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Abstract 

Calibration of cancer natural history models is often challenged by a lack of representative calibration targets 

forcing modellers to rely on potentially incompatible datasets. Using a microsimulation colorectal cancer model 

as an example, the purposes of this paper are to: (1) highlight the reasons for uncertainty in calibration targets, 

(2) illustrate practical and generalizable approaches for dealing with incompatibility in calibration targets, and 

(3) discuss the importance of future research in the area of incorporating uncertainty in calibration. 

Low quality of data and differences in populations, outcome definitions, and healthcare systems may result in 

incompatibility between the model and the data. Acknowledging reasons for data incompatibility allows 

assessment of the risk of incompatibility before calibrating the model.  Only a few approaches are available to 

address data incompatibility, for instance addressing biases in calibration targets and their adjustment, relaxing 

the goodness-of-fit metric, and validation of the calibration targets to the data not used in the calibration. 

However, these approaches lack explicit comparison and validation and so more research is needed to describe 

the nature and causes of indirect uncertainty (i.e. uncertainty that cannot be expressed in absolute quantitative 

forms) and identify methods for managing this uncertainty in healthcare modelling.  

 



3 

 

Key points 

• Extensive practical and theoretical recommendations discuss modelling parameter uncertainty; 

however, uncertainty related to the selection and compatibility of calibration targets is widely 

overlooked. 

• A lack of representative calibration targets require models to rely on multiple datasets, which may not 

be compatible because of limited data quality, differences in definitions of outcomes, target 

populations, origin of the evidence, and/or healthcare settings. 

• Data incompatibility in calibration of disease models may be addressed through adjustments of 

calibration targets, relaxing the goodness-of-fit metric used within the calibration algorithm, and 

validation of calibration targets to data not used in calibration.  

• There is a critical need for standardising approaches for addressing incompatibility in calibration data; 

for instance through development of quantitative metrics to measure compatibility between a model 

and its calibration targets.   
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1. Introduction  

 

Cancer natural history models are used to assess the long-term impact  and cost-effectiveness of preventive, 

screening, and treatment interventions.  These models represent the natural history of cancer, including the onset 

of pre-cancerous conditions, cancer and cancer progression either by the definition of discrete health states or 

continuous growth models. In either case health state transition probabilities or cancer growth rates may not be  

directly observable as they occur in the asymptomatic population who are treated immediately if disease is 

detected.  These unobserved parameters may be assessed through the computationally intensive statistical 

process called calibration.  Calibration involves adjusting unknown model parameters to predict target statistics, 

called calibration targets. The calibration targets for cancer models frequently include cancer incidence and 

mortality, prevalence of pre-cancer states, and accuracy of screening tests [1-4].  

The validity of model predictions relies heavily on the compatibility of data used in the model to the decision 

problem setting. The incompatibility of data to the model (i.e. to the decision problem setting) arises when the 

target data source is biased and non-representative of the population of interest. This means that the true 

difference between the modelled population and the population presented in calibration targets is not captured 

by sampling uncertainty because of an additional undefined uncertainty related to data compatibility. The 

compatibility of target data to the model is achieved using representative local data or data from other settings 

that are either generalizable by nature or appropriately transferred (i.e. adapted from other setting to apply in the 

modelled setting [5]).  We will hereafter refer to this process as data adjustment. 

Although multiple methodological reviews and empirical studies widely discuss parameter uncertainty (i.e. 

uncertainty in data used directly to populate the models), the uncertainty associated with the compatibility of 

data used to calibrate the models is rarely explored [6-10]. Requirements in the number of calibration targets are 

directly proportional to complexity of a model [1, 11]. Multiple calibration targets are required for successful 

parameterisation of highly complex models whose accuracy depends upon unobserved transitions between many 

health states [1].  Calibration of cancer natural history models faces a common challenge: a lack of 

representative calibration targets. The scarcity of reliable statistical data often forces modellers to rely on non-

representative or potentially biased datasets and so on assumptions regarding compatibility of data sources.  

This problem of potential incompatibility between multiple calibration targets and models was recognised in 

previous research [12, 13]. Such biased incompatible datasets could include, for instance, data from different 

time periods, administrative units (e.g. regional instead of national data), or geographic settings (international 

data).   

Incompatibility of target data to the model may be considered as an issue of indirect uncertainty (i.e. uncertainty 

that cannot be expressed in absolute quantitative forms [14]).  There is some, albeit limited, evidence to suggest 

that knowledge of indirect uncertainty  substantially affects the model-based decision-making [14].  This paper 

aimed to: (1) highlight the reasons for uncertainty in calibration targets, (2) illustrate a practical and 

generalizable approach for dealing with uncertainty in calibration targets, and (3) discuss the importance of 

future research in the area of incorporating uncertainty in calibration. 
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2. Example model 

For the purposes of this paper we use an example model - the Microsimulation Model in Cancer of the Bowel 

(MiMiC-Bowel) that incorporates individual cancer risk to inform colorectal cancer (CRC) screening decisions 

in England  [15].  The model was calibrated using the Metropolis-Hasting algorithm [16].  To ensure model 

identifiability, i.e. ability of the model to produce unique outputs for the calibrated parameters [11], and avoid 

under-specification, parameterisation of MiMiC-Bowel included 12 calibration targets: 5 based on English 

observational data (with longitudinal and completeness limitations), and 7 based on data from a German 

population study (with geographical, healthcare setting and data definition limitations). The calibration targets 

consisted of pre-screening CRC incidence total (zi,)  and by Duke’s stage (zi,a , zi,b, zi,c, zi,d) in England and 

prevalence of low-risk (zla) and high-risk (zha) adenomas and undiagnosed CRC total (zu) and by stage from 

Germany (zu,a , zu,b, zu,c, zu,d) [17-20].  

The calibration of the cancer natural history of the MiMiC-Bowel model assumed taking as inputs a set of 

parameters x ∈ {X ⊆ ℝ: θ > 0 ^ θ <1} to produce an expected value of model outputs y ∈ {Y ⊆ ℝ}. This means 

that the modelling outputs (incidence of CRC total and by stages [yi, yi,a , yi,b, yi,c, yi,d], undiagnosed CRC total and 

by stages [yu, yu,a , yu,b, yu,c, yu,d], low-risk [yla] and high-risk [yha] adenoma prevalence by age and sex) are 

functions of a set of calibrated parameters reflecting the speed of disease development and progression (xv) and 

a set of fixed parameters (xf), y=E[f(xv, xf)]. The predictions of the modelling outputs are compared to the 

calibration targets: zi, zi,a , zi,b, zi,c, zi,d,  zui, zu,a , zu,b, zu,c, zu,d, zla, and zha by age and sex.  

3. Reasons for indirect uncertainty in calibration targets  

 

Incompatibility of calibration targets in cancer models could occur due to:  

(1) Poor quality and incomplete data 

Poor or incomplete data mean high risk of bias or uncertainty around the true epidemiological values. The 

reporting quality of epidemiological data varies broadly [21], with pre-screening data being especially 

underreported.  For instance, in the example MiMiC-Bowel model, incidence of CRC by stage in England, 

reported in 1996-2004 in the UK Association of Cancer Registries (UKACR) dataset, had more than 40% of 

patients with unknown CRC stage at diagnosis (Table 1) [22].  

(2) Compatibility of the outcomes by their definitions 

Differences in definitions of cancer outcomes (either related to disease severity, staging, or a screening program 

performance [23-25]) are common and will inevitably lead to incompatibility between the model and the target 

cancer data. In the example model, differences in the reporting of pre-cancerous lesions (as either advanced 

adenoma or high-risk adenoma [HRA])[17, 19, 26] and in definitions of HRA and low-risk adenoma (LRA)[27, 

28] impact compatibility between the data and MiMiC-Bowel (Table 1).  

(3) Population differences 
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Differences in cancer statistical data, even among geographically comparable settings [29, 30], are driven by 

demographic differences and exposures to risk factors [29, 31], signifying data incompatibility.  For example, 

data on prevalence of pre-cancer and CRC lesions in Germany would be a highly uncertain (and possibly 

incompatible) calibration target for the English CRC model.  This is because population-level exposures to CRC 

risk factors, such as diet, physical activity and alcohol consumption [32] result in a substantial variability in pre-

screening CRC incidence in both countries (Table 1) [18, 33]. Even when populations in calibration targets and 

the model are from the same setting, they may still be incompatible [34].  For instance, in MiMiC-Bowel the 

adjustment of definitions of pre-cancer states were based on the UK Flexible Sigmoidoscopy Screening 

randomized controlled trial (UKFSST), which was the only data source that reported detection of advanced and 

HRA [16].  However, the detection rates of CRC and HRA were higher in the trial compared with the 

subsequent Bowel Cancer Screening Programme (BCSP) in England and this discrepancy has been ascribed to 

the inclusion criteria and uptake characteristics [34, 35].  

(4) Healthcare setting differences 

Peculiarities of healthcare settings may limit compatibility of target datasets.  For example, cancer prevalence, a 

frequently-used calibration target [36, 37], would require adjustments to country-specific data on cancer survival 

[38].  For some settings, cancer survival data may not be accessible.  In MiMiC-Bowel, instead of CRC 

prevalence, prevalence of undiagnosed lesions was used as a calibration target (Table 1).  The target’s 

assessment was based on lesion detection rate from the German colonoscopy screening programme and 

published sensitivity rates [39].  However, the indirect uncertainty related to this calibration target remains 

because of variability in performance of screening and diagnostic tests across the jurisdictions and the studies 

[40, 41].  

4. Approaches to address incompatibility of data  

Selection of fully compatible calibration targets is always desirable but not always possible. Acknowledgment 

of data incompatibility allows identification of potential issues in using adjusted calibration targets. For simple 

models or for models where each unobserved model state is already informed by compatible target data [1, 11], 

supplementary incompatible data may be excluded from the calibration process.  This though may rarely be the 

case in calibration of complex multi-state natural history disease models.  

In some models, the uncertainty in calibration targets may be addressed by generating parameter distributions 

within the calibration process through bias adjustment [46-48]. If multiple biased studies are available, the bias-

adjusted means and standard errors of target data can be combined in a bias-adjusted meta-analysis [49]. An 

explicit modelling of the biases (i.e. capturing both sampling uncertainty and uncertainty related to data 

incompatibility) would probably be the most robust method dealing with the data incompatibility. It may be 

challenging to apply though when biases around a calibration target are not well-understood [37], especially 

when there are uncertain biases around multiple calibration targets, either risking sampling inefficiencies if 

heavy tailed prior distributions are used [50] or more uncertain and so less informative for healthcare decisions.   

Different data adjustment methods may either improve or resolve incompatibility of calibration targets to the 

model.  If uncertainty related to data incompatibility can be measured, adjustment of calibration targets may 
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fully address the differences in definitions, populations, samples, or geographic and healthcare settings. 

However, an absence of metrics to quantify data compatibility [1, 51] makes it difficult to transform qualitative 

knowledge into informed quantitative data adjustment in unbiased way.  Uncertainty around a calibration target 

(for either statistical or ad-hoc adjustment) may be informed by supplementary evidence, such as differences in 

disease incidence or detection rates across the settings, or through elicitation for data compatibility biases [49].   

Lack of validity for data adjustment processes means that even after adjustment is applied to incompatible data, 

the risk of bias in some of these targets may still exist.   If it is a case, such calibration targets may be weakened 

under ad-hoc or quasi-Bayesian framework [37]. Under accept-reject sampling schemes, different tolerances can 

be defined for various calibration targets [48, 52]. Within a goodness-of-fit metric, lower weights may be 

assigned to calibration targets with higher uncertainty. The convergence to individual datasets with the selected 

weights may be tested in a sensitivity analysis. While arbitrary weighting of target data in calibration is common 

[13, 51, 53], more objectivity can be given by involving an expert elicitation. This process involves asking the 

clinical experts and the decision-makers about their confidence in adjusted data, by inquiring about the 

probability for datasets to represent the modelled population.  The elicitation approach may involve individual 

or group experts’ consultations (sometimes also relying on elicitation scales), and ideally is based on a structural 

protocol [54].   

Independently of any former steps undertaken, compatibility of the calibration targets may be assessed before 

undertaking the calibration process. One- and multi-way way sensitivity analyses can assess compatibility of 

different calibration targets within the fixed model structure and can be used to signal incompatibility issues. 

Another way would be to perform an external validation of calibration targets (e.g. feasibility of the predicted 

accuracy of screening when natural history disease parameters are calibrated) or a cross validation to outputs 

predicted by other models (e.g. sojourn time). 

 

5. Incompatibility of data in MiMiC-Bowel 

To illustrate possible data adjustment in regard to different compatibility problems, we present some examples 

from dealing with data incompatibility in MiMiC-Bowel (see the report for full details [16]). The complexity of 

a model with multiple unobserved transitions required multiple calibration targets for parametrisation, and so 

incompatible calibration targets could not be excluded from the calibration. 

 

5.1. Data adjustment to increase data compatibility 

In MiMiC-Bowel, the calibration target data for pre-screening CRC incidence by stage were adjusted (using an 

additional data set) to address the poor data completeness issue. The unstaged cases were distributed between 

stages C and D so that predicted patient survival, where total survival So is a function of proportion of population 

in each disease stage at diagnosis and a survival at each stage (Sa,b,c,d), So = f(Pa,b,c,d; Sa,b,c,d), where stage-specific 

survival (Sa,b,c,d) is a function of age, sex, and time since diagnosis: Sa,b,c,d = f(age; sex, tdiag) matched that in ob-

served data [15].  
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Calibration of MiMiC-Bowel was hampered by the different outcome definitions used in potential target da-

tasets  ; thus, adjustments of calibration targets to reflect definitions used in the model were applied when neces-

sary. Stage distribution of undiagnosed CRC was based on a German multi-centre cohort study in 2003-2010 

[20].  In this case, no data adjustments were applied after comparison of the definitions of stages I-IV in Brenner 

et. al. (2016) and Dukes’ classification due to their similarity and an absence of a direct guide for case conver-

sion [20, 55].  However, the definitions of pre-cancer lesions were different in the model and the calibration tar-

get [17]. While MiMiC-Bowel assessed cancer progression through low- and high-risk adenomas, the German 

colonoscopy screening programme reported detection rates for advanced and non-advanced adenomas [17].  The 

adjustment relied on information from the UKFSST, the only source found reporting detection rates for both 

advanced adenomas and HRA [17, 26]. To adjust the target, prevalence of all adenomas was calculated as: Preva 

=  
D𝑅𝑅(𝑎𝑎𝑎𝑎)𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 (𝑎𝑎𝑎𝑎)

+ 
D𝑅𝑅(𝑆𝑆𝑎𝑎)𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 (𝑆𝑆𝑎𝑎)

, where DR - detection rates of advanced and non-advanced adenomas reported by Bren-

ner et. al. [17], and Sens - sensitivity of colonoscopy to advanced and non-advanced adenomas reported in the 

literature [44, 56]. The prevalence of HRA was calculated by multiplying calculated prevalence of advanced ad-

enoma by the proportion of advanced adenomas that are high-risk among males [𝑃𝑃 � 𝑎𝑎𝑎𝑎𝐻𝐻𝑅𝑅𝐻𝐻 ;𝑚𝑚𝑚𝑚𝑚𝑚�] and fe-

males [𝑃𝑃 � 𝑎𝑎𝑎𝑎𝐻𝐻𝐻𝐻𝐻𝐻 ;𝑤𝑤𝑤𝑤𝑚𝑚𝑚𝑚𝑚𝑚�] in UKFSST, PrevHRA =  
D𝑅𝑅(𝑎𝑎𝑎𝑎,𝑚𝑚𝑆𝑆𝑆𝑆)𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 (𝑎𝑎𝑎𝑎)

× 𝑃𝑃 � 𝑎𝑎𝑎𝑎𝐻𝐻𝑅𝑅𝐻𝐻 ;𝑚𝑚𝑚𝑚𝑚𝑚� + 
D𝑅𝑅(𝑆𝑆𝑎𝑎,𝑤𝑤𝑤𝑤𝑚𝑚𝑆𝑆𝑆𝑆)𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 (𝑆𝑆𝑎𝑎)

× 𝑃𝑃 � 𝑎𝑎𝑎𝑎𝐻𝐻𝑅𝑅𝐻𝐻 ;𝑤𝑤𝑤𝑤𝑚𝑚𝑚𝑚𝑚𝑚�.  

The proportion of advanced adenomas that are high-risk in UKFSST was 0.81 for males and 0.66 for females 

[16]. Prevalence of LRA then was calculated as a difference between total adenoma prevalence and prevalence 

of HRA, PrevLRA = Preva  - PrevHRA. 

Adjustment of calibration targets because of incompatibility in geographic and healthcare settings was con-

ducted in MiMiC-Bowel for undiagnosed CRC. Observing that pre-screening CRC incidence in England was 

10% lower than in Germany among population of screening ages [16], we adjusted the prevalence of undiag-

nosed cancer in Germany with a 10% reduction assuming a correlation between these two outcomes.  

 

5.2. Relaxing goodness-of-fit metric  

All except one adjusted calibration targets (zi,a , zi,b, zi,c, zi,d,  zui, zu,a , zu,b, zu,c, zu,d, zla, and zha) were assumed to have 

additional uncaptured uncertainty related to data incompatibility. Thus, in the calibrated MiMiC-Bowel model 

we accepted lower precision in adjusted targets by giving them lower weights in the calibration.  The total SSE 

in the calibration was equal to the sum of weighted SSE for each calibration target i, 𝑇𝑇𝑤𝑤𝑇𝑇𝑎𝑎𝑇𝑇 𝑆𝑆𝑆𝑆𝑆𝑆 =�∑  𝑤𝑤𝑚𝑚𝑤𝑤𝑤𝑤ℎ𝑇𝑇𝑖𝑖 × 𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖# 𝑑𝑑𝑎𝑎𝑑𝑑𝑎𝑎 𝑑𝑑𝑎𝑎𝑡𝑡𝑡𝑡𝑆𝑆𝑑𝑑𝑆𝑆𝑖𝑖=1 �.  The selected approach resulted in the calibration algorithm prioritising 

fitting to total CRC incidence [zi] by age and sex in the population over the other calibration targets [16].  

 

5.3. Validation of calibrated model parameters against data not used in the calibration 

In the example MiMiC-Bowel model we assessed compatibility of calibration targets by validating them to 

sensitivity of faecal immunochemical test with positivity threshold of 20 µg haemoglobin/g feces (FIT20) and 

flexible sigmoidoscopy screening (FS) screening tests in England to HRA and CRC. The validation assumed 

that the upper bound for sensitivity of FS in population screening can reach 72% for CRC and 69% for HRA.  

This threshold was retrieved by firstly calculating the maximum possible sensitivity of FS that could be obtained 
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in a trial setting (FStrial, sens), using test sensitivity to distal (Sdl) and proximal lesions (Spl) reported in the 

literature [44, 56] and proportions of CRC and advanced adenomas that are distal (Pdl) and proximal (Ppl) from 

UKFSST data [34, 57]:  FSUKFSST, sens =Spl × Ppl+Sdl × Pdl. The predicted sensitivity of FS in the UKFSST to 

CRC and HRA was adjusted to reflect the lower performance of the national screening programme [16] (FSBCSP, 

sens), FSBCSP, sens =
D𝑅𝑅(𝐵𝐵𝐵𝐵𝑆𝑆𝐵𝐵)𝐷𝐷𝑅𝑅 (𝑈𝑈𝑈𝑈𝑈𝑈𝑆𝑆𝑆𝑆𝑈𝑈)

× FSUKFSST,sens. 

For FIT20, validation assumed an upper bound of sensitivity to CRC of 52% based on trial data [58]. Sensitivity 

of tests was calculated by dividing detection rates in BCSP and FIT pilot by prevalence of lesions estimated 

with the target calibration datasets.  With adjusted calibration targets, FS sensitivity was 60% for CRC and 59% 

for HRA for 55-year olds.  The predicted FIT20 sensitivity in BCSP was 48% for CRC and 32% for HRA for 

60-year olds. The predicted FIT20 sensitivity with non-adjusted calibration targets (without adjustments to 

cross-country differences between England and Germany, as described above) was above the calculated 

threshold.  

6. Limitations and future research considerations  

Adjusting calibration targets enables increased data compatibility within the model.  In the absence of explicit 

comparisons of different methods addressing incompatibility in calibration targets, ad-hoc adjustments have 

been applied.  The uncertainty in data adjustments increases when multiple adjustment steps are needed (e.g. 

when multiple incompatibility reasons are identified), accumulating uncertainty related to each step.  Thus, 

while multiple reasons for incompatibility were identified for some of the calibration targets for MiMiC-Bowel, 

the adjustment steps were limited to those subjectively considered to be the most influential, while increasing 

the uncertainty around the calibration targets by assigning less weight to uncertain datasets in the calibration 

process.  While arbitrary weighting of target data in calibration is common, more empirical research is needed to 

explore the impact of assigning weights on uncertainty and bias.   

Indirect uncertainty in modelling remains high ahead of development of a standardized process for calibration 

target selection and adjustment.  Significant controversy regarding compatibility of calibration targets highlights 

a critical need to develop a quantitative metric to identify and measure incompatibility and to adjust calibration 

data, as well as to compare available methods aiming to address data incompatibility.  More research is needed 

to identify markers for data incompatibility that could be used systematically in models’ calibration. Similarly, 

there is a need to quantify indirect uncertainty in healthcare modelling and to understand the impact of indirect 

uncertainty on healthcare decision-making. While the available recommendations on models calibration focus 

on technical issues [36, 37, 51, 59], we call for guidance on data compatibility in healthcare models calibration.



11 

 

7. References 

 

1. Vanni T, Karnon J, Madan J, White RG, Edmunds WJ, Foss AM, et al. Calibrating models in 

economic evaluation: a seven-step approach. Pharmacoeconomics. 2011;29(1):35-49. Epub 

2010/12/15. doi: 10.2165/11584600-000000000-00000. PubMed PMID: 21142277. 

2. Platt D. A comparison of economic agent-based model calibration methods. Journal of 

Economic Dynamics and Control. 2020;113:103859. doi: https://doi.org/10.1016/j.jedc.2020.103859. 

3. Whyte S, Walsh C, Chilcott J. Bayesian calibration of a natural history model with 

application to a population model for colorectal cancer. Med Decis Making. 2011;31(4):625-41. Epub 

2010/12/04. doi: 10.1177/0272989x10384738. PubMed PMID: 21127321. 

4. Stout NK, Knudsen AB, Kong CY, McMahon PM, Gazelle GS. Calibration methods used in 

cancer simulation models and suggested reporting guidelines. Pharmacoeconomics. 2009;27(7):533-

45. Epub 2009/08/12. doi: 10.2165/11314830-000000000-00000. PubMed PMID: 19663525; PubMed 

Central PMCID: PMCPMC2787446. 

5. Drummond M, Barbieri M, Cook J, Glick HA, Lis J, Malik F, et al. Transferability of 

economic evaluations across jurisdictions: ISPOR Good Research Practices Task Force report. Value 

Health. 2009;12(4):409-18. Epub 2009/11/11. doi: 10.1111/j.1524-4733.2008.00489.x. PubMed 

PMID: 19900249. 

6. Corro Ramos I, Hoogendoorn M, Rutten-van Mölken MPMH. How to Address Uncertainty in 

Health Economic Discrete-Event Simulation Models: An Illustration for Chronic Obstructive 

Pulmonary Disease. Medical Decision Making. 2020;40(5):619-32. doi: 10.1177/0272989x20932145. 

PubMed PMID: 32608322. 

7. D’Agostino McGowan L, Grantz KH, Murray E. Quantifying Uncertainty in Mechanistic 

Models of Infectious Disease. American Journal of Epidemiology. 2021;190(7):1377-85. doi: 

10.1093/aje/kwab013. 

8. Bilcke J, Beutels P, Brisson M, Jit M. Accounting for methodological, structural, and 

parameter uncertainty in decision-analytic models: a practical guide. Med Decis Making. 

2011;31(4):675-92. Epub 2011/06/10. doi: 10.1177/0272989x11409240. PubMed PMID: 21653805. 

9. Degeling K, IJzerman MJ, Koopman M, Koffijberg H. Accounting for parameter uncertainty 

in the definition of parametric distributions used to describe individual patient variation in health 

economic models. BMC Med Res Methodol. 2017;17(1):170. Epub 2017/12/17. doi: 10.1186/s12874-

017-0437-y. PubMed PMID: 29246192; PubMed Central PMCID: PMCPMC5732462. 

10. Briggs AH, Weinstein MC, Fenwick EA, Karnon J, Sculpher MJ, Paltiel AD. Model 

parameter estimation and uncertainty: a report of the ISPOR-SMDM Modeling Good Research 

Practices Task Force--6. Value Health. 2012;15(6):835-42. Epub 2012/09/25. doi: 

10.1016/j.jval.2012.04.014. PubMed PMID: 22999133. 

11. Alarid-Escudero F, MacLehose RF, Peralta Y, Kuntz KM, Enns EA. Nonidentifiability in 

Model Calibration and Implications for Medical Decision Making. Med Decis Making. 

2018;38(7):810-21. Epub 2018/09/25. doi: 10.1177/0272989x18792283. PubMed PMID: 30248276; 

PubMed Central PMCID: PMCPMC6156799. 

12. Rutter CM, Ozik J, DeYoreo M, Collier N. Microsimulation model calibration using 

incremental mixture approximate bayesian computation. Ann Appl Stat. 2019;13(4):2189-212. Epub 

2019/12/01. doi: 10.1214/19-aoas1279. PubMed PMID: 34691351; PubMed Central PMCID: 

PMCPMC8534811. 

13. Kong CY, McMahon PM, Gazelle GS. Calibration of disease simulation model using an 

engineering approach. Value Health. 2009;12(4):521-9. Epub 2009/11/11. doi: 10.1111/j.1524-

4733.2008.00484.x. PubMed PMID: 19900254; PubMed Central PMCID: PMCPMC2889011. 

14. Padilla LMK, Powell M, Kay M, Hullman J. Uncertain About Uncertainty: How Qualitative 

Expressions of Forecaster Confidence Impact Decision-Making With Uncertainty Visualizations. 

Front Psychol. 2021;11:579267-. doi: 10.3389/fpsyg.2020.579267. PubMed PMID: 33564298. 

15. Thomas C, Mandrik, O. and Whyte, S. Development of the Microsimulation Model in Cancer 

of the Bowel (MiMiC-Bowel), an Individual Patient Simulation Model for Investigation of the Cost-



12 

 

effectiveness of Personalised Screening and Surveillance Strategies. 2020 1 April 2020. Report No. 

Available from: https://eprints.whiterose.ac.uk/162743/ 

16. Mandrik O.  TC, Strong M. , Whyte S. Calibration and Validation of the Microsimulation 

Model in Cancer of the Bowel (MiMiC-Bowel), an Individual Patient Simulation Model for 

Investigation of the Cost-effectiveness of Personalised Screening and Surveillance Strategies. 

Sheffield: School of Health and Related Research, University of Sheffield, 2021. Available from: 

https://eprints.whiterose.ac.uk/171343/ 

17. Brenner H, Altenhofen L, Hoffmeister M. Sex, age, and birth cohort effects in colorectal 

neoplasms: a cohort analysis. Ann Intern Med. 2010;152(11):697-703. Epub 2010/06/02. doi: 

10.7326/0003-4819-152-11-201006010-00002. PubMed PMID: 20513827. 

18. Brenner H, Altenhofen L, Katalinic A, Lansdorp-Vogelaar I, Hoffmeister M. Sojourn time of 

preclinical colorectal cancer by sex and age: estimates from the German national screening 

colonoscopy database. Am J Epidemiol. 2011;174(10):1140-6. Epub 2011/10/11. doi: 

10.1093/aje/kwr188. PubMed PMID: 21984657. 

19. Brenner H, Altenhofen L, Stock C, Hoffmeister M. Incidence of colorectal adenomas: birth 

cohort analysis among 4.3 million participants of screening colonoscopy. Cancer Epidemiol 

Biomarkers Prev. 2014;23(9):1920-7. Epub 2014/07/12. doi: 10.1158/1055-9965.Epi-14-0367. 

PubMed PMID: 25012996. 

20. Brenner H, Jansen L, Ulrich A, Chang-Claude J, Hoffmeister M. Survival of patients with 

symptom- and screening-detected colorectal cancer. Oncotarget. 2016;7(28):44695-704. Epub 

2016/05/24. doi: 10.18632/oncotarget.9412. PubMed PMID: 27213584; PubMed Central PMCID: 

PMCPMC5190129. 

21. Altobelli E, D'Aloisio F, Angeletti PM. Colorectal cancer screening in countries of European 

Council outside of the EU-28. World J Gastroenterol. 2016;22(20):4946-57. Epub 2016/05/31. doi: 

10.3748/wjg.v22.i20.4946. PubMed PMID: 27239121; PubMed Central PMCID: PMCPMC4873887. 

22. Incidence numbers of Colorectal Cancer for patients diagnosed between 1996 and 2004 in 

England , by stage. In: Registries UAoC, editor. 2009. 

23. Kim SH, Shin DW, Kim SY, Yang HK, Nam E, Jho HJ, et al. Terminal Versus Advanced 

Cancer: Do the General Population and Health Care Professionals Share a Common Language? 

Cancer Res Treat. 2016;48(2):759-67. Epub 2015/08/10. doi: 10.4143/crt.2015.124. PubMed PMID: 

26323640. 

24. Mandrik O, Tolma E, Zielonke N, Meheus F, Ordóñez-Reyes C, Severens JL, et al. 

Systematic reviews as a “lens of evidence”: Determinants of participation in breast cancer screening. 

Journal of Medical Screening. 2020:0969141320930743. doi: 10.1177/0969141320930743. 

25. Walters S, Maringe C, Butler J, Brierley JD, Rachet B, Coleman MP. Comparability of stage 

data in cancer registries in six countries: lessons from the International Cancer Benchmarking 

Partnership. Int J Cancer. 2013;132(3):676-85. Epub 2012/05/25. doi: 10.1002/ijc.27651. PubMed 

PMID: 22623157. 

26. Atkin W, Wooldrage K, Parkin DM, Kralj-Hans I, MacRae E, Shah U, et al. Long term 

effects of once-only flexible sigmoidoscopy screening after 17 years of follow-up: the UK Flexible 

Sigmoidoscopy Screening randomised controlled trial. Lancet. 2017;389(10076):1299-311. Epub 

2017/02/27. doi: 10.1016/s0140-6736(17)30396-3. PubMed PMID: 28236467; PubMed Central 

PMCID: PMCPMC6168937. 

27. Winawer SJ, Zauber AG, Fletcher RH, Stillman JS, O'Brien MJ, Levin B, et al. Guidelines for 

colonoscopy surveillance after polypectomy: a consensus update by the US Multi-Society Task Force 

on Colorectal Cancer and the American Cancer Society. Gastroenterology. 2006;130(6):1872-85. 

Epub 2006/05/16. doi: 10.1053/j.gastro.2006.03.012. PubMed PMID: 16697750. 

28. East JE, Atkin WS, Bateman AC, Clark SK, Dolwani S, Ket SN, et al. British Society of 

Gastroenterology position statement on serrated polyps in the colon and rectum. Gut. 

2017;66(7):1181-96. Epub 2017/04/30. doi: 10.1136/gutjnl-2017-314005. PubMed PMID: 28450390; 

PubMed Central PMCID: PMCPMC5530473. 

29. Torre LA, Siegel RL, Ward EM, Jemal A. Global Cancer Incidence and Mortality Rates and 

Trends--An Update. Cancer Epidemiol Biomarkers Prev. 2016;25(1):16-27. Epub 2015/12/17. doi: 

10.1158/1055-9965.Epi-15-0578. PubMed PMID: 26667886. 



13 

 

30. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 

2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. 

CA Cancer J Clin. 2018;68(6):394-424. Epub 2018/09/13. doi: 10.3322/caac.21492. PubMed PMID: 

30207593. 

31. Wild CP, Espina C, Bauld L, Bonanni B, Brenner H, Brown K, et al. Cancer Prevention 

Europe. Mol Oncol. 2019;13(3):528-34. Epub 2019/01/23. doi: 10.1002/1878-0261.12455. PubMed 

PMID: 30667152; PubMed Central PMCID: PMCPMC6396376. 

32. Keum N, Giovannucci E. Global burden of colorectal cancer: emerging trends, risk factors 

and prevention strategies. Nat Rev Gastroenterol Hepatol. 2019;16(12):713-32. Epub 2019/08/29. doi: 

10.1038/s41575-019-0189-8. PubMed PMID: 31455888. 

33. Cancer Registration Statistics, England [Internet]. 2005. Available from: 

https://webarchive.nationalarchives.gov.uk/20160307140012/https://cy.ons.gov.uk/peoplepopulationa

ndcommunity/healthandsocialcare/conditionsanddiseases/datasets/cancerregistrationstatisticscancerre

gistrationstatisticsengland. 

34. Brown JP, Wooldrage K, Kralj-Hans I, Wright S, Cross AJ, Atkin WS. Effect of once-only 

flexible sigmoidoscopy screening on the outcomes of subsequent faecal occult blood test screening. J 

Med Screen. 2019;26(1):11-8. Epub 2018/10/05. doi: 10.1177/0969141318785654. PubMed PMID: 

30282520; PubMed Central PMCID: PMCPMC6376653. 

35. Siau K, Yew AC, Ishaq S, Jewes S, Shetty S, Brookes M, et al. Colonoscopy conversion after 

flexible sigmoidoscopy screening: results from the UK Bowel Scope Screening Programme. 

Colorectal Dis. 2018;20(6):502-8. Epub 2017/12/06. doi: 10.1111/codi.13982. PubMed PMID: 

29205835. 

36. Jackson CH, Jit M, Sharples LD, De Angelis D. Calibration of complex models through 

Bayesian evidence synthesis: a demonstration and tutorial. Med Decis Making. 2015;35(2):148-61. 

Epub 2013/07/28. doi: 10.1177/0272989x13493143. PubMed PMID: 23886677; PubMed Central 

PMCID: PMCPMC4847637. 

37. Menzies NA, Soeteman DI, Pandya A, Kim JJ. Bayesian Methods for Calibrating Health 

Policy Models: A Tutorial. Pharmacoeconomics. 2017;35(6):613-24. Epub 2017/03/02. doi: 

10.1007/s40273-017-0494-4. PubMed PMID: 28247184; PubMed Central PMCID: 

PMCPMC5448142. 

38. Bray F, Ren J-S, Masuyer E, Ferlay J. Global estimates of cancer prevalence for 27 sites in 

the adult population in 2008. International Journal of Cancer. 2013;132(5):1133-45. doi: 

https://doi.org/10.1002/ijc.27711. 

39. Bressler B, Paszat LF, Chen Z, Rothwell DM, Vinden C, Rabeneck L. Rates of new or missed 

colorectal cancers after colonoscopy and their risk factors: a population-based analysis. 

Gastroenterology. 2007;132(1):96-102. Epub 2007/01/24. doi: 10.1053/j.gastro.2006.10.027. PubMed 

PMID: 17241863. 

40. Gies A, Cuk K, Schrotz-King P, Brenner H. Direct Comparison of Diagnostic Performance of 

9 Quantitative Fecal Immunochemical Tests for Colorectal Cancer Screening. Gastroenterology. 

2018;154(1):93-104. Epub 2017/09/30. doi: 10.1053/j.gastro.2017.09.018. PubMed PMID: 28958859. 

41. Quyn AJ, Fraser CG, Stanners G, Carey FA, Rees CJ, Moores B, et al. Scottish Bowel 

Screening Programme colonoscopy quality - scope for improvement? Colorectal Dis. 

2018;20(9):O277-o83. Epub 2018/06/05. doi: 10.1111/codi.14281. PubMed PMID: 29863812. 

42. Bretthauer M, Kaminski MF, Loberg M, Zauber AG, Regula J, Kuipers EJ, et al. Population-

Based Colonoscopy Screening for Colorectal Cancer: A Randomized Clinical Trial. JAMA Intern 

Med. 2016;176(7):894-902. Epub 2016/05/24. doi: 10.1001/jamainternmed.2016.0960. PubMed 

PMID: 27214731; PubMed Central PMCID: PMCPMC5333856. 

43. van Rijn AF, Dekker E, Kleibeuker JH. [Screening the population for colorectal cancer: the 

background to a number of pilot studies in the Netherlands]. Ned Tijdschr Geneeskd. 

2006;150(50):2739-44. Epub 2007/01/18. PubMed PMID: 17225784. 

44. Martin-Lopez JE, Beltran-Calvo C, Rodriguez-Lopez R, Molina-Lopez T. Comparison of the 

accuracy of CT colonography and colonoscopy in the diagnosis of colorectal cancer. Colorectal Dis. 

2014;16(3):O82-9. Epub 2013/12/05. doi: 10.1111/codi.12506. PubMed PMID: 24299052. 

45. Census. Office for National Statistics. [Internet]. Office for National Statistics. . 2005. 

Available from: https://www.ons.gov.uk/search?q=2005+census. 



14 

 

46. Hernán MA, Hernández-Díaz S, Robins JM. A structural approach to selection bias. 

Epidemiology. 2004;15(5):615-25. Epub 2004/08/17. doi: 10.1097/01.ede.0000135174.63482.43. 

PubMed PMID: 15308962. 

47. Sauboin CJ, Van Bellinghen L-A, Van De Velde N, Van Vlaenderen I. Potential public health 

impact of RTS,S malaria candidate vaccine in sub-Saharan Africa: a modelling study. Malar J. 

2015;14:524-. doi: 10.1186/s12936-015-1046-z. PubMed PMID: 26702637. 

48. Ward ZJ, Yeh JM, Bhakta N, Frazier AL, Girardi F, Atun R. Global childhood cancer 

survival estimates and priority-setting: a simulation-based analysis. The Lancet Oncology. 

2019;20(7):972-83. doi: https://doi.org/10.1016/S1470-2045(19)30273-6. 

49. Turner RM, Lloyd-Jones M, Anumba DOC, Smith GCS, Spiegelhalter DJ, Squires H, et al. 

Routine antenatal anti-D prophylaxis in women who are Rh(D) negative: meta-analyses adjusted for 

differences in study design and quality. PLoS One. 2012;7(2):e30711-e. Epub 2012/02/03. doi: 

10.1371/journal.pone.0030711. PubMed PMID: 22319580. 

50. König C, Spoden C, Frey A. An Optimized Bayesian Hierarchical Two-Parameter Logistic 

Model for Small-Sample Item Calibration. Appl Psychol Meas. 2020;44(4):311-26. Epub 2019/12/21. 

doi: 10.1177/0146621619893786. PubMed PMID: 32536732. 

51. Karnon J, Vanni T. Calibrating models in economic evaluation: a comparison of alternative 

measures of goodness of fit, parameter search strategies and convergence criteria. 

Pharmacoeconomics. 2011;29(1):51-62. Epub 2010/12/15. doi: 10.2165/11584610-000000000-00000. 

PubMed PMID: 21142278. 

52. Kypraios T, Neal P, Prangle D. A tutorial introduction to Bayesian inference for stochastic 

epidemic models using Approximate Bayesian Computation. Mathematical Biosciences. 

2017;287:42-53. doi: https://doi.org/10.1016/j.mbs.2016.07.001. 

53. Taylor DC, Pawar V, Kruzikas D, Gilmore KE, Pandya A, Iskandar R, et al. Methods of 

model calibration: observations from a mathematical model of cervical cancer. Pharmacoeconomics. 

2010;28(11):995-1000. Epub 2010/10/13. doi: 10.2165/11538660-000000000-00000. PubMed PMID: 

20936883. 

54. Hemming V, Burgman MA, Hanea AM, McBride MF, Wintle BC. A practical guide to 

structured expert elicitation using the IDEA protocol. Methods in Ecology and Evolution. 

2018;9(1):169-80. doi: https://doi.org/10.1111/2041-210X.12857. 

55. Rudy DR, Zdon MJ. Update on colorectal cancer. Am Fam Physician. 2000;61(6):1759-70, 

73-4. Epub 2000/04/06. PubMed PMID: 10750881. 

56. Castro I, Estevez P, Cubiella J, Hernandez V, Gonzalez-Mao C, Rivera C, et al. Diagnostic 

performance of fecal immunochemical test and sigmoidoscopy for advanced right-sided colorectal 

neoplasms. Dig Dis Sci. 2015;60(5):1424-32. Epub 2014/11/20. doi: 10.1007/s10620-014-3434-6. 

PubMed PMID: 25407805. 

57. Brenner H, Niedermaier T, Chen H. Strong subsite-specific variation in detecting advanced 

adenomas by fecal immunochemical testing for hemoglobin. Int J Cancer. 2017;140(9):2015-22. Epub 

2017/02/06. doi: 10.1002/ijc.30629. PubMed PMID: 28152558. 

58. Niedermaier T, Tikk K, Gies A, Bieck S, Brenner H. Sensitivity of Fecal Immunochemical 

Test for Colorectal Cancer Detection Differs According to Stage and Location. Clin Gastroenterol 

Hepatol. 2020. Epub 2020/01/29. doi: 10.1016/j.cgh.2020.01.025. PubMed PMID: 31988043. 

59. Afzali HH, Karnon J. Exploring structural uncertainty in model-based economic evaluations. 

Pharmacoeconomics. 2015;33(5):435-43. Epub 2015/01/21. doi: 10.1007/s40273-015-0256-0. 

PubMed PMID: 25601288. 

 



Table 1 Reasons for data and model incompatibility and approaches applied to address the issue  

Calibration target Data sources 

considered 

Potential causes of 

incompatibility  

Data target(s) used 

and reason 

Approach(es) taken to address possible data 

incompatibility  

Low risk adenomas 

(LRA) and High 

risk adenomas 

(HRA) prevalence 

by age and sex 

RCT in Norway, 

Sweden, Netherlands, 

Poland[42] 

 

• Quality of data 

• Compatibility of outcomes 

• Population differences  

• Healthcare differences  

Not used.  

German colonoscopy 

screening programme 

(2003- 2007)[17] 

• Compatibility of outcomes  

• Population differences 

• Healthcare differences 

Used. 

Large sample sizes 

(> 4 million people) 

and geographical 

similarity.[17, 42-

44] 

 

• Adjust the calibration targets to address differences in 

definitions 

• Down-weight the target in the calibration process 

• Validate (to predicted sensitivity of screening FIT20 and 

FS for HRA) 

Undiagnosed CRC 

by age and sex 

German colonoscopy 

screening programme 

(2003- 2007)[17]  

• Population differences  

• Healthcare differences  

 

USED. 

The only data source 

available  

• Adjust the calibration target to reflect the difference in 

national incidence rates 

• Adjust the calibration target to the timing of the events 

• Down-weight the target in the calibration process 

• Validate (to predicted sensitivity of screening FIT20 and 

FS for CRC) 

Undiagnosed CRC 

by Duke stages by 

age and sex  

German multi-centre 

cohort study in 2003-

2010[20] 

• Quality of data 

• Compatibility of the 

outcomes 

• Population differences 

• Sample differences 

• Healthcare differences  

 

USED. 

The only data source 

available  

• Compare the definitions of CRC stages 

• Down-weight the target in the calibration process 

 

CRC incidence by 

age and sex (in 

2005 Cancer 

Registration Statistics/ 
• Quality of data  

• Age of data 

USED. • Up-weight the target in the calibration process 

 



The Legend:  CRC – colorectal cancer, FIT - faecal immunochemical test, FS – flexible sigmoidoscopy, HRA – high-risk adenoma, LRA – low-risk adenoma, RCT – 

randomised controlled trial 

absence of screening 

programme) 

census data for 

England (2005)[33, 45]  

 

Representative for 

all-England 

population 

Oxford regional data 

2005 
• Population differences Not used.  

CRC incidence by 

age, sex, and Duke 

stages (in absence of 

screening 

programme) 

UKACR National 

Colorectal dataset 

1996-2004. 

• Quality of data (Missing 

stage at diagnosis for 43% 

of patients) 

Age of data 

USED. 

The only national 

data source available 

• Split the missing stage at diagnosis between stages C and 

D to fit the survival predictions 

• Down-weight the target in the calibration process 
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