vab 6= va 6= vb → A(δab, vab),A(δa, va),A(δb, vb) (6)

We now explain the reasoning for formulating each of the four rules. Rule (3) filters out the smaller
incorrect n-grams, by allowing complex n-grams to subsume their constituent ones when the corresponding475

visual concepts are all the same. The intuition behind it can be seen in examples like the n-grams ‘pick up’,
‘pick’ and ‘up’ where we want to keep the longer n-gram ‘pick up’ and remove the smaller ones ‘pick’ and
‘up’ if they are all grounded to the same visual concept. Rules (4, 5) filter out the larger incorrect n-grams.
The intuition behind it is we do not want the robot to use more words than necessary to describe a concept,
such as ‘the red’ to describe the red colour. Rule (6) states that if the n-grams are connected to different480

concepts, keep all of them. This rule can be used to learn phrasal verbs where their meaning is different to
their individual components. For example, the phrasal verb ‘break down’ is different to both ‘break’ and
‘down’. These rules will filter some of the incorrect groundings. Also, they will not stop different synonyms
from connecting to the same vision concept. For example, ‘cyan’ and ‘sky blue’ could share the same vision
concept, because ‘cyan’ is not a constituent of ‘sky blue’. After filtering out some of the incorrect groundings485

(example shown in Figure 10) the robot ends up with a number of candidate grounding hypotheses that
require validation; details of the validation process are presented in the following subsection.
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Figure 10: Filtering the grounding hypotheses. (left) The target functionA obtained by solving the integer program. (right) The
resultant target function A after filtering the grounding hypotheses using Rules 3 to 6.

5.6. Grounding Hypotheses Validation

Once grounding hypotheses have been filtered, OLAV attempts to validate them by using graph matching
techniques. Imagine the scenario where the 1-gram ‘apple’ in the given input sentence ‘pick up the apple’490

is grounded to two different visual concepts, one representing the shape apple, and the other representing
something incorrect, e.g. the shape of a mug as shown in Figure 9. This can occur due to noise or insufficient
data, e.g. whenever the robot encounters the word ‘apple’ in the input sentence it finds a mug and an apple
in the corresponding video clip (correlation alone would fail to learn the language grounding in this case,
hence the need for validation). The hypotheses validation process developed here aims to find the correct495
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groundings for every n-gram and visual concept if any exist. The validation is accomplished using two steps:
first, examining the outcome of adopting each grounding by simulating an environment; second, comparing
the simulated environment with the input video through graph matching techniques.

We refer to the graphs generated from connecting the graphlets together as hypothesis graphs as shown
in Figure 9. Each hypothesis graph represents a different course of actions taken by the robot that reflects500

what it thinks the sentence means. For example, if the robot believes that ‘apple’ in the previous example
(‘pick up the apple’) means the apple shape, it will pick up the apple shape in the hypothesis graph. On the
other hand, if it assumes it means the mug shape, it will pick up the mug shape (Figure 11).

Figure 11: Generating hypothesis graphs from the sentence ‘pick up the apple’. The word ‘apple’ has two hypotheses (S1=apple

shape, and S2=mug shape). These vision concepts in their graphlet format are combined to generate two hypothesis graphs.

Each hypothesis graph generated from a sentence as described above is compared against its correspond-
ing input video sequence. The idea is to look for a match between a hypothesis graph and the input video505

Spatio-Temporal graph. The matching is enabled by using an induced sub-graph matching technique pre-
sented by Howorka [64]. A hypothesis graph is said to match the input video if is an induced subgraph of the
spatio-temporal DAG extracted from the input video. The procedure of how to probabilistically accumulate
the knowledge of grounding hypotheses is described in the following subsection.

5.7. Learning Probabilities of Language Grounding, Φ510

Once a language grounding hypothesis is validated as described in the previous section, the robot learns it
through the grounding function Φ. This is achieved by updating the probability of this grounding hypothesis
using Equation 7, where Φ : N ×V → [0, 1]; P (v|δ) is the conditional probability for a vision concept v given
the n-gram δ, µ(δ, v) counts the number of times the n-gram δ was validated with the vision concept v, and
µ(δ) is the total number of times the n-gram δ was validated with any vision concept. The probabilities in515

the grounding function Φ are updated incrementally as more grounding hypotheses are validated.
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Φ(δ, v) = P (v|δ) =
µ(δ, v)

µ(δ)
(7)

5.7.1. Stop words

To simplify the learning of language grounding in robotics applications, it is common to use a stop
word list to remove words such as ‘the’ and ‘as’ from all sentences. But, since OLAV learns from unlabelled
data (i.e. avoiding human annotation including stop word lists), it learns such words using the integer520

programming technique where certain words do not have any mappings with the vision domain such as the
word ‘the’. This has the same effect as using term frequency-inverse document frequency (tf-idf) weighting
to remove stop words (cf Jones [65]).

6. Grammar Induction

Unlike human acquisition of language which is largely unsupervised, nearly all computational approaches525

developed to learn about natural languages are supervised. In particular ones developed to learn the language
structure (grammar), rely on human experts to provide training data labelled with grammar trees. An
example is shown in Figure 12 for an annotated grammar tree from the Dukes [66] dataset. These trees are
used to train a parser in a supervised manner to model the language structure.

event

destinationentityaction

colour type

relation

spatial-relation

entity

Place    the green  sphere             over  the red      cube

colour type

Figure 12: Example of an annotated grammar tree used as training data for supervised parsers.

Unsupervised grammar induction approaches aim to learn the language structure from unlabelled text530

inputs, making them more desirable to learn from large corpora, and to model languages with no annotated
datasets. But, the resultant language model from these unsupervised techniques usually holds little, if
no meaning at all, to how the words interact between each other, which is needed by robotic systems to
understand and execute natural language commands. An example of a grammar tree generated by an
unsupervised system is shown in Figure 13. We used the system presented by Ponvert et al. [67] to obtain535

this tree, by training it on the entire Dukes [66] dataset. This technique learns a language model via
chunking the raw text into smaller parts that shows a repeated pattern.Using such unsupervised techniques
raises two main issues that are hard to fix. First, these methods do not label the chunks in the generated
tree; they only output a nested set of brackets defining each chunk of text which carry no meaning to the
robotic system. Second, for systems which do provide labelled brackets, there is the problem of mapping540

the generated labels with symbols provided by the human expert. This problem is similar to the one faced
when evaluating unsupervised clustering techniques, where cluster labels have no inherent link to true class
labels and usually do not map one-to-one with the true classes.

c6

c4

c5

c1

c3

c2

Place   the  green sphere   over  the  red cube

Figure 13: Example of an unsupervised grammar tree. The ci represent an unknown label.
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6.1. Learning Grammar from Language and Vision

In this section, we describe our approach for loosely supervised grammar induction from unlabelled545

inputs. Our approach is developed to parse sentences into grammar trees with meaningful labels. These
trees are in fact Robot Control Language (RCL) trees [26]. As noted in section 2, the idea of learning
grammar rules by mapping them to features in the vision domain has been introduced in the robotics
literature before. In particular, Dominey and Boucher [68], Tellex et al. [35], Matuszek et al. [36] and
Dukes [26] have developed supervised systems that can model the structure of natural language commands550

from vision. A parser is trained to model the language by generating a set of grammar rules that enables
the generation of RCL trees from sentences. The parsing of sentences into RCL trees enables robotic agents
to execute linguistic commands that were not seen before in the training data. We aim to enable robots to
understand natural language commands and descriptions without the use of labelled training data.

In the following subsections, RCL is described, along with how it is used to enable the learning of555

grammar rules.

6.2. Robot Control Language (RCL)

RCL is a tree semantic representation for natural language commands. Each sentence is represented
as an RCL tree; an example is shown in Figure 12, where leaf nodes align to words in the corresponding
sentence, and non-leaves are labelled with a predefined set of categories that the robot can understand and560

execute as presented by Dukes [26]. The RCL elements used in this work are presented in Table 28. Each
element represents one or more of the visual features, which are object properties {colour, shape, location},
spatial relations {direction, distance} and robot actions. These elements are used to represent the structure
of natural language commands for robot manipulation tasks. Although RCL elements used in this work
are designed to operate within the context of robot manipulation only, it can be easily extended to other565

domains such as robot navigation commands as presented by Tellex [35] and Matuszek et al. [36].

RCL element Description

event Specification of a command. Takes (action, entity, destination) elements as children.

action Aligned to a verbal group in natural language, e.g. ‘place’.

entity Specification of a single entity. Takes (colour, shape, location) as children.

destination A spatial destination. Takes (spatial-relation, location) as children.

spatial-relation Used to specify a spatial relation between two entities or to describe a location. Takes
(direction, distance, entity) elements as children.

colour Colour attribute of an entity, e.g. red, green, light blue.

shape Shape attribute of an entity, e.g. pyramid, apple, mug.

location Location attribute of an entity, e.g. centre, top left corner.

direction Direction relation between two entities, e.g. right of, on top of.

distance Distance relation between two entities, e.g. near, far.

Table 2: The list of all RCL elements used in our experiments with OLAV. These RCL elements are designed to work in the
context of robot manipulation.

The problem of parsing sentences into RCL trees has been formulated as a grammar induction problem.
A parser is trained on commands and their human annotated RCL trees. The parser is then used to parse
new commands into trees which the robot can understand and execute. The human annotation of RCL

8Of course, the world is much richer than is supposed by the set of elements in this table; these are the ones that the
correspond to the feature spaces that are currently used by OLAV. Generalisation to other features and elements is considered
briefly in the discussion of future work in Section 8.4.2.
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trees is a labour-intensive task that hinders the learning from large datasets. OLAV does not suffer from this570

problem since it automatically generates a vision tree (Ω) from each input video clip. These vision trees
substitute the human annotated RCL trees to learn grammar. We define a vision tree Ω as an event tree,
i.e. a tree with the eventv element as its head, which consists of three vision elements (actionv, entityv,
destinationv) as shown in Figure 14. The v subscript in these elements refers to ‘vision’, to distinguish them
from the equivalent RCL elements shown in Table 2. The actionv element holds the internal symbol of the575

action that was performed in the video. The entityv element holds the id of the object that is manipulated
by the robot in the video. The destinationv element holds the internal symbol of the final location-concept
of the manipulated object and the final spatial configuration with other objects in the scene.

Figure 14: Vision tree Ω definition. The vision tree is an event tree, i.e. a tree with the eventv element as its head. The eventv
element takes three children {actionv, entityv, destinationv}.

6.3. Generation of RCL trees

This idea assumes that the input sentences provided to the robot are describing the actions, objects and580

relations involved in the corresponding input video clip. For example, consider the video shown in Figure 15,
paired with the command ‘place the green sphere over the red cube’. OLAV extracts a vision tree Ω from
this video clip with three elements shown in Figure 16. The actionv element holds the internal symbol of
the action graphlet extracted from this video clip (labelled with the internal symbol action1). The same
applies for the entityv element and the destinationv element.585

Figure 15: The input video clip that is generated for the command ‘place the green sphere over the red cube’ encoded with the
learned visual concepts shown at different frames.

The problem of automatic generation of RCL trees in OLAV is formulated into a search problem as follows.
For each input video-sentence pair, OLAV (i) extracts the vision tree Ω from the input video; (ii) generates
the set of all possible RCL trees from the input sentence; (iii) searches for an RCL tree that matches the
extracted vision tree Ω. OLAV aims to find the sentence structure that will result in a match with what
happened in the input video. An RCL tree is said to match a vision tree if the values of their corresponding590

elements are equal. Given a match is found between these three elements in a language tree Ψ, OLAV uses
this language tree to update the robot’s grammatical knowledge.
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Figure 16: The vision tree extracted from the video in Figure 15.

The procedure to perform the search for the correct RCL tree Ψ is divided into four steps (substitute,
group, query, and match). The following sections walk through the entire process using the example ‘place
the green sphere over the red cube’ shown in Figure 16, and show how OLAV obtains a correct RCL tree Ψ595

from this input video-sentence pair.

6.3.1. Substitute words with visual concepts

For each input sentence S consisting of t words, S = 〈w1, . . . , wt〉, OLAV substitutes each word with its
learnt visual concept using the grounding function Φ. For instance, the sentence S = 〈‘place’, ‘the’, ‘green’,

‘sphere’, ‘over’, ‘ the’, ‘red’, ‘cube’〉, is transformed using the grounding function Φ into S
′ = 〈action1, None,600

colour2, shape3, direction1, None, colour3, shape1〉. The grounding function Φ for this example is shown in
Figure 17 (left). Note that if a word has multiple groundings in Φ, then this process is repeated for all
combinations of possible groundings.

Grounding function 

place    1.0 action1

green   1.0 colour2

red       1.0 colour3

sphere  1.0 shape3

block    1.0 shape1

over     1.0 direction1

Generation of RCL tree 
 = eventv

actionv entityv destinationv

{action1} {id = 0} {location4, direction1(0,1)}

id = 0       direction1(1,0)    direction1(1,0)                         id = 1 

destination           destination

spatial-relation  spatial-relation

action       entity                                                                                  entity

action1 colour2 shape3 direction1 colour3 shape1

place  the green            sphere         over     the red                      block
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Figure 17: Automatic generation of RCL trees. (left) The grounding function Φ showing the probabilities of assigning words to
vision concepts. (right) The four steps (Substitute, Connect, Query, and Match) to generate an RCL tree Ψ from the sentence
‘place the green sphere over the red cube’.

6.3.2. Group concepts to generate RCL elements

Once the sentence S is transformed into a list of visual concepts S′, OLAV groups the visual concepts605

in S′ to create all possible entity, action, spatial-relation, and destination RCL elements. The grouping
of these elements is performed by connecting the children to generate an RCL element, for example group
consecutive colour, shape, and location concepts to form entity RCL elements. The ordering and number of
concepts are not constrained in the grouping procedure, i.e. an entity element can be created by grouping a
colour concept followed by shape, or vice versa. This allows the learning of grammar from different languages610

where adjectives and nouns are ordered differently to English, as is the case in Arabic, or French.
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6.3.3. Query RCL elements

The query process aims to link RCL elements found in the previous section to objects and relations in
the input video clip. This is achieved by linking each (i) entity element in the sentence to an object id, (ii)
location element to a location concept, and (iii) spatial-relation element to a relation concept. The linking615

is enabled by querying the children of RCL elements with the list of predicates extracted from the input
video clip. The list of predicates for this example is shown in Figure 15. For example, to link the entity
element entity(colour2, shape3), OLAV queries its children, colour2 and shape3, looking for all objects that
have both of these properties attributed to them. By inspecting the list of predicates shown in Figure 15,
OLAV can see that the green sphere, the object with id = 0, is the only object that satisfies both constraints.620

Therefore, it is linked to id = 0, and hence has successfully linked part of the input sentence. If multiple
objects in the scene satisfy a query, a list of ids is returned, while if there are none, the query returns an
empty list; this might happen due to noise in vision and/or language.

6.3.4. Match RCL elements with Ω

OLAV aims to find the correct language structure Ψ by matching the query results to the elements of625

the vision tree Ω. This is achieved by comparing the values of each RCL element with the vision elements.
For example, the vision tree Ω in Figure 16 has an entityv element with id=0. By matching this with the
available RCL elements OLAV finds that the entity(colour2, shape3) which is describing the green sphere
object holds the same object id. Therefore, the two are matched together, as shown in the Matching section
in Figure 17. By looping through all available options, OLAV matches all elements in the vision tree. Note630

that any ambiguity represented by a list of ids being returned in Section 6.3.3 is resolved in this matching
process. The robot now has the correct sentence structure that reflects what happened in the input video.
The resultant sentence structure Ψ from this example is shown in the Figure 18. The names used in the
tree (colour, shape, spatial-relation, etc.) are used for simplicity and readability. The robot is not assumed
to know these words specifically. In the following section, the learning of probabilistic grammar rules using635

this tree is discussed.

 = event

spatial-relation

action       entity                               destination

action1 colour2 shape3 colour3 shape1

place  the green            sphere         over     the red                      block

direction1 entity

Figure 18: The generated RCL tree Ψ from the example shown in Figure 15.

6.4. Learning Grammar Rules

Grammar induction refers to the process of learning a formal grammar, usually as a collection of re-write
rules from a set of observations. The observations usually consist of natural language sentences annotated
with grammar trees. These observations are used to train a parser by learning the grammar rules. In this640

work, Probabilistic Context Free Grammar (PCFG; also known as Stochastic CFG) is used to model the
grammar rules of language. A PCFG is presented in the NLP literature in the form Π = (N,T,R, S, P ),
where Π is the language grammar, N is the set of non-terminal symbols, T is the set of terminal symbols,
R is the set of production rules, S is the start symbol, and P is the set of probabilities on production
rules. OLAV learns the PCFG rules by mapping natural language commands to visual features. The main645

contribution in our grammar induction approach is that OLAV can automatically generate training examples
similar to those annotated by human experts to enable the learning of grammar without direct supervision.
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6.4.1. Learning a PCFG Π from an RCL tree Ψ

OLAV induces a probabilistic grammar Π = (N,T,R, S, P ) from an automatically generated language
tree (Ψ) such as the one shown in Figure 18. OLAV follows the Inside-Outside algorithm presented by Lari650

and Young [69] to induce PCFG rules. There are only two kinds of productions in the grammar rules OLAV

learns: the non-terminal ones (B → C1, . . . , Cm), and the terminal ones (B → Z), where B and Ci are
non-terminal symbols, while Z is a terminal symbol. A probability, denoted P (C1, . . . , Cm|B) or P (Z|B),
is associated to each production. The computation of these probabilities is shown in Equations 8 and 9,
where P is the probability of the grammar rule, ζ is a counting function, and ∗ is any right-hand side for655

the grammar rule, i.e. any grammar rules with a left-hand side B. A normalization condition must hold for
every non-terminal B, which is the summation of the probabilities of all rules where B is the left side of it
must equal to one, as shown in Equation 10.

P (C1, . . . , Cm|B) =
ζ(B → C1, . . . , Cm)

ζ(B → ∗)
(8)

P (Z|B) =
ζ(B → Z)

ζ(B → ∗)
(9)

∑

c

P (c1, . . . , cm|B) +
∑

z

P (z|B) = 1 (10)

To learn the grammar rules OLAV starts with an empty PCFG rule set. The rules learned from the example
sentence ‘place the green sphere over the red cube’ are shown in Table 3. The rules learned from all examples660

are accumulated into one PCFG Π. These rules model the structure of natural language commands and are
used to parse new commands into RCL trees which the robot can understand and execute.

Learning Grammar Rules

Grammar Rules Probabilities

event → action, entity, destination 1.0

entity → colour, shape 1.0

destination → spatial-relation 1.0

spatial-relation → direction, entity 1.0

action → place 1.0

direction → over 1.0

shape → sphere 0.5

shape → cube 0.5

colour → green 0.5

colour → red 0.5

Table 3: The learned grammar rules from the example sentence ‘place the green sphere over the red cube’ are on the left side,
while the probability of each rule is shown to the right. The probability calculations assume that this is the very first sentence
considered by the grammar induction component.

6.5. Assumptions and Limitations

Our grammar induction approach has the potential to be expanded to more domains such as robot
navigation or cooking recipes, but more RCL elements would have to be manually defined and provided665

to OLAV; we believe the numbers of new elements would be relatively small, since the elements we already
have are quite abstract, but the number of new elements that would be required needs to be determined
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by future research9. It may even be possible that some of these could be learned rather than given. In any
case, we believe that this grammar induction approach takes a step closer towards building a system that
can autonomously generate new RCL elements and learn in an unsupervised manner the grammar rules of670

natural language by connecting language to vision.

7. Experimental Procedure

OLAV’s learning ability is evaluated in four different experiments tackling the: (1) incremental learning
of visual concepts from video inputs. (2) incremental language groundings of n-grams to visual concepts.
(3) incremental induction of grammar rules, and finally (4) scalability of OLAV’s learning framework.675

7.1. Datasets

Three different datasets were collected or extended and used to evaluate the performance of the OLAV

framework10. The datasets involve three robot manipulators performing different table-top tasks such as
picking up and moving objects. The three datasets are presented in more detail in the following sections.
In all cases, all objects involved remain in the scene throughout.680

7.1.1. Extended Train-Robots Dataset

Extended Train-Robots is a simulation dataset (henceforth ETR) with a 3 DoF robot arm along with a
two fingered gripper performing various table-top manipulation tasks in a simulated block world environment.
This dataset is an extended version of the Train-Robots dataset presented by Dukes [66]. The dataset
contains 1000 scenes, where each scene consists of two images. One represents the initial configuration of685

the world, and the second represents the desired (or final) one. In each scene, only one object changes
its location. After the scenes were generated, non-experts were asked to annotate the 1000 scenes with
appropriate natural language commands such that if these commands were given to a robot, the robot would
be able to change the scene from the initial to the desired configuration. The original dataset contained two
shapes only (cube and prism), and eight different colours (red, green, blue, cyan, grey, white, yellow and690

pink).
In this work, the original dataset11 has been extended in a number of ways. First, the dataset contained

only two shapes one of which (the cube) existed in almost every scene, also the red colour existed in every
scene. We modified the scenes to include two more objects (sphere, cylinder) and one more colour (black).
This was achieved by changing half the scenes that contain prisms to spheres, cubes to cylinders, and red695

to black. The scenes were randomly selected and were different for changing the prisms, cubes and red.
Particular care was taken in modifying the annotated commands to match the scenes in order not to alter the
meaning or any mistakes in the descriptions. The commands were manually changed by the first author. The
second extension was to automatically animate the 1000 scenes to produce videos of the robot performing
the action. Examples of key frames for the generated videos are shown in Figure 19. The third extension is700

the translation of the commands from English to Arabic to test OLAV’s learning framework on a different
language. The translation was performed using the Goslate library12. Again, particular care was taken not
to alter the commands or correct any mistakes before translation. There was no verification of the translated
sentences; this was deliberate since the original English sentences that had been obtained via Amazon Turk
were often not grammatical and we did not want to correct one but not the other. Our main purpose in this705

experiment was not to produce a high quality Arabic grammar, but rather to demonstrate the portability
of the framework.

9An example of an additional RCL element that would likely be required in the cooking domain is object orientation (since
the orientation of objects such as containers is important).

10Evaluation on a fourth data set which also includes perception of humans and their activities can be found in [52, 6]
11The original and extended versions of the dataset are available at http://doi.org/10.5518/32
12goslate 1.5.1, https://pypi.org/project/goslate/ – last accessed December 2018.
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Figure 19: Examples from the ETR dataset along with their annotated commands; the Arabic sentences are automatically
translated from the English ones.

7.1.2. Leeds Robotic Commands Dataset

The Leeds Robotic Commands dataset (henceforth LRC)13 was first presented in the earlier conference
paper this article extends, Alomari et al. [4]. The dataset contains real-world RGB-D scenes of a robot710

manipulating different objects together with natural language descriptions of these actions. We used a
Baxter robot (shown in Figure 20) from Rethink Robotics fitted with a Microsoft Kinect2 sensor on its
chest such that it can observe and model its environment in RGB-D. To perform each task, a demonstrator
was asked to drive the robot using a joystick14. Only one object is manipulated in each video. The three
commands used in this dataset to guide the demonstrator are ‘pick up’, ‘put down’ and ‘move’. The dataset715

includes 204 video clips containing a total of 51 different objects including basic block shapes, fruits, cutlery,
and office supplies, with a mean of five objects present in each scene. The detected objects are shown in the
bottom row of Figure 20 where each object is assigned a unique id and tracked throughout the video.

The videos were annotated with appropriate natural language commands by a separate group of an-
notators. The annotators were presented with the video clips, one at a time, and were asked to provide720

appropriate natural language commands for each clip in such a way that if the command was provided to
the robot, then it would be able to perform the command with no ambiguity. The dataset contains a total of
1024 natural language commands describing the 204 videos, a mean of five per video as in the ETR dataset.

7.1.3. Extended Object Ordering Dataset

The original Object Ordering dataset was presented by Sinapov et al. [48], and was designed to teach a725

robot to arrange objects in an ascending order based on their properties. For example, to arrange objects
from shortest to tallest, smallest to largest, etc. To learn about object properties, the robot performs seven
different actions on each object in the scene. The actions are grasp, lift, lower, drop, press, push and hold.
The set of objects that the robot explores and learns about consists of 32 common household items including
cups, bottles, cans, and other containers, with variation in weight, height, and width. Also, each video clip730

features only a single object in it, which means the robot can not learn about spatial relations between
objects in this dataset.

We extended the Object Ordering dataset by annotating the video clips with appropriate natural language
commands, henceforth named the EOO dataset. The commands were provided by annotators who viewed
the video clips one at a time. Given the simplicity of the EOO environment (only one object in each735

scene), it was decided that a single annotation per video was sufficient. The dataset contains a total of
1120 video clips, each of which was annotated with a linguistic command. An example of video clip and its
corresponding command is shown in Figure 21. Next, we describe the four experiments.

7.2. Experiment 1: Learning Visual Concepts

We present here the empirical results which comprise the evaluation of the visual concept learning frame-740

work. Since the learning is performed in a loosely-supervised setting, and OLAV does not know the label

13The LRC dataset is available at http://doi.org/10.5518/110
14The Python and ROS implementation are available at https://github.com/OMARI1988/baxter pykdl
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Figure 20: Example from the LRC dataset for the command ‘move the red apple into the white bowl’. (top) An external
camera is placed opposite the robot to record the scene. Note that this camera is not used in object detection nor tracking.
(middle) The RGB feed from the Kinect2 sensor showing the point-of-view of the robot. (bottom) The RGB-D feed from
Kinect2, along with the detected objects’ ids and tracks.

Figure 21: An example from the EOO dataset along with its annotated natural language command.

of each concept, we use two clustering metrics to evaluate the performance: normalised Mutual Informa-
tion [70], and V-measure [71].

As an upper bound and to provide a reference result, we also show the V-measure results obtained using a
supervised (linear) support vector machine classifier (SVM) with 4-fold cross-validation. The SVM has access745

to the ground truth labels during training; nevertheless we show that the SVM only marginally outperforms
OLAV in the three datasets. Figure 22 presents the results of OLAV’s incremental, loosely-supervised visual
concept extraction on all three datasets. Examples of learned visual concepts are presented in Figure 23. A
detailed analysis of the obtained results is presented below.

The number of learned concepts was selected unsupervised using a BIC and graph matching approaches.750

For example, in the LRC dataset, the robot thinks there are 25 unique shape concepts in this dataset, when
in fact there are only 13 classes. We found a number of reasons behind the larger number of recovered
concepts when compared to ground truth data. First, using unsupervised object segmentation techniques
to identify the individual objects in the scene does not produce perfect object segments, which leads to
having objects with incorrect point cloud segments (with extra or missing points/parts). Second, using a755

particle filter to track objects produced noisy tracks that lead to variations in activities. Third, objects
were recorded from different view points which led to variations in their appearance. Objects were placed
in different orientations on the table in each scene and were viewed from different angles from the camera.
Fourth, objects were allowed to be partially occluded by other objects in the scenes. Fifth, the recordings
of videos occurred at different times of the day with varying lighting conditions in the robotics laboratory760
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Figure 22: Experimental results of visual concept extraction for all three datasets, showing two clustering metrics (Normalised
Mutual Information, and V-measure) for colour, shape, location, direction, distance, action. Note that not all feature spaces
are applicable to every dataset. The V-measure for a supervised method (SVM) is also shown for comparison.

Figure 23: Examples of visual concepts learned from the LRC dataset. The centre image shows the geometric median for the
shape and colour examples, and the distribution of the cluster for the direction and distance examples; the surrounding images
show samples from each cluster.

which led to variations in object colours. Finally, the same action was performed differently by different
annotators, e.g. a simple pick up action was performed in various ways as annotators approached the objects
from different angles, which lead to variations in the spatio-temporal graph structure. These reasons made
learning of visual concepts from real-word data more challenging for our robot, yet, OLAV still managed to
learn and cluster the visual concepts with comparable accuracy to the supervised SVM system, albeit lower765

in most cases. It produced a better result in two cases (direction in the LRC dataset and action in the EOO
dataset).

The results obtained from all three datasets show that OLAV is capable of learning visual concepts from
robot observation in a loosely-supervised online setting. These learned visual concepts are used in the
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following experiment to learn language groundings.770

7.3. Experiment 2: Learning Language Groundings

The grounding results for all three datasets are obtained using n-grams of length less than or equal to
three. For ground truth, we manually annotated all correct word-vision groundings for each of the learned
visual concepts in the three datasets, e.g. the word ‘red’ should be grounded to the learned Gaussian
component of the colour red, The grounding was learnt in an online fashion, i.e. each video-sentence pair775

was processed and then discarded, retaining only the updated model. No attempt was made to optimise the
ordering of the inputs (which might happen if a human trainer was supervising the learning explicitly). As
a metric, we compute the F1-score [72] of the grounding results in each feature space separately.

As an upper bound, we also present the results obtained using a supervised Hidden Markov Model (HMM)
for Part-of-Speech (POS) tagging system presented by Rabiner [73]. The HMM technique is desirable for780

POS tagging tasks as the highest probability tag sequence can be calculated for a given sequence of words.
The HMM requires both the input sentences (e.g. ‘move the red sphere over the green block’) and the
annotated tags (e.g. action, none, colour, shape, none, colour, shape) for learning. A four fold cross
validation is performed to compute the F1-scores for the HMM system on all three datasets and the mean
of these is presented. Figure 24 presents the final (i.e. after all video-sentence pairs have been processed)785

F1-scores computed using our online learning framework and the supervised HMM system for each of the
three datasets15. The results show that OLAV was able to successfully learn part of the correct language
groundings in each dataset and how OLAV compares with the supervised HMM system, keeping in mind that
the HMM has access to the ground truth labels to learn from, whilst OLAV learns from unlabelled sentences.
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Figure 24: Natural language grounding results. The solid bars represent OLAV’s F1 performance, and the adjacent hatched
bar immediately to the right represents the F1 performance of an HMM based supervised upper bound. It can be seen that in
many cases the performance of OLAV approaches the performance of the HMM system. Not all feature spaces are present in
each dataset, so there are varying numbers of bars (only LRC has all feature spaces). (Best viewed in colour.)

Figure 25 shows the language grounding incremental results obtained using OLAV from each of the three790

datasets. The graphs show an improving trend in the F1-score of the word groundings in each feature space
as more data is observed and processed. We hypothesise that extended observation of the environment will
allow all the concepts in these predefined feature spaces to be correctly grounded in a loosely-supervised
manner. Similarly, the visual concepts themselves will improve with more observations.

15Note that the final two columns relate to results obtained in the Arabic version of the ETR dataset which will be discussed
in Section 7.3.1
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Figure 25: Incremental language grounding. F1-scores for incremental English language grounding for each dataset. Note that
a different y-axes scale was selected for the LRC dataset to better show the results.

7.3.1. Grounding in other languages795

In this section we evaluate our language grounding framework in learning from other languages. We use
the translated commands in the ETR dataset for this evaluation. The learning framework is applied on the
Arabic language in the exact same way as the English language. Figure 24 presents the results of language
grounding in both Arabic and English for the ETR Dataset. As an upper bound, we again present the
results obtained using a supervised Hidden Markov Model (HMM) for POS tagging.800

The results in Figure 24 show that OLAV performed well in comparison with the supervised HMM
system in learning from the Arabic language. The F1-scores are slightly worse in learning from Arabic than
in English. We believe the reason behind this is that Arabic has two genders (masculine and feminine) which
have different lexical forms (e.g. masculine grey → ramady, feminine grey → ramadia) and since there is
no notion of stemming built into OLAV, each is treated as a separate word to learn, effectively reducing the805

number of training examples (e.g. masculine grey objects vs feminine grey objects). With this in mind,
OLAV still managed to ground words in Arabic to their corresponding visual concepts. Examples of learned
groundings from both Arabic and English are shown in Figure 26. The arrows are used to indicate the
direct translation between the two words. This means that OLAV can be used to learn translation between
languages based on their groundings to the visual domain, but we leave this idea open for future work to810

investigate and validate.

Figure 26: Examples of learned language groundings from both Arabic and English in the ETR dataset. The training was
performed on each language separately. The arrows between words are used to indicate the direct translation between the two
words and were manually added to the image. OLAV does not know that these words are translations in different languages,
though this would be a natural extension to investigate as noted in the main text.

7.3.2. Sensitivity analysis for grounding the parameter (ǫ)

As described in Section 5.4, ǫ is used as a threshold to keep groundings relatively sparse. The selection
of a value for ǫ was based on a sensitivity analysis experiment performed over four datasets16. The results of
this experiment (Figure 27) show that the grounding performance peaks at ǫ = 0.05 for most of the feature815

spaces in the datasets, and therefore this value was selected for all the grounding experiments.

16We performed the analysis on the three datasets in this paper (ETR, EOO and LRC) as well as a fourth one consisting
of data recorded in a kitchen scene[52] which was included in the thesis [6] from which this paper originated. Note that the
sensitivity analysis was not performed on a separate validation set, which might limit generalisability.
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Figure 27: Sensitivity analysis for the language grounding parameter epsilon (ǫ). (left) the graph shows the final F1-score
values in each feature space from the datasets on the y-axis, and the different ǫ values used to compute these F1-scores on the
x-axis. (right) the (mean) F1-score results obtained from all feature spaces.

7.4. Experiment 3: Learning Grammar Rules

In this subsection we evaluate our grammar induction framework based on its ability to learn grammar
rules capable of parsing never-seen-before linguistic commands.

To evaluate our grammar induction framework and the learned grammar (Π), we test it on the three820

datasets. Each of the three datasets is randomly divided into four folds, and four fold cross-validation is
applied. The learned grammar rules are evaluated based on their ability to correctly parse new (never seen
before) linguistic commands. A parser is equipped with the learned grammar set (Π) and is used to parse
the commands in the test fold.

The results present the score of correctly parsed RCL sub-trees from sentences in each of the test folds. A825

score of 1 is given if the parsed sentence completely matches the human annotation, while a partial score in
[0, 1) is given if it partially matches the human annotation. The partial matching is computed by matching
subtrees in both trees divided by the total number of subtrees. For example, if a parsed tree contains 10
subtrees and only 8 of which match in links and labels with the manually annotated tree, then it is given a
score of 0.8.830

As an upper bound, we also present the results obtained using a supervised grammar induction system
presented by Abney [74]. This supervised system has access to the human annotated RCL trees to learn
the grammar rules from, while OLAV automatically generates them. The same four fold cross validation
procedure is applied on this supervised system.

We also tested OLAV against an unsupervised grammar induction approach presented by Ponvert et835

al. [67] which learns a language model via chunking the raw text into smaller parts that show a repeated
pattern throughout the dataset. This represents an unsupervised baseline. Both OLAV and Ponvert’s learn
from unlabelled sentences. However, OLAV learns from language and vision inputs, while Ponvert’s system
learns from language alone. We evaluate the baseline (Ponvert’s unsupervised system) based on its ability
to chunk the text into correct sub-trees only, as it does not generate labels.840

Figure 28 presents the grammar induction results for the three systems (i) Abney’s supervised system,
(ii) OLAV, and (iii) the baseline across each of the three datasets17. The results clearly show that OLAV

outperforms the baseline. The number of grammar rules generated differs between techniques as shown at
the top ofb Figure 28. The supervised rules are higher in number because a few sentences contain classes
which OLAV can not learn (i.e. OLAV fails to generate a grammar tree from the input sentence). For example,845

in the ETR dataset there exists an indicator class for superlatives, e.g. (indicator →w tallest), but as already

17Note that the final column relates to results obtained in the Arabic version of the ETR dataset which will be discussed in
Section 7.4.1.
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noted OLAV cannot handle superlatives yet. However, the results do not vary as much because there are not
many sentences containing such classes in our three datasets.

Figure 28: Grammar induction results. US stands for baseline unsupervised system ([67]), while SS stands for the supervised
system ([74]). (top) The mean number of grammar rules or productions generated in all four folds. OLAV generates approxi-
mately the same number of rules as US, and many fewer than SS (except for the LRC dataset), showing better generalisation.
(bottom) The plotted values are the fraction of correctly parsed sub-trees in each of four test folds. (Best viewed in colour.)

An example from one of the test commands in the ETR dataset is presented in Figure 29. The example
is for the command ‘place the yellow ball on top of the blue cylinder’. The figure shows the parse tree using850

the learned grammar set (Π) from our approach (top), and the parsed tree using the baseline of Ponvert’s
unsupervised system that learns from language alone (bottom). The learned grammar rules from OLAV used
to parse this natural language command are presented in Table 4. For example, the grammar rule (colour
→0.16 yellow) is used to tag the word yellow as a colour terminal symbol, similarly the rule (shape →0.13

ball) is used to tag the word ball as a shape terminal symbol, while the rule (entity →0.85 colour, shape) is855

used to group both non-terminals (colour and shape) as the non-terminal entity. The parser loops through
all learned rules to maximise the final probability value of the parsed tree using the CYK algorithm. The
CYK algorithm (Cocke-Younger-Kasami algorithm [75]) is a parsing algorithm for context-free grammars
that employs bottom-up parsing and dynamic programming. Note that our robot is not assumed to know
the words colour, shape, entity, etc. specifically, but rather knows of the existence of these elements or types860

(since it already has feature spaces for each of these).
We also plotted the rate of grammar acquisition as successively larger percentages of the training set were

used – see figure 30. For this experiment, 25% of the data was reserved as a test set, and then successively
larger percentages of the data was used to learn a grammar. We ran this experiment three times, randomly
selecting the initial sentences, and the incremental additions using 3 different seeds. Since the learning rate865

rises rapidly, we added 5 sentences each time until 250 sentences were reached, and then added 15 sentences
each time. It can be seen that a grammar can be learnt quite quickly, with less than 20% of the sentences,
i.e. less than 1000 sentences.

7.4.1. Grammar induction in other languages

In this subsection we evaluate our grammar induction framework on the Arabic version of the ETR.870

The learning of grammar rules is applied to the Arabic language data in the exact same way as the English
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event

spatial-relation

action       entity                               destination

action       colour   type                     colour    type 

place the yellow ball  on top of  the blue cylinder         (((((place the  yellow) ball)  (on top) (of  the   blue) cylinder)

direction             entity

Figure 29: The grammar trees generated for the new command ‘place the yellow ball on top of the blue cylinder’ using OLAV
(left) and baseline of Ponvert’s unsupervised system (right).

Terminal Leaves Non-Terminals

colour →0.16 ‘yellow’ event →0.33 action, entity, location

colour →0.22 ‘blue’ entity →0.16 colour, shape

shape →0.13 ‘ball’ location →0.81 spatial-relation

shape →0.05 ‘cylinder’ spatial-relation →1.0 direction, entity

action →0.01 ‘place’

direction →0.52 ‘on top of’

Table 4: The learned grammar rules used to parse the command ‘place the yellow ball on top of the blue cylinder’ shown in
Figure 29.
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Figure 30: Incremental grammar induction results. A plot showing the rate of grammar acquisition with increasing number
of sentences in the training set. Results are averaged over 3 random folds, with the same 250 sentences used for testing in all
folds and all training set sizes.

language data.
The final column of Figure 28 presents the results of grammar induction in Arabic for the ETR dataset.

We again compare the results from OLAV against the same unsupervised lower bound baseline, and the
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supervised upper bound. The results in Figure 28 show that our approach outperforms the unsupervised875

baseline grammar induction system by learning from language and vision data. We also achieve results that
are little lower than those of the supervised system but still very promising by learning from unlabelled data
(without the human annotated RCL trees), as opposed to learning from labelled linguistic inputs. Moreover,
this experiment shows that OLAV is capable of learning grammar rules regardless of the POS tags ordering
in a sentence – for example, in Arabic adjectives come after the noun.880

7.5. Experiment 4: Scalability and Memory Requirements

In this subsection, we present empirical results to evaluate the scalability of our language and vision
learning framework. Scalability refers to the capability of a system, network, or process to handle a growing
amount of work, or its potential to be enlarged to accommodate that growth. Scalability is an important
aspect in any life-long learning system, such as the system presented in this work for teaching robots about885

language and vision.
We evaluate the scalability of the three main components in OLAV, (i) visual concepts learning, (ii)

natural language grounding, and (iii) grammar induction. The scalability of each component is evaluated
using the memory requirement of the learned model compared with the size of the processed raw data. All
calculations were performed on a desktop PC, with an Intel Core i7-4790 processor with 8 cores, 3.6 GHz890

clock speed, and 16 GB of RAM.
We define the memory requirement of each component to be equal to the memory size of its learned

model when stored on the PC’s hard-drive. For example, the memory size of the Gaussian mixture models
used to learn the colours, shapes, etc., or the memory size of the learned grammar rules, etc. Figure 31
shows the incremental memory requirement of the three components in OLAV along with the raw size of895

the input data in the LRC datasets. The graphs in Figure 31 show how efficient OLAV is when compared
with the size of the raw data. The sizes of the learned models are orders of magnitude smaller than that
of the raw data. For example, at the final video (video number 204) in the LRC dataset the processed
raw data was nearly a hundred Gigabytes in size, while the learned models did not exceed 50 Kilobytes in
size. Moreover, the learned models’ memory requirements flatten as more data is observed; this is mainly900

because OLAV has learned most of the visual and linguistic concepts there are to learn in this dataset. Most
of the vision concepts, word groundings, and grammar rules have been observed and allocated a location in
memory. We hypothesise that extended observation of the environment will scale well in OLAV as the size of
the learned models will not increase linearly with the size of observed data, but rather will flatten as OLAV

incrementally learns everything it is capable of discovering from a dataset.905
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Figure 31: The incremental memory requirement of OLAV on the LRC dataset.

Finally, we briefly discuss the computational requirements imposed by the use of ILP, which is known
to be computationally hard18. However this has not proved a problem in our experiments, (e.g. the

180-1 integer linear programming is one of Karp’s 21 NP-complete problems [76].
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entire dataset for the largest dataset (ETR), was processed in under an hour (∼5000 video-sentence pairs).
The habituation step, which removes variables, also helps from a theoretical viewpoint. If this proved a
problem, then using a solver which can exploit the previous solution when presented with a slightly different910

matrix/objective function is likely to be beneficial (e.g [77]). Another approach would be to use heuristic
methods[78], as a good solution rather than an optimal solution is likely to be sufficient.

8. Conclusion and Future work

We have presented a novel, incremental and loosely-supervised framework that enables robots to boot-
strap their knowledge in language and vision domains by incrementally learning three kinds of knowledge:915

• Visual representations of the world in a number of predefined feature spaces.
• Language grounding that maps phrases in language to their corresponding learned visual concepts.
• Probabilistic grammar rules of natural language.

Previous systems were designed to use one or two of these three components (visual representation, language
grounding and language grammar) to learn the remaining one(s). To the best of our knowledge, this is the920

first system capable of learning all three components, which thus reduces the amount of needed initial
knowledge significantly. Macroscopically, viewing the processing of each video-sentence pair as a single
atomic operation, OLAV can be viewed as jointly or concurrently learning the three components. Also, we
show that these components can be learned from real-world noisy data collected using robots equipped with
different sensing modalities, and in different languages (Arabic and English). We also offer a number of925

individual contributions in the fields of visual learning, language grounding, and grammar induction.

8.1. Visual learning

The learning of visual concepts is the first step in our language and vision learning framework. Visual
concepts are learned automatically by clustering the low-level input of each of the robot’s sensing modalities
after an appropriate encoding. This clustering operation results in a collection of classes that are candidate930

visual concepts in each feature space. Because OLAV assumes no prior knowledge of the structure of the
sensor feature spaces, it employs probabilistic modelling techniques to each feature space independently to
elicit meaningful classes that are supported by the observed data.

One of the key novel contributions we offer in this field is the use of incremental Gaussian mixture models
and a BIC to learn the simple visual concepts in a loosely-supervised manner. Notably, OLAV is also able to935

learn not just unary predicates (colours, shapes, locations), but also binary relations (relative directions and
distances). The extended spatio-temporal graphs (STDAG) representation is also a key novel contribution of
our work acting as an intermediate representation between the continuous perceptual space, and the purely
symbolic linguistic structures, enabling the learning of complex visual concepts.

8.2. Language grounding940

Language grounding is the second step in our learning framework, and is performed after updating
the visual concepts in each video clip. OLAV searches for the highest correlations between words and
phrases in a video clip description and the visual concepts that feature in that clip, allowing multi-to-multi
associations to preserve the richness of natural language. The multi-to-multi association is enabled using
integer programming. After finding the highest correlations, each is validated using our mental simulation945

idea which is enabled using graph matching technique.

8.3. Grammar induction

Grammar induction is the third and final step in our learning framework. The main novel contribution
we offer in the field of grammar induction is that OLAV automatically generates training examples similar to
those annotated by a human expert. This is achieved by utilizing the learned groundings and the extracted950

vision trees to successfully replace the human annotator. OLAV searches the space of all possible language
trees from a sentence for one that matches the extracted vision tree. An important advantage of the use
of the RCL trees is that they provide a semantics which would enable a robot to execute a newly parsed
sentence.
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8.4. Future work955

Several research directions might emerge from our work; some improve on the existing framework, others
build on it. Our approach suffers from two main limitations that hinder learning from longer videos, such
as continuous streams of audio-video data or YouTube videos. First, it requires the videos and sentences to
be (roughly) temporally aligned beforehand, and second, it requires the feature spaces (e.g. colours, shapes,
etc.) to be specified beforehand (though not their discretisation, which is learned).960

8.4.1. Learning from non-segmented videos and text

Providing our robots with the ability to learn from long, non-segmented videos and text would likely
significantly improve the learning. This would allow our robots to learn from rich web-available sources
such as YouTube videos. Our language grounding and grammar induction frameworks are based on the idea
that sentences map to their corresponding input videos, and having longer sentences and videos would break965

our assumption and prevent the learning. However, OLAV could be upgraded using an idea similar to that
presented by Alayrac et al. [79]. In their work, they presented a system capable of automatically learning
the main steps to complete a given task, such as changing a car tyre, from a set of narrated instruction
videos. They addressed this task by formulating the problem as two clustering tasks, one in text and one in
video, and then linking both domains by joint constraints. However, they assumed the language grammar970

is known, and used it to parse the long descriptions into smaller entities they called direct object relations,
which consist of a single verb and object in each such as ‘remove tire’.

8.4.2. Generating new visual and relational features

Visual features are the representation or encoding used to move from pixel level inputs into a space where
visual concepts can be learned. These feature spaces are manually defined in this work, such as the HSL975

colour feature space. The manual identification of these feature spaces enables the robot to learn interesting
concepts within the feature space, such the colours red, green, blue, etc. Automatically generating new
visual feature spaces would enable our robot to learn more visual concepts without the need to manually
define each feature space. It is possible that representations such as Eigenobject learned vectors [80] which
learn a generative model for object classes could be useful in this context. But this still leaves open the980

question of new relational feature spaces; for example the present feature spaces cannot explicitly encode
topological information, such as x is inside y. One possible way of addressing this problem is to create a set
of primitive features, which can be used to generate new feature spaces as presented by Bennett et al. [81].
In their paper, they addressed the problem of generating relational calculi from a set of primitive relations,
as opposed to manually defining all relations in an ad hoc way. The work was limited to generating relations985

only, however, it can be expanded to include other features such as human activities, and object properties.
By using this idea, we can reduce the problem of generating all possible feature spaces into finding the set
of primitive features that can be used to generate new visual features.

8.5. Generalising constraints990

The objective function (formula 2) used in the ILP maximisation process is subject to two constraints.
The first of these is used to keep groundings relatively sparse by setting a threshold. This has been found to
be effective, and the sensitivity of the threshold was analysed in section 7.3.2. However it might be possible
to have a more elegant solution involving an exponential penalty. However the present limited size of the
datasets mitigated against such a solution, but could be investigated in larger scale experimentation. Similar995

comments apply to the filters (3-6) used to filter incorrect n-grams – an exponential filter that favours lower
n-gram assignments might provide a more elegant solution, but again was not investigated since we felt a
rather larger dataset would be needed for this to be effective. In practice the constraints as presented in the
paper have been found to work well.
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