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Analysis of the load exerted by debris flows on filter barriers: comparison between

numerical results and field measurements

Alessandro Leonardia, Marina Pirullia

aPolitecnico di Torino

Department of Structural, Geotechnical, and Building Engineering

24 Corso Duca degli Abruzzi, Turin, Italy

Abstract

The hazard posed by debris flows onto mountainous settlements often requires structural countermeasures, such as barriers, to be

installed. There is a worldwide trend in employing barriers that are partially impervious to the flow, trapping the coarsest sediment,

and reducing the erosive power of the flow early on. However, many design choices with respect to effectiveness and structural

integrity are not trivial, because there is a poor knowledge of the flow-structure interaction mechanism. In this work, we report

results from a monitoring campaign on a barrier installed within an experimental site. At the site, the structural response of the

barrier is recorded any time an event occurs. However, the results exhibit features that do not fully reconcile with the load model

prescribed by the available guidelines. To gather insight, we propose a numerical study based on the use of the Discrete Elements

Method for the flow simulation and the Finite Element Method for the structural response of the barrier. The compatibility between

site measurements and numerical output validates the use of the DEM-FEM model. It also highlights certain key details on the load

pattern on the barrier that are not yet included in existing guidelines.

Keywords: Debris flow, filter barrier, site monitoring, numerical modelling, discrete element method

1. Introduction

Steep creeks in mountainous terrains are subject to hazards

such as debris flows (Hungr et al., 2001; Petley, 2012). These

count among the most dangerous natural events, posing a con-

stant threat to settlements on mountainous terrain and con-

siderably handicapping the design and maintenance of infras-

tructures (Hungr and Jakob, 2005). Debris flows are typically

rich in coarse sediment, and can induce significant bed erosion

and entrainment. This inflates the amount of flowing material,

in turn leading to growing erosive power (Pirulli and Pastor,

2012).

To check the hazard related to this feedback mechanism,

dams and barriers are often installed in the catchment. The

recent years have seen a growing use of barriers with a cer-

tain degree of permeability (filter barriers), thus retaining only

a fraction of the flowing mass. These barriers are often designed

to retain the coarsest debris by inducing partial or total jamming

at the outlets (Piton and Recking, 2016). At the same time, they

allow fine sediments, which have reduced erosion potential and

can be more easily conveyed and dosed, to filter downstream.

These designs are a compromise between the need to trap sedi-

ments and break the energy of the flow, and the requirement to

keep maintenance work as low as possible. This determines a

lower maintenance cost and environmental impact with respect

to impervious barriers. Example of structures of this type are

provided in Fig. 1: one or multiple outlets are present. In these

cases, the interaction mechanism between flow and structure is

not trivial: the barrier, while breaking the energy of the flow,

also induces an alteration of pore pressure, and an activation of

inter-particle friction (Song et al., 2018; Cabrera and Estrada,

2019).

The impact of a mass characterized by a significant content

of grains on an impervious barrier has been extensively studied

(e.g. Albaba et al., 2015; Gabrieli and Ceccato, 2016; Calvetti

et al., 2019). However, it is not clear whether the results of

these studies can also be extensively applied to filter barriers.

From recent studies (e.g. Leonardi et al., 2019), it emerges that

the presence of an outlet can induce accumulation of stresses,

which can further complicate the estimation of the maximum

expected load. This makes a rational design, both for perfor-

mance and structural integrity, problematic. Additionally, few

design prescriptions and guidelines are available worldwide.

Here we refer to the Austrian guideline series ONR 2480X

(Rudolf-Miklau and Suda, 2011), and to the set of guidelines

developed in Hong Kong (Kwan, 2012). The former recom-

mends to estimate the impact pressure with a formula based on

a combination of momentum exchange and gravitational load

(Suda et al., 2012). The latter recommends a pressure propor-

tional to the square of the front velocity. In both approaches, the

dynamic load is considered uniform across the barrier surface.

These guidelines do not directly consider jamming, i.e. that

the outlets can clog through the formation of granular arches

(Janda et al., 2008; Chevoir et al., 2007). The load distribu-

tion on the barrier is assumed to act only in the direction of

the incoming flow (Hübl et al., 2009; Kwan, 2012). The con-

sequences of this simplification have not yet been completely

explored. From small-scale experiments, it is clear that mo-

Preprint submitted to Computer and Geotechnics November 8, 2019



(c)

(b)(a)

(d)

Figure 2: The filter barrier installed in the Grand Valey experimental site. (a)

Picture of the intact barrier and (b) immediately after the collapse in 2014.

Pictures courtesy of the Aosta Valley Regional Government.

mentum transfer in the direction parallel to the mean flow is the

main source of load (e.g. Canelli et al., 2012; Koo et al., 2017).

However, granular material close to the jamming transition can

exert forces with intensity and directions that are not easily pre-

dictable (Bharadwaj et al., 2006; Hidalgo et al., 2013). If not

correctly accounted for, this could potentially lead to premature

failure of a barrier, or to damage that reduces its operational

capacity.

To investigate the type of interaction occurring between filter

Since no recordings exist of the 2014

the collapse causes remain out of the

stead, a single well-documented event

for numerically back-calculating the

rier and flow. We employ a numerical

of numerous necessary simplifications,

most relevant features of the phenomenon.

simulated with the Discrete Element

lows to comprehensively reconstruct

by a front rich of coarse grains. The

three-dimensional picture of the interaction

granular front and the barrier. As

obtained load into a Finite Element

namic transient analyses, we obtain

the barrier that corresponds to the front

The paper is organized as follows.
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experimental site and the collected datasets. We proceed by

outlining the DEM-FEM framework adopted for the back anal-

ysis. Subsequently, we show how the numerical procedure re-

constructs a load pattern that is compatible with the recordings

obtained on site. Using this approach, we compute a more re-

alistic multi-surge sequence of impacts on the barrier, which

describes a typical event in the monitored basin. We describe

the obtained load pattern, and determine in which regards the

DEM-FEM model provides a more conservative estimation of

the impact load compared to reference design guidelines. Based

on these results, we provide a set of suggestions that aim at

improving the design of this type of barriers, and of effective

monitoring systems.

2. The Grand Valey experimental site

2.1. Site description

The site used as study-case in this work is located in the mu-

nicipality of St. Vincent, within the Aosta Valley Autonomous

Region, Italy (see Fig. 3). The settlement is partially located

on the deposition fan of the Grand Valey creek, which drains

an area of 5.22 km2, at an altitude between 700 m and 2719 m

a.s.l., the highest point being Mount Zerbion.

The mean slope of the creek bed is 38%, which decreases

to 12% on the alluvial fan. Close to the hamlet of Perrière,

at an altitude of about 1150 m a.s.l., the creek branches into

two channels, labeled A and B in Fig. 3. Both branches drain

a part of the basin that is characterized by steep slopes at high

altitude, composed of heavily fractured schists with subordinate

phyllitic levels, serpentinite, and prasinites metagabbros. These

slopes are only partially covered by vegetation and are prone

to be easily eroded by heavy or moderate rains, such as those

routinely recorded during spring and summer. The combination

of these factors makes both branches prone to the release of

debris flows with annual frequency. Similar conditions can be

encountered in certain sites in the Italian Dolomites (Tecca and

Genevois, 2009) and in the Pyrenees (Pastorello et al., 2018).

A list of all documented events from 2004 to the present day

is provided in Table 1. A debris flow in 2004 reached the set-

tlement of St. Vincent, causing limited damage but, at the same

time, highlighting hazard exposure. The sequence of events in

2008 heavily damaged the barriers installed in the main chan-

nel, with debris reaching the alluvial fan in proximity to the

settlement. This prompted a general revision of the hazard

management techniques by the local government (Pirulli et al.,

2014a). To reduce the risk associated with future events, a se-

quence of structural countermeasures was therefore installed,

and available structures were upgraded. The goal was to reduce

the amount of debris that reaches the lowest part of the basin,

and in particular to retain the coarsest sediments as upstream as

possible. The site now features two filter barriers (at location

1 in Fig. 3), three steel-ring nets (at location 2), and a slit dam

(location 3).

2.2. Countermeasures

The two filter barriers are located immediately after the con-

fluence of the two branches, on a section with a gentle slope

Table 1: The main documented debris flow events in the Grand Valey basin.

2004 2008 2009

Date Volume Date Volume Date Volume

[m3] [m3] [m3]

07/08 3000 28/05 6400 26/05 10000

12/07 3500

06/09 5000

03/11 3000

2011 2012 2013

Date Volume Date Volume Date Volume

[m3] [m3] [m3]

06/06 3975 29/08 3975 17/07 3550

16/06 200 29/07 3810

17/06 300

22/06 500

13/07 4500

26/08 4500

2014 2015 2016

Date Volume Date Volume Date Volume

[m3] [m3] [m3]

06/06 2790 19/03 800 09/06 1875

12/06 2090 08/06 5000 11/07 4420

07/07 4670 14/08 2000

20/07 4625

23/07 2565

03/08 725

Table 2: Geometrical parameters of the IPE 270 section, and sensor position.

Refer to Fig. 6 for a graphical reference.

Width hx [mm] 135

Height hy [mm] 270

Sensor distance from x axis sx [mm] 35

Sensor distance from y axis sy [mm] 135

Inertia moment (x axis) Ixx [mm4] 420 · 104

Inertia moment (y axis) Iyy [mm4] 5790 · 104

(around 12◦). This is directly below the steep slopes responsible

for the mobilization of coarse material (A2 and B1 in Fig. 3).

The barriers are essentially rack structures, built by inserting a

sequence of slender steel bars on a concrete basement. They

are routinely hit by flows with relatively small volume (usually

a few thousand cubic meters), surging through multiple consec-

utive impulses and with a high content of coarse grains. One

of the filter barriers, the first impacted by flows, is shown in

Fig. 2(a).

Each barrier (Fig. 4) features a sequence of eighteen steel

I-beams (IPE 270), with spacing i = 0.6 m, mounted on a con-

crete basement. Between two consecutive beams, an outlet with

transverse size S = 0.47 m is present. The two structures, in-

cluding the lateral wings, span the whole width of the channel

(17 m), and are separated by a retention basin 46.5 m long.

Together, they can retain about 5000 m3 of debris. They are de-

signed to filter out the coarse grains, inducing deposition in the

retention basin, while allowing fines and water to flow down-

stream. This system requires regular maintenance: the basin
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(a) (b)

Figure 3: The basin drained by the Grand Valey torrent. (a) topography of the catchment and location of the countermeasures. (b) Aerial picture showing the

branches that are the major source of coarse sediment.
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Figure 8: Schematics of the DEM contact model and of the physical meaning

of the simulation parameters. Adapted from Marchelli et al. (2019).

to fully represent the real grain-size distribution at the site scale.

Thus, a rigorous treatment of debris material in this context re-

mains beyond the reach of current state-of-the-art methods.

We therefore adopt a strategy based solely on the application

of DEM for the flow simulation. This method treats the debris

mass as an assembly of spherical particles. This has two impor-

tant consequences. Firstly, with DEM there is a strong limita-

tion on the number of grains that can be modeled. Secondly, the

use of spherical particles implies that interlocking effects due to

non-spherical shapes cannot be explicitly described. From Iver-

son (2015), we know that an assembly of spheres is less com-

pressible compared to an assembly of angular particles. Fur-

thermore, the clogging probability can be severely altered by

particle anisotropy (Ashour et al., 2017). The addition of rolling

resistance to the contact model (as described below) partially

addresses this issue (Marchelli et al., 2019). In spite of these

necessary simplifications, DEM remains to date the most com-

prehensive and commonly used tool capable of reproducing the

interaction between a mass composed of large grains and solid

obstacles (Bharadwaj et al., 2006; Albaba et al., 2015), espe-

cially when a jamming transition occurs (Albert et al., 2000;

Leonardi et al., 2019).

It should be noted that numerical methods based on a contin-

uum approach, such as the Lagrangian finite elements (Kwan

et al., 2015), the material point method (Llano-Serna et al.,

2016), fictitious-domain fluid solvers (Cheng et al., 2018), the

lattice-Boltzmann method (Leonardi et al., 2015; Ding and Xu,

2018), or smoothed particle hydrodynamic (Dai et al., 2017;

Huang et al., 2012) are also suitable for reconstructing the fluid-

structure interaction. However, they rely on an equivalent-fluid

description of the material, effectively smoothing the effect of

discrete loads induced by particles (Ceccato et al., 2018). Fur-

thermore, these methods cannot simulate granular jamming.

They are therefore inappropriate for the simulation of granular

clogging.

The DEM solver used here is based on the code by Leonardi

et al. (2016), with the modified contact model described by

Marchelli et al. (2019). The reader is redirected to those works

for the full theoretical background, the code layout, and a defi-

nition of the simulation parameters listed in the following sec-

tions.

The contact model is schematically represented in Fig. 8. The

particle elastic properties are defined with a Young’s modulus

E and a Poisson coefficient ν. The contact model employs a

non-linear damped Hertzian law for the normal component of

the collision force (Pöschel and Schwager, 2005). The dissi-

pation is adjusted in order to obtain a constant coefficient of

restitution, as in Tsuji et al. (1992). In the tangential direc-

tion, contacts are frictional with a coefficient of static friction

µs. The frictional behavior is implemented using elastic springs

as in Luding (2008). The tangential spring stiffness, in analogy

to the contact model in the normal direction, is determined by E

and ν. Relative rotation of colliding particles is subject to an ad-

ditional dissipation source. Following Marchelli et al. (2019),

this is implemented with a rolling resistance mechanism, whose

intensity is governed by a dimensionless rolling coefficient µr.

With this model, grains can spontaneously jam, clogging out-

lets multiple times larger than their size, as is observed on the

field (Piton and Recking, 2016).

Typical values for dense gravel are assigned to the particle

Young’s modulus E, the Poisson coefficient ν, and the coeffi-

cient of restitution c. To determine the values of µs and µr, the

procedure presented by Marchelli et al. (2019) is used. In the

procedure, each couple of µs and µr is linked to a single value

of the angle of repose, obtained through heap-formation simu-

lations. Specifically, the values used in this work correspond to

an angle of repose of about 30◦, again a typical value for gravel.

Note that the parameters can also alternatively be determined

from triaxial tests, as in Cheng et al. (2017).

The DEM simulation environment is illustrated in Fig. 9(b).

The simulation geometry is a simplified version of the site in

St. Vincent. A rectangular channel is built using flat, frictional

walls with constant friction angle φ = 30◦ at the bottom and at

the sides. The channel is inclined at a constant angle of 12◦.

To keep runtime reasonable, the channel width is reduced to

4.2 m, corresponding to eight metal bars. Only the central part

of barrier and flow is therefore simulated. The channel length

is also reduced to 10.0 m.

The granular mass representing the flow front is set up by

generating a debris sample within a partition of dimensions

5.0 m × 4.2 m, respectively in the x and y directions (see the

inset in Fig. 9(b)). All particles are released at the simulation

start with a uniform velocity vf . The mean grain radius can be

either D = 0.16 m, 0.20 m, or 0.25 m. These are typical sizes

for the grains that clog the barrier at the St. Vincent site. The

three samples feature grains that exhibit different size ratio with

respect to the outlet size: S/D ≃ 3.0, 2.5, and 2.0, respectively.

These also correspond to different behaviors when the grains

flow through the outlets. The largest grains (S/D ≃ 2.0) clog

the outlets quickly, while the smallest (S/D ≃ 3.0) have a lower

probability to jam. Using the small grains, much more material

flows downstream before the system stabilizes (Marchelli et al.,

2019). In all samples, a 10% dispersity in the radius is included

to avoid excessive granular crystallization (Bi et al., 2005).

The barrier is placed at a distance of 0.5 m from the parti-

tion that contains the grains, see Fig. 9(b). It mimics the one

in St. Vincent, with certain geometrical simplifications. The
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Figure 10: Representation of the impact mechanisms that reconstructs the de-

bris flow front that impacted the barrier on the 9th of June.

The material parameters for all FEM simulations are con-

stant and listed in Table 3. Their definition is standard in terms

of FEM modeling, and all simulations are performed in the lin-

ear elastic regime. The stress-strain pattern, and its evolution

over time, is obtained by running linear explicit dynamic analy-

ses with a central-difference scheme (as in Liao and Liu, 2017).

The Rayleigh damping factors however cannot be easily deter-

mined directly (Baillargeon et al., 2004). They should also take

into account the damping contribution of the surrounding fluid,

which is significant since the bars are almost encircled by de-

bris. This is one of the strongest limitations of this work. The

coupling algorithm transfers information in one direction only.

Impact forces are transmitted from DEM to FEM, but infor-

mation on the barrier deformation is not transferred back from

FEM to DEM. In order to bypass this issue, the structure is over-

damped (see Table 3). In any case, under impact load the max-

imum and minimum stresses are scarcely affected by a change

in these values (Chopra, 2017), as confirmed by our tests and by

similar studies in the literature (Kiakojouri and Sheidaii, 2018).

As an output of each dynamic analysis, we obtain a time-history

of strain distributions along the barrier. This includes strains in

the location on the bars that is equivalent to where the exten-

someters are mounted in the field. Therefore, the two datasets

are comparable.

The described numerical setup is used in the following sec-

tions with a twofold goal. Firstly, we validate the approach by

back-calculating the measurements obtained during the June 9th

event in St. Vincent (Fig. 7). Secondly, the approach is used to

test the performance of the barrier over a sequence of surges,

as prescribed by the Austrian guidelines ONR 24801, and those

used in Hong Kong (Kwan, 2012).

5. Back-calculation of field measurements

When the debris flow that generated the set of recordings

shown in Fig. 7 happened, a team of technicians was operat-

ing in the area. From an analysis of the amateur video recorded

in that instance, we know with rough precision the kinematics

of the flow that impacted on the barrier. The front velocity was

close to vf = 2 m/s, and the flow front had a thickness that

Table 4: Geometry and characteristic parameters used for the DEM back-

calculation of the event of the 9th of June.

DEM parameters (flow)

Particle type Small Medium Large

Particle diameter D [m] 0.167 0.200 0.250

Outlet size S/D [-] 3 2.5 2

Particle number 7396 4131 2098

Particle density ρ [kg/m3] 2630

Young’s modulus E [Pa] 1.2 · 109

Poisson ratio ν [-] 0.3

Restitution coefficient c [-] 0.8

Friction coefficient µs [-] tan(30◦)

Rolling coefficient µr [-] 0.07

Tangential damping αt [-] 0.5

peaked at 3/4 of the beam height. Before the event, the basin

was only marginally filled with debris.

Using the procedure described in the previous section, we

perform a back-calculation of the event. The numerical param-

eters used in the DEM simulations are listed in Table 4. To

follow up from the field observations, we release three granular

samples onto the barrier at a uniform velocity of vf = 2.0 m/s,

and with maximum thickness 1.6 m. The samples feature par-

ticles with different diameters, and different interaction mech-

anisms when hitting the barrier. The results from the smallest

diameter are illustrated in Fig. 10. After an initial momentous

impact, the debris flows through the outlets for a time span that

depends on the ratio between the outlet size and the mean grain

diameter, S/D. For the smallest particles, a stable static config-

uration is reached after 10 s. Conversely, the large grains clog

almost immediately (< 1 s).

For an analytical estimation of the overall load, the dynamic

formula (as in Eq. 1) is used here, assuming a unitary empirical

coefficient (k = 1). In this approach, the expected impact force

F∗ and bending moment M∗ on a bar can be computed using the

velocity-dependent impact pressure qd multiplied by the area of

influence of a single bar:

F∗ = ρbv2
f iHB (4)

M∗ = 0.5ρbv2
f iH2

B (5)

where vf is the front speed used in the simulation, HB is the bar

height, and i the bar spacing (see Fig 4). The bulk density of

the debris, ρb, is computed as ρb = ρφ, where ρ is the grain

mass density from Table 4, and φ is the solid volume fraction,

assumed to be constant and equal to φ = 0.6, a typical value for

monodisperse grains in a dense packing (Choi et al., 2016).

In the simulations, the forces exchanged between flow and

barrier are recorded along the bars. The outcome of this process

is shown in Fig. 11. In the figure, each plot illustrates a differ-

ent simulation, i.e. a different dimensionless outlet size S/D.

Within each plot, the points represent impulsive forces exerted

on the barrier by the flow, divided by the reference force F∗

computed with Eq. 4. The forces are illustrated using circular

coordinates, where the radial direction represents the magnitude

9
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Figure 11: Scaled impact forces, F/F∗, recorded at different levels on the bars. One point every 10 samples is shown, for clarity. Each plot illustrates the results

obtained with a different granular assembly, therefore with a different mean grain diameter.

of the impact:

F =

√

F2
x + F2

y (6)

and the circular coordinate θ is the angle of incidence, as illus-

trated in Fig. 6 and defined by:

θ = atan

(

Fy

Fx

)

(7)

If a quasi-static approach is used, each impact generates a

shear F and a bending moment M = F ×H at the section where

the experimental sensor is located, where H is the height differ-

ence between the location of the impact and the location of the

sensor, as illustrated in Fig 6. Rewriting Eq. 3, it is evident that

a moment M can generate either positive or negative strains,

depending on the angle of incidence θ:

εz = −
M

E

(

sy sin θ

Iyy

+
sx cos θ

Ixx

)

(8)

In this simplistic view, there is a threshold angle θt that deter-

mines whether the impact generates positive or negative strains.

This is a simple function of the bar section and of the location

of the sensor, as provided below:

θt = atan

(

−
Ixxsy

Iyysx

)

(9)

The initial particle velocity is aligned with the channel and

therefore orthogonal to the barrier. Nevertheless, the impacts

reported in Fig. 11 have a wide range of angles of incidence.

The majority of high-magnitude impacts are located at around

θ = 0. However, a significant portion of strong events are re-

ported over the whole range −π/3 < θ < π/3.

About 30% of the impacts have an angle of incidence θ > θt.

These bend the bars in a direction that results in traction of

the sensors (εz > 0). These are shown in Fig. 11 with dark

color (blue), while those generating compression (εz < 0) are

reported in a light color (yellow). Conversely the simple or-

thogonal load model shown in Fig. 5(a), would determine an

angle of incidence always equal to θ = 0, thus oversimplifying

what is observed in reality.

In order to compare the field measurements with the simu-

lations, the set of load time-histories on the bars are plugged

into the FEM model onto the beams, using the procedure de-

scribed in the previous section. Through the dynamic analyses,

the external loads are thus converted into full time histories of

strain/stress fields. In particular, the time-histories of resultant

moments Mn on each beam at the section where the sensor is

located can be computed.

From the results of the simulations, it is clear that the an-

gle of incidence significantly influences the strain measured by

the sensor. Unfortunately, this implies that every value of εz

recorded in the field can be obtained with multiple combina-

tions (Ms,θs). The measurements, therefore, cannot be exclu-

sively associated to unique values of bending moment.

No quantitative comparison can therefore be carried out be-

tween field data and simulations. However, we may check

whether the simulations yield results that are compatible with

the field data. This procedure is illustrated in Fig. 12, using the

same plot style adopted for Fig. 11. We first extract the max-

imum and minimum strains recorded by every bar during the

June 9th event: εz,max and εz,min, respectively. Typically, εz,max

is positive, and εz,min is negative. Each of these values can be

induced by multiple couplets (Ms, θs). These are plotted as loci

of points (lines) in Fig. 12, and compared with the moments ob-

tained with the DEM-FEM simulation procedure. In particular,

they are compared with those moments that induce the max-

imum and minimum strain in the bars at the sensor location.

Before extracting the maximum and minimum numerical mo-

ment, the simulation data is re-sampled at 0.87 Hz, which is the

sampling frequency of the strain gauges on site. In this way,

experimental and numerical datasets become comparable.

Fig. 12 shows that the simulation results are fully compati-

ble with the field recordings. In other words, the type of load

obtained in the simulations results in a strain pattern on the bar-

rier that exhibits the same features observed in the field. In

particular, both tension and compression values are recorded.

Around the area of the graph that corresponds to the prediction
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Figure 12: The maximum bending moments computed with the FEM-DEM

simulations on the section corresponding to the locations of the field sensors

Mn, and corresponding angles of incidence θn. This is compared to lines rep-

resenting the combinations of bending moment Ms and angle of incidence θs
that correspond to the maximum and minimum strains ǫz recorded by the ex-

tensometers.

given by the dynamic formula, M/M∗ = 1, the numerical an-

gles of incidence correspond to those from the site recordings,

i.e. in the range −π/12 < θ < π/12 for large values of S/D and

−π/6 < θ < π/6 for small values.

6. Performance under multi-surge load

From the results of the previous section, it emerges that an

orthogonal load model is not always appropriate for the design

of such structures. We thereby explore the consequences of the

alternative load model provided by the DEM simulations.

Following the load setups suggested by the Austrian and

Hong Kong guidelines, a multi-surge process is simulated.

Table 5: Geometry and characteristic parameters used for the multi-stage DEM

simulations.

DEM parameters (flow)

Particle type Small Medium Large

Particle diameter D [m] 0.167 0.200 0.250

Outlet size S/D [-] 3 2.5 2

Particle number (stage 1) 11200 5888 3211

Particle number (stage 2) 12272 6414 3211

Particle number (stage 3) 22437 12008 6630

Particle density ρ [kg/m3] 2630

Young’s modulus E [Pa] 1.2 · 109

Poisson ratio ν [-] 0.3

Restitution coefficient c [-] 0.8

Friction coefficient µs [-] tan(30◦)

Rolling coefficient µr [-] 0.07

Tangential damping αt [-] 0.5

Three simulations are performed for each particle type. The

initial setup for each simulation is illustrated in Fig. 13, and

the DEM simulation parameters are gathered in Table 5. Stage

1 corresponds to a single surge of thickness comparable to the

barrier height. Stage 2 represents a later surge impacting a bar-

rier which has been partially filled by the deposit left by a pre-

vious surge. Stage 3 describes a surge that approaches a filled

barrier. In the latter case, the total flow level surpasses the bar-

rier height, causing significant overflow, as in Faug et al. (2011).

For each stage, the initial velocity of the surge particles is fixed

at vf = 2.0 m/s, as in the simulations presented in the previ-

ous section. The remaining particles, constituting the deposit

resulting from the precedent stages, are free to move but have

zero initial velocity.

This setup therefore reconstructs a typical multi-surge event.

It does not, however, describe the limit situation under which

the barrier in St. Vincent is supposed be functional, which cor-

responds to similar flow thicknesses (and surge sequences), but

higher velocities (up to vf = 5.0 m/s). Therefore, it is expected

that the barrier remains within the elastic limit, and that the

surges described by the three stages do not induce irreversible

deformations to the structure.

The load exerted during the three DEM stages is concate-

nated, and plugged into the FEM model. The FEM simulations

thus yield the time-history of stresses on the barrier during the

whole multi-surge process. The FEM parameters (collected in

Table 3) do not differ from those used in the previous sections.

The maximum bending moments at the base of each bar are

shown in Fig. 14 for each stage, and each dimensionless outlet

size S/D. Stage 3 induces the highest load, even though the

surge flows over an almost entirely filled barrier, directly hit-

ting the bars only at the very top. This is consistent with the

observations concerning the premature failure of the dam in St.

Vincent in 2014. The surge that caused the collapse flowed over

a barrier that had already been partially clogged with material

from a precedent event.

To compare the performance of the barrier with respect to

structural integrity, we compute the moment of first plastic de-

formation Myield as a function of the angle of incidence θ:

Myield = −σyield/

(

hy sin θ

Iyy

+
hx cos θ

Ixx

)

(10)

where hx and hy are the IPE 270 section dimensions (see Ta-

ble 2). The admissible bending moment is much smaller if the

bar is transversely loaded, due to the large difference in the iner-

tia moment in that direction (Iyy) with respect to inertia around

the strong axis (Ixx).

From the DEM-FEM simulations, we extract, for each bar,

the combinations of M and θ that lead to the largest absolute

values of εz on the bar. These values are compared to the maxi-

mum admissible moment Myield, of the IPE 270 section, as com-

puted using Eq. 10 (see Fig. 14). Within simulations with simi-

lar geometrical configurations (i.e. same stage) the results vary

with respect to the S/D ratio. Larger particles induce a slightly

higher load than smaller ones, as expected. Moreover, they in-

duce loads with a much larger angle of incidence θ. This is due

to the higher probability of jamming, which increases sharply
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Figure 13: Graphical illustration of the initial setup used for the multi-stage simulations. The three surge configurations are inspired by the Austrian guidelines

ONR 24801, an extract of which is reported in the left column. In the guideline load combinations, static grains deposited after precedent events exert a static load

qs on the barrier, while surging grains exert a dynamic load qd.

with S/D (Marchelli et al., 2019). If jamming occurs rapidly,

dynamic impact forces are transferred though granular arches

early on, with significant self-balanced transverse loads.

From Fig. 14, it appears that the simulations with the largest

particles induce a load that causes irreversible deformation of

the bars. This, in spite of the front impact speed vf = 2 m/s

being significantly lower than the one the barrier was originally

designed to withstand (vf = 5 m/s). The outlet clogging in-

duces additional transverse loads on the structural elements,

which can contribute to premature failure of the barrier if not

taken into account in the design process. This can be easily pre-

vented by employing a section with similar dimension, but with

symmetrical stiffness in the two main directions. For example,

the use of a square hollow section with a 250 mm width and a

6 mm thickness (HSS 250) would have resulted in the barrier

responding to all stages within its elastic limit, see Fig. 14.

7. Conclusions

Barriers that filter the coarsest grains are an effective measure

to reduce the hazard associated with debris flows. In this study,

we presented results from one barrier of this type, installed in

the Italian Alps, and fully equipped with a monitoring system

that tracks the deformation of pivotal structural elements. How-

ever, the strains recorded on-site are not compatible with the

load model that is usually used to design this type of barrier.

The recordings obtained during an event in June 2016 are

thus compared to the results obtained with a numerical model.

The model couples DEM and FEM, and is therefore able to

simulate with a good degree of precision both the surge impact

process and the corresponding strain/stress field of the barrier.

The results of the simulations are compatible with the field mea-

surements, therefore validating the approach. They further pro-

vide valuable additional information on the space distribution

of impact forces.

The results highlight how the load pattern on a filter bar-

rier can be different from the one that is suggested by existing

guidelines. When the material flows through the outlets, sig-

nificant momentum is transferred to structural elements, trans-

versely to the main flow direction. From the results of our

analyses, we suggest testing the barrier design for additional

transverse loads. The barrier should withstand loads charac-

terized by angles of incidence within the −π/3 < θ < π/3

range. This is particularly relevant if the grains are large with

respect to the outlet size. Furthermore, significant transverse

components are also recorded when an overflow scenario is

simulated, i.e. a case when the surge directly impacts the bar-

rier only marginally. As a general consequence, structural ele-

ments should not have a significant difference in stiffness in the

streamwise and transverse direction: they should perform well

under biaxial bending. This is particularly important for struc-

tures that may clog quickly, such as filter barriers with small

openings.

For the barrier installed at the experimental site in St. Vin-

cent, and subject to the monitoring campaign, this has been

shown to have important implications on the design safety. In
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Figure 14: The bending moments giving the most critical conditions on the

bars, as reconstructed with the multi-stage DEM-FEM procedure. The yield

moment of the bars, as a function of the angle of incidence, is also displayed.

fact, the barrier analyzed hereby was not capable of withstand-

ing the load obtained from the DEM-FEM analysis without in-

curring in irreversible damage. This alone cannot explain the

2014 collapse, in which even the concrete basement was heavily

damaged. However, irreversible damage to the bars can change

the bar spacing, therefore altering the filter properties of the

barrier. This implies a loss of functionality, which should be

avoided.

Finally, the simulations highlight a weak point in the moni-

toring station used in St. Vincent. In order to effectively mon-

itor the structural response of the barrier, at least two strain

gauges per element are necessary. An additional gauge posi-

tioned on the opposite flange would record a second value of εz,

from which both the intensity of the bending moment and the

angle of incidence could be unequivocally determined. Such a

system would allow a reconstruction of the exact load distribu-

tion on the filter elements without a priori assumption.
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Kogelnig, A., Hübl, J., Suriñach, E., Vilajosana, I., McArdell, B.W., 2014. In-

frasound produced by debris flow: Propagation and frequency content evo-

lution. Natural Hazards 70, 1713–1733. doi:10.1007/s11069-011-9741-8.

Koo, R.C., Kwan, J.S., Lam, C., Ng, C.W., Yiu, J., Choi, C.E., Ng, A.K., Ho,

K.K., Pun, W.K., 2017. Dynamic response of flexible rockfall barriers under

different loading geometries. Landslides 14, 905–916. doi:10.1007/s10346-

016-0772-9.

Kwan, J., 2012. Supplementary Technical Guidance on Design of Rigid Debris-

resisting Barriers. Technical Report 270. Geotechnical Engineering Office.

Hong Kong.

Kwan, J., Koo, R., Ng, C., 2015. Landslide mobility analysis for design of

multiple debris-resisting barriers. Canadian Geotechnical Journal 52, 1345–

1359. doi:10.1139/cgj-2014-0152.

Leonardi, A., Goodwin, G.R., Pirulli, M., 2019. The force exerted by granular

flows on slit dams. Acta Geotechnica in press. doi:10.1007/s11440-019-

00842-6.

Leonardi, A., Wittel, F.K., Mendoza, M., Herrmann, H.J., 2015. Lattice-

Boltzmann Method for Geophysical Plastic Flows, in: Wu, W. (Ed.), Recent

Advances in Modeling Landslides and Debris Flows. Springer International

Publishing, Cham. Springer Series in Geomechanics and Geoengineering,

pp. 131–140. doi:10.1007/978-3-319-11053-0.

Leonardi, A., Wittel, F.K., Mendoza, M., Vetter, R., Herrmann, H.J., 2016.

Particle-Fluid-Structure Interaction for Debris Flow Impact on Flexible Bar-

riers. Computer-Aided Civil and Infrastructure Engineering 31, 323–333.

doi:10.1111/mice.12165.

Liao, B.B., Liu, P.F., 2017. Finite element analysis of dynamic

progressive failure of plastic composite laminates under low ve-

locity impact. Composite Structures 159, 567–578. URL:

http://dx.doi.org/10.1016/j.compstruct.2016.04.012,

doi:10.1016/j.compstruct.2016.09.099.

Llano-Serna, M.A., Farias, M.M., Pedroso, D.M., 2016. An assessment of

the material point method for modelling large scale run-out processes in

landslides. Landslides 13, 1057–1066. doi:10.1007/s10346-015-0664-4.

Luding, S., 2008. Cohesive, frictional powders: Contact models for tension.

Granular Matter 10, 235–246. doi:10.1007/s10035-008-0099-x.

Luis-Fonseca, R., Raı̈mat, C., Hürlimann, M., Abancó, C., Moya, J., Fernández,
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