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Abstract

A desire for informed decision-making regarding the operation and maintenance of structures provides motivation
for the development and implementation of structural health monitoring (SHM) systems. One approach to decision-
making in SHM is to adopt a risk-based framework in which failure events and decidable actions are attributed
costs/utilities. Optimal maintenance strategies may be pursued by considering the probability of occurrence of future
failure events in conjunction with associated costs. In order to forecast future failure events, a probabilistic model
that describes the degradation of the structure over time is required; in the state-space formulation of risk-based
SHM, this model is equivalent to the transition probabilities from possible current health-states of the structure to
future health-states.

The current paper aims to demonstrate how such models may be determined using information gathered during the
operational evaluation stage of the structural health monitoring paradigm. This information may include knowledge
of the operational and environmental conditions under which the structure will operate, in addition to initial physics-
based modelling of the structure. A probabilistic transition model describing the degradation of a four-bay truss is
developed here, with finite element simulation used to yield knowledge of the load paths within the structure when it
is in differing health states. The paper concludes with a discussion of the importance of probabilistic degradation
models within SHM decision-making. The discussion highlights the challenges that arise due to the lack of data
available prior to the implementation of an SHM system, and suggests for how these may be overcome.
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1 Introduction

Structural health monitoring (SHM) is a field of engineering that is concerned with damage detection in structures
and infrastructure via the development and implementation of data acquisition and processing systems [1]. A key
motivation for the development and implementation of SHM systems is to facilitate the decision-making processes
associated with the operation and management of high-value or safety-critical assets. One approach to decision-making
in the context of SHM is by the use of a probabilistic risk-based framework based upon probabilistic graphical models
(PGMs) [2], in which actions on, and failure modes of the structure are assigned costs and optimal decisions are made
through the maximisation of expected utility gain, or the minimisation of expected utility loss.

An agent tasked with making decisions regarding the operation and management of a structure may utilise health-state
information inferred via an SHM system to make better informed and more optimal decisions. However, given
solely information regarding the structural health state at the current instance in time, the agent may only make
well-informed decisions ad hoc. In order to make well-informed decisions on policies that include preventative actions,
the agent requires information about the future health states of the structure. This information can be gained by
developing transition models that forecast future health states given the current health state and each decidable action.
For the case that the decided action is ‘do nothing’ the health-state transition model will forecast the degradation of
a structure.

Degradation models of differing complexities have been used within the field of engineering for reliability assessment,



maintenance planning and prognosis [3]. In general, the models can be categorised in terms of a combination of the
following criteria; physics-based or data-based, deterministic or probabilistic, and continuous state or discrete state.
A commonly used degradation model is Paris’ law for crack growth given by the following equation,

da

dN
= C(∆K)m (1)

where a is the crack length, N is the load cycle, ∆K is the stress intensity range and C and m are constants. After a
little thought one can reason that equation (1) is a deterministic, physics-based model of a continuous state. Different
categories of degradation model are applicable in different scenarios depending on the context. For example, in a
situation where little is known of the underlying physics governing the degradation, but data are readily available,
one may opt for a data-based model. Conversely, if the physics are known but data availability is low a physics-based
model may be more suitable. Whether continuous or discrete states are modelled also depends on the nature of the
application; considerations for this include the required model fidelity and the computational cost/time. Without
delving too far into metaphysics, it is reasonable to assert that, in general, the future is inherently uncertain. For this
reason, with regard to the use of deterministic versus probabilistic models, the latter have a distinct advantage as
they are capable of representing uncertainty. Fortunately, many deterministic degradation models can be used to
obtain probabilistic outputs via methods such as sequential Monte Carlo sampling [4].

In the context of SHM and decision-making, a variety of health-state transition models have been employed. In [5], a
probabilistic interpretation of Paris’ law is used to develop a degradation model in a maintenance decision process
for a simulated wind turbine tower. In [6], a continuous health-state variable is given nonlinear Gaussian transition
models in a partially-observable Markov decision process (POMDP) based on a normalised unscented Kalman filter;
this approach has the property that there is a non-zero probability that the health-state transitions to a less-damaged
state, meaning that the structural degradation is not strictly monotonic. In [7], qualitative data obtained from the
inspection of miter gate components is used to derive a health-state transition matrix for a Markovian decision process
for optimal maintenance decisions.

The current paper aims to present a general methodology for determining a health-state transition matrix for use in a
probabilistic risk-based decision paradigm for the operation and maintenance of structures as developed in [2]. The
methodology will be demonstrated using a case study of a four-bay truss. Finally, the importance of health-state
transition models within the risk-based decision framework will be discussed, and the challenges associated with their
development will be highlighted.

2 Probabilistic risk-based SHM

The approach proposed in [2] facilitates decision-making in the context of SHM by incorporating aspects of probabilistic
risk assessment into a probabilistic graphical model framework. For brevity, here, a short introduction to probabilistic
graphical models is provided, followed by a summary of the risk-based decision framework; for a more comprehensive
explanation, the reader is directed to the original paper.

2.1 Probabilistic graphical models

Probabilistic graphical models are graphical representations of factorisations of joint probability distributions and are
a powerful tool for reasoning and decision-making under uncertainty. For this reason, they are apt for representing
and solving decision problems in the context of SHM, where there is uncertainty in the health-states of structures.
While there exist multiple forms of probabilistic graphical model, the key types utilised for the risk-based decision
frameworks are Bayesian networks (BNs) and influence diagrams (IDs) [8].

Bayesian networks are directed acyclic graphs (DAGs) comprised of nodes and edges. Nodes represent random
variables and edges connecting nodes represent conditional dependencies between variables. In the case where the
random variables in a BN are discrete, the model is defined by a set of conditional probability tables (CPTs). For
continuous random variables, the model is defined by a set of conditional probability density functions (CPDFs).

Figure 1 shows a simple Bayesian network comprised of three random variables X, Y and Z. Y is conditionally
dependent on X and is said to be a child of X while X is said to be a parent of Y . Z is conditionally dependent on
Y and can be said to be a child of Y and a descendant of X while X is said to be an ancestor of Z. The factorisation
described by the Bayesian network shown in Figure 1 is given by P (X,Y, Z) = P (X) · P (Y |X) · P (Z|Y ). Given
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Figure 1: An example Bayesian network.

observations on a subset of nodes in a BN, inference algorithms can be applied to compute posterior distributions
over the remaining unobserved variables. Observations of random variables are denoted in a BN via grey shading of
the corresponding node, as is demonstrated for X in Figure 1.
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Figure 2: An example influence diagram representing the decision of whether to go outside or stay in under uncertainty
in the future weather condition given an observed forecast.

Bayesian networks may be adapted into influence diagrams to model decision problems. This augmentation involves
the introduction of two additional types of node that are shown in Figure 2: decision nodes, denoted as squares, and
utility nodes, denoted as rhombi. For influence diagrams, edges connecting random variables to utility nodes denote
that the utility function is dependent on the states of the random variables. Similarly, edges connecting decisions
nodes to utility nodes denote that the utility function is dependent on the decided actions. Edges from decision nodes
to random variable nodes indicate that the random variables are conditionally dependent on the decided actions.
Edges from random variable or decision nodes to other decision nodes do not imply a functional dependence but
rather order, i.e. that the observations/decisions must be made prior to the next decision being made.

To gain further understanding of IDs, one can consider Figure 2. Figure 2 shows the ID for a simple binary decision;
stay home and watch TV or go out for a walk, i.e. domain(D) = {TV, walk}. Here, the agent tasked with making the
decision has access to the weather forecast Wf which is conditionally dependent on the future weather condition Wc.
The weather forecast and future condition share the same possible states domain(Wf ) = domain(Wc) = {bad, good}.
The utility achieved U , is then dependent on both the future weather condition and the decided action. For example,
one might expect high utility gain if the agent decides to go for a walk and the weather condition is good.

In general, a policy δ is a mapping from all possible observations to possible actions. The problem of inference in
influence diagrams is to determine an optimal strategy ∆∗ = {δ∗1 , . . . , δ∗n} given a set of observations on random
variables where δ∗i is the ith decision to be made in a strategy ∆∗ that yields the maximum expected utility (MEU).
Defined as a product of probability and utility, the expected utility can be considered as a quantity correspondent to
risk.

2.2 Decision framework

A probabilistic graphical model for a general SHM decision problem across a single time-slice is shown in Figure 3.
Here, a maintenance decision d is shown for a simple fictitious structure S, comprised of two substructures s1 and s2,
each of which are comprised of two components; c1−2 and c3−4, respectively.

The overall decision process model shown in Figure 3 is based upon a combination of three sub-models; a statistical
classifier, a failure-mode model, and a transition model.

Within the decision framework, a random variable denoted Ht is used to represent the latent global health-state of
the structure at time t. For this decision process, a posterior probability distribution over the latent health state
Ht is inferred via observations on a set of discriminative features νt. It is assumed that the generative conditional
distribution P (ν|H) is learned implicitly or explicitly, depending on the choice of statistical classifier.

The failure condition of the structure FS is represented as a random variable within the PGM and is conditionally
dependent on the health states of the substructures denoted by the nodes hs1 and hs2. The health states of the
substructures are dependent on the local health states of the constituent components denoted by the nodes hc1−4.
The local health states of the components are summarised in the global health-state vector H = {hc1, hc2, hc3, hc4}.
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Figure 3: An influence diagram representing the partially-observable Markov decision process over one time-slice
for determining the utility-optimal maintenance strategy for a simple structure comprised of four components. The
fault-tree failure-mode model for time t+ 1 has been represented as the node F ′

t+1 for compactness.

The conditional probability tables defining the relationship between random variables correspond to the Boolean
truth tables for each of the logic gates in the fault tree defining the failure mode FS [9, 10]. This failure-mode model
is repeated in each time-step. The failure states associated with the variable FS are given utilities via the function
represented by the node UF . As it is necessary to consider the future risk of failure in the decision process, these
utility functions are also repeated for each time-step.

Ht Ht+1

dt

Figure 4: An influence diagram representing the transition sub-model of the overall SHM decision process.

Figure 4 shows the influence diagram of the transition sub-model. By interpretation of the graphical model



shown in Figure 4, one can realise that the transition sub-model is solely formed of the conditional probability
distribution P (Ht+1|Ht, dt) and that the future health-state Ht+1 is dependent only on the current health state
and the action decided in the current time-slice. An underlying assumption of the decision framework presented
in [2], that facilitates the modelling process, is that structures can be represented as a hierarchical combination
of discrete substructures/regions. A consequence of this assumption is that the health-states of interest are all
represented as discrete random variables, hence, the transition models required are matrices. For a given decided
action a, and assuming a finite number N of possible discrete global health states, the conditional probability table
P (Ht+1|Ht, dt = a) is given by an N ×N square matrix whose i, jth entry is the probability of transitioning from
the ith to the jth health state and i, j ∈ Z : 1 ≤ i, j ≤ N . Additionally, it is assumed that the Markov decision
process is stationary, i.e. P (Ht+1|Ht, dt = a) is invariant with respect to t. Because of this stationarity, assuming no
intervention is made (dt = ‘do nothing’ ∀ t), the future global structural health-state is forecast as,

P (Ht+n) = P (Ht) · P (Ht+1|Ht, dt = ‘do nothing’)n (2)

where n is the number of discrete time-slices forecast over, and P (Ht) and P (Ht+n) are 1×N multinomial probability
distributions over the global health-states at times t and t+ n, respectively.

3 Developing transition models for risk-based SHM

As with the established paradigm for conducting an SHM campaign (detailed in [1]), the risk-based approach is
formed of several distinct stages. The risk-based approach consists of: operational evaluation, failure-mode modelling,
decision modelling, data acquisition, feature selection and statistical modelling. Most crucial to the development
of transition models is the operational evaluation stage. The current section outlines the information that must be
obtained for the development of transition models, provides discussion around the quantification of the uncertainty in
operational conditions and offers an explanation of how the quantified uncertainty may be used in conjunction with a
physics-based model to develop transition models.

3.1 Operational evaluation

The operational evaluation stage, for both the traditional and probabilistic risk-based structural health monitoring
paradigms, seeks to assess the context in which a structural health monitoring campaign is to be conducted. It
is during this stage that the operational and environmental conditions for the structure of interest are considered.
Furthermore, failure modes of interest are determined and key health-states of the structure identified.

For the development of transition models in the probabilistic risk-based approach, during the operation evaluation
stage, it is necessary to identify factors that will influence the way in which the structure will degrade. Many of
these factors may be specific to the type of structure on which SHM is being conducted. Information regarding the
operational conditions that must be obtained includes the anticipated forcing amplitudes, locations and temporal
variations. These operational conditions will influence the fatigue life of the structure. Environmental conditions
are also important to consider. Examples of important environmental factors include operating temperatures and
the presence/absence of water. The anticipated operational temperature ranges are important to consider as these
potentially introduce thermally-induced stresses in addition to other temperature effects on material properties such
as fracture toughness. Furthermore, whether the structure will be in the presence of water is a key factor as this may
introduce structural degradation mechanisms such as corrosion and erosion. An important consideration to make
when considering operational and environmental conditions is that degradation mechanisms may interact with one
another. A notable example of this effect occurring is within the core of light-water nuclear reactors where stainless
steel structural components experience accelerated brittle fracturing as a result of interplay between multi-physical
phenomena in a process known as irradiation-assisted stress corrosion cracking (IASCC) [11].

With the operational and environmental conditions of the structure considered and potential degradation mechanisms
determined, the failure modes of interest for the structure and critical substructures, components and joints can be
identified. Subsequently, it is important to define damage for each critical substructure, component and joint, i.e.
the possible local health-states. Depending on factors such as materials and local operational and environmental
conditions, different components/joints may be susceptible to different types of damage; for example, composite
components may experience delamination whereas metallic components may experience fatigue cracking. For each
component, criteria for each of the relevant failure mechanisms should be specified.



Irrespective of the type of damage associated with each component/joint, it is reasonable to assert that the discrete
random variables corresponding to the local health-states will have a cardinality of at least 2. In the most simple case,
each local health-state variable could possess states corresponding to ‘undamaged’ and ‘failed’, where the ‘failed’ state
represents the component being unfit-for-purpose. In some scenarios, it may also be desirable to consider extents
of damage and the functionality of the component/joint at varying damage extents. Some components/joints may
possess health-states associated with the presence of damage whilst continuing to function at their full, or partial
capacity. Although these states are not necessarily associated with any immediate risk with regard to the failure of
the global structure, they may still be important to consider as they may increase the propensity for transitioning to
other more advanced damage states that do have high risk associated. An example of a component that may require
this consideration is a load-bearing structural member in which partial thickness cracks may form.

3.2 Handling uncertainty

For most applications of structural health monitoring, perfect knowledge of the operational and environmental
conditions will not be available prior to the implementation of the system. It is for this reason, that uncertainties
should be considered and quantified where possible. While there exists a number of methodologies for the quantification
of uncertainty, including interval analysis and Dempster-Shafer theory [12, 13], here, it is considered reasonable to
continue using probability theory for consistency with the probabilistic risk-based decision framework.

For each of the key environmental and operation conditions, statistical distributions quantifying the ranges, likely
values and/or variance in the conditions should be elicited from an expert judgement, and where possible, observed
data. In a Bayesian setting, these distributions may be updated as measurements are collected, and the transition
models re-estimated.

3.3 Generating transition models

To generate the degradation transition models, a physics-based model is required. The function of the model is to
simulate the structure and specifically its critical components in each of the global health-states and under specified
operational and environmental conditions. The simulated structure can then be evaluated with respect to the failure
criteria identified in the operational evaluation stage to determine whether state transitions occur.

With respect to modelling the degradation of a structure, the purpose of the physics-based model is to determine a
distribution over the quantities of interest in which the failure criteria are specified, conditioned on the uncertain
operational and environmental conditions. In the case that the physics-based model employed is inherently stochastic
(such as a probabilistic fracture mechanics model), this conditional distribution may be determined analytically. In
the case that the physics-based model employed is deterministic (such as a finite element model), this distribution may
be determined by applying sampling methods to the probability distributions for the operational and environmental
conditions, and querying the physics-based model accordingly.

Once a distribution over the quantities of interest has been determined, a distribution over local failure events can be
produced by executing the logical operations defining the failure criteria. Again, this distribution is conditioned on
the operational and environmental conditions. This conditional distribution over local failure events can then be
mapped into transitions in the global health state by utilising the definition of H as a vector containing the local
health-states of the critical components, joints, and substructures.

At this stage, it is necessary to marginalise out the variable operational and environmental conditions to obtain the
distribution P (Ht+1|Ht, d = 0). Additionally, to ensure a valid probability distribution is produced, normalisation
should be carried out.

Developing transition models for specific actions (such as repairs) is typically a problem that is highly dependent on
the context.

4 Case study: Four-bay truss

To demonstrate how probability distributions quantifying uncertainty in operational conditions may be used in
conjunction with a physics-based model to generate a transition model for a risk-based SHM decision process, the
methodology was applied to a case study of a physical four-bay truss structure identical to that used in [14], and
shown in Figure 5. The truss was composed of 20 aluminium members, each with a cross-sectional area of 177 mm2.



The horizontal and vertical members of the truss possessed lengths of 250 mm, resulting in the overall structure
having a length of 1 m and a height of 0.25 m. The members were pinned together using steel bolts in lubricated
holes. For illustrative purposes, fictitious operational conditions were assumed.

Figure 5: A two-dimensional four-bay truss comprised of 20 members, eight of which are removable and denoted by a
dashed line. Loads are applied at points L, and a preload is applied at point P. Load positions are shown as blue dots.
The bays are numbered left to right from 1 to 4.

To avoid obfuscating the development of the transition model, it was elected to ignore the failure of joints and
the horizontal and vertical members and instead focus on the failures of the cross-members. Denoting the local
health-states of the eight cross-members as hm9 to hm16, the global health-state of the structure can be expressed as
the vector H = {hm9, . . . , hm16}. Additionally, for the purposes of demonstration, binary health-states for each of
the 8 cross-members were considered resulting in 256 possible global health states. From hereon in, a convenient
referencing scheme for the global health-states is adopted where H is given a superscript of the decimal number
represented by the 8-bit binary number (with ascending powers of two from left to right) specified by the vector H,
i.e. the undamaged health state H = {0, 0, 0, 0, 0, 0, 0, 0} is denoted as H0, and the health-state corresponding to the
failure of the cross-members in the first bay H = {1, 0, 0, 0, 1, 0, 0, 0} is denoted as H17.

Finally, a binary decision d was considered for the structure, with possible courses of action ‘do nothing’ and ‘perform
maintenance’; for conciseness, these actions will be denoted with d = 0 and d = 1, respectively. In this case study,
it is assumed that the ‘perform maintenance’ action is equivalent to the replacement of all cross-members with the
structure consequently returned to its undamaged state.

4.1 Operational conditions

Operational conditions were assumed for the structure such that the stress experienced in cross-members has a degree
of stochasticity. Specifically, it was assumed that there would be uncertainty in both the load and the location that
the load is applied to the structure at each time step. In addition to the variable load, a constant preload of 5 kg was
applied to the structure at point P.

The magnitude of the load w was assumed to vary in accordance with the discrete uniform distribution,

w ∼ DU(0, wmax;n) (3)

where wmax was determined such that P (H0
t+1|H0

t , dt = 0) = 0.8 and each load magnitude had probability of
P (w) = 1

n
with n = 100.

The position of the load was also assumed to vary according to a discrete uniform distribution over 8 candidate
locations labelled L1 to L8 in Figure 5. This distribution may be formalised as:

L ∼ DU(1, 8) (4)

Hence, the operational conditions can be summarised as a vector co = {w,L}. In total, 800 possible operational
conditions were considered.



4.2 Failure criteria

For each cross-member, three modes of failure were considered; yielding under tension, buckling under compression,
and supercritical crack growth.

A cross-member was considered to have failed by yielding, if the tensile stress in the member exceeded the ultimate
tensile stress of aluminium, where σUTS = 300 MPa. The event of a cross-member mi failing via yielding is denoted
as Yi.

A cross-member was considered to have failed by buckling when the compressive stress within a member exceeded the
buckling stress σb. The critical buckling stress for a slender beam is given by the following equation [15],

σb =
π2EI

A(KL)2
(5)

where E is the Young’s modulus, I is the cross-sectional second moment of area, A is the cross-sectional area, K is
the effective length factor and is dependent on the boundary conditions, and L is the length of the member. As the
truss was constructed in a way that allows in-plane rotation at the ends of each member, a pinned-pinned boundary
condition was assumed, resulting in an effective length factor of K = 1. Taking the Young’s modulus of aluminium to
be E = 70 GPa, the critical buckling stress was found to be a compressive stress of σb = 270 MPa. The event of a
cross-member mi failing via buckling is denoted as Bi.

The final failure method considered for the cross-members was supercritical crack growth. For this failure mechanism,
it was assumed that each member possessed a crack in the centre across the entire width of the member and at
the midpoint along the length with probability 0.1. The size of the crack in meters was assumed to be continuous
uniformly distributed according to,

2a ∼ U(0, b) (6)

where 2a is the crack size and b = 0.0125 and is the half width of the cross-members.

Assuming the cross-members can be modelled as a finite plate and with plane strain conditions, the mode I stress
intensity factor KI for a cracked member can be given by the following equation [16],

KI = Gσ
√
πa (7)

where σ is the applied stress, and G is a geometric factor given by,

G =
1− a

2b
+ 0.326(a

b
)2

√

1− a
b

(8)

A cracked cross-member was considered to have failed when the stress intensity factor exceeded the critical stress
intensity factor Kc. For the aluminium members, it was taken that Kc = 24 MPa ·m 1

2 . The event of a cross-member
mi failing via supercritical cracking is denoted as Ci.

The initial variable structural conditions can be summarised in a vector cs = {2a9, . . . , 2a16}, where 2ai is the crack
length present in cross-member mi. Here, it should be noted that the cs is considered independently of H.

4.3 Transition modelling

To determine the stresses within the structure under the variable operational and structural conditions, a finite
element model of the truss was developed. The finite element model was validated with a set of strain measurements
taken from the physical truss in its undamaged condition.

A wrapper function was produced to iterate over the global health states Ht. Additionally, the function was used to
generate random samples c∗ from the probability distributions specifying the uncertain operational and structural
conditions c = {co, cs}. Afterwards, the function queried the finite element model to obtain the stresses in the
cross-members for the given global health-state and a random sample of operational and structural conditions.

Asserting d = 0, for an initial global health-state Ht and a randomly-sampled set of conditions c∗, a health-state
transition was defined as Ht+1 = Ht + δH where δH = {δhm9, . . . , δhm16} is an 8-bit binary vector and,



Figure 6: A heatmap showing the transition matrix P (Ht+1|Ht, d = 0).

δhmi = ✶[(Yi ∨Bi ∨ Ci)|Ht, d = 0, c∗] (9)

where ✶ denotes the indicator function and ∨ denotes the inclusive-or logical operator. Here, equation (9) corresponds
to evaluating cross-member failures with respect to the previously discussed criteria for yielding, buckling and cracking.
Subsequently, the conditional probability of transitioning from H

i
t to H

j
t+1 given c

∗ was specified such that,

P (Hj
t+1|Hi

t , d = 0, c∗) =

{

1 if δH = H
j
t+1 −H

i
t

0 otherwise.
(10)

To populate the transition matrix P (Ht+1|Ht, d = 0), the variability in the conditions c must be marginalised out
and the distribution normalised. This was achieved by calculating the i, jth entry of the transition matrix as,

P (Hj
t+1|Hi

t , d = 0) =

∑Ns

1
P (Hj

t+1|Hi
t , d = 0, c∗)

Ns

(11)

where Ns is the number of queries of the finite element model per Ht.

The transition model for the action corresponding to ‘do nothing’ was estimated with the described procedure using
Ns = 104. The heatmap of the resulting transition matrix P (Ht+1|Ht, d = 0) is shown in Figure 6. A dominant
lighter colour line can be seen along the diagonal in Figure 6; this indicates that the structure has a tendency to remain
in the same health-state over a single time-step. Furthermore, it can be seen that the elements in the lower-right
triangle of the graph (which corresponds to the lower-left triangle of the transition matrix) consists entirely of zero
elements; a result of the implicit constraint imposed through equations (9) and (10) that the structure monotonically
degrades. Taking the log10 of the conditional probability distribution (with an offset of +0.01 so that zero elements



Figure 7: A heatmap showing the log probability of the transition matrix with an offset, log10(P (Ht+1|Ht, d =
0) + 0.01).

may be plotted with finite values) reveals further structure in the transition matrix as lower probability transitions
are made more visible, as can be seen in Figure 7. Figure 7 shows that the transition matrix has fractal pattern akin
to the Sierpiński triangle. Due to the fact that the global health-state is represented as an 8-bit binary vector, the set
of all allowable transitions assuming only monotonic degradation (i.e. once a bit is ‘turned on’, it cannot be ‘turned
off’), form a Sierpiński triangle [17]. The possible transitions shown in Figure 7 are a subset of the Sierpiński triangle
with some elements missing due to physical effects disallowing some transitions; for example, if the truss were to
collapse due to the failure of the first bay, then the members in the other bays would no longer be able to fail as the
structure would cease to support the load.

For completeness, the transition matrix for the ‘perform maintenance’ action P (Ht+1|Ht, d = 1), was specified by
making the assumption that the replacement of all cross-members returns the structure to the undamaged health
states, as shown by the following function:

P (Hj
t+1|Hi

t , d = 1) =

{

1 for j = 0

0 otherwise.
(12)

The current section has demonstrated a sensible methodology for developing a health-state transition model for a
structure by means of a case study. The next steps would be to evaluate and test the transition model, though this is
omitted here as it is outside the scope of the current paper.



5 Discussion

The current sections aims to highlight and discuss the importance of health-state transition models in the context of
risk-based decision-making for SHM and for the specific problem of prognosis. Additionally, discussion will be made
around the challenges associated with the development of the transition models.

5.1 Importance of transition models

In general, when it comes to decision-making, possessing information or beliefs regarding future events/states is
crucial. This statement becomes most apparent when taking this notion ad absurdum. At one extreme, if one possesses
no information or belief regarding future events/states, then there is no reason for one to expect that any single
course of action is better than any other. At the other end, if one somehow becomes clairvoyant and possesses perfect
information regarding future events/states, then it follows that one would be able to make perfect decisions such that
maximum rewards may be reaped.

As it happens, almost all decision problems, including those pertaining to SHM, fall somewhere between these two
extremes, where belief and partial knowledge regarding future events/states is possessed. Nonetheless, in the context
of SHM, increased expected utility gain provides a strong argument for striving towards improved knowledge regarding
future health-states by the development of transition models.

In addition to allowing closer to optimal decisions to be made within the risk-based framework, a good transition
model allows for a pseudo-prognosis for the structure to be made by utilising equation (2). By propagating the belief
in the current health-state forward in time according to equation (2), and by evaluating the risk of failure associated
with the predicted distribution over future health-states, at each time step until the risk exceeds the cost of one
of the candidate courses of action, one can obtain an estimate for the anticipated number of time-steps until an
action should be taken. Whilst this result is not as powerful as a true-prognosis that yields remaining useful life, this
information is still beneficial as it provides the expected time available to execute a course of action.

5.2 Challenges

There are numerous challenges associated with the development of transition models.

A primary challenge pertains to the validation of transition models. For many applications of SHM, the monitoring
campaign will be for a newly-built structure from which data are yet to be acquired at the time that the transition
model must be developed. Without any observed state transitions to validate the model, one must rely solely on prior
knowledge of the underlying physics that govern the degradation. One possible option is to independently validate
the physics-based models used to develop the transition model via hybrid testing, or performing experiments on
individual components or substructures. Alternatively, in situations where an SHM system is being retrofitted to an
existing structure there may be historical data detailing health-state transitions that may be used to validate the
degradation model.

The issue of validation is further complicated if the structure of interest is unique. For such a structure, even in
a scenario where one is able to update the transition model with observed state transitions, it is possible, and in
many cases likely, that only a small subset of the total possible state transitions will be observed throughout the
operational lifetime; thereby leaving potentially large portions of the transition model without validation. In the
context of population-based SHM [18, 19, 20], a single transition model may be applied to all members of a fleet of
homogeneous structures and also updated with state transitions observed from each instance of the structure. The
process of continually validating transition models online may be achieved through active learning [21].

Another challenge is the cost, both in terms of money and time, associated with the development of transition models.
The development cost of a transition model will depend highly on the complexity of the structure for which a model
is being developed, and the range of operational and environmental conditions that must be considered. For complex
structures, the high-fidelity models capable of the multi-physics that may be required to simulate all the necessary
failure mechanisms to develop a transition model are expensive and time-consuming to develop, often requiring teams
of highly-skilled engineers. The financial argument for the development of such models should be constructed and
evaluated during the operational evaluation stage of the SHM process, taking into account whether the structure is of
high-value, or safety-critical.

The computational cost of the development and implementation of the transitional model should also be considered.



During the development of the transition model, it is possible that a physics-based model is queried numerous times.
For complex structures, and high-fidelity models these simulations required large computing times. As the number of
influential operating and environmental conditions increases, the number of samples required to adequately cover the
input space will also increase. Taking this factor into account with the possibility that high-fidelity physics-based
simulations may need to be queried many many times, the calculation of the transition models may have prohibitively
long computation times. A possible solution to this issue would be to use a surrogate model, where an interpolation
function that is relatively cheap to query is trained on a subset of the outputs of the physics-based model.

Finally, a challenge pertaining to maintenance action transition models is left as an open topic for research and
discussion. In a few limited cases, such as when repair corresponds to replacement of all failed components (as is
assumed for the case study in the current paper), it may be reasonable to assume that the structure returns to its
original undamaged case. However, in general, for less extreme and more realistic approaches to structural repair,
this does not hold and, in fact, it is possible that the state to which the structure transitions was not considered
during the original development of the transition model [22]. Here, the challenge lies with determining reasonable
assumptions that allow one to avoid redeveloping the transition model after every intervention, or to conceive of
methods for adapting the health-states considered within the risk-based decision framework.

6 Summary

The aim of the current paper has been to present a general methodology for developing structural health-state
transition models for use in a probabilistic risk-based decision framework for SHM. Using a four-bay truss for a case
study, a degradation model in the form of a probabilistic transition matrix was developed by considering uncertain
operational conditions in conjunction with a physics-based model. Finally, discussions were made focussing on the
challenges with developing health-state transition models but also on the importance of the models for both the
risk-based decision framework, and their application to the problem of prognosis in SHM.
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