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Abstract. We investigate the long-time properties of a dynamic, out-of-
equilibrium network of individuals holding one of two opinions in a population
consisting of two communities of different sizes. Here, while the agents’ opinions
are fixed, they have a preferred degree which leads them to endlessly create and
delete links. Our evolving network is shaped by homophily/heterophily, a form of
social interaction by which individuals tend to establish links with others having
similar/dissimilar opinions. Using Monte Carlo simulations and a detailed mean-
field analysis, we investigate how the sizes of the communities and the degree of
homophily/heterophily affect the network structure. In particular, we show that
when the network is subject to enough heterophily, an ‘overwhelming transition’
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occurs: individuals of the smaller community are overwhelmed by links from the
larger group, and their mean degree greatly exceeds the preferred degree. This
and related phenomena are characterized by the network’s total and joint degree
distributions, as well as the fraction of links across both communities and that
of agents having fewer edges than the preferred degree. We use our mean-field
theory to discuss the network’s polarization when the group sizes and level of
homophily vary.

Keywords: network dynamics, agent-based models, stochastic processes
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1. Introduction

The relevance of simple mathematical models in describing collective social phenomena
has a long history [1–3], and the importance of relating ‘micro-level’ to ‘macro-level’
phenomena is well established [4–8]. Yet, it is only recently that connections between
simple models of social dynamics and those traditionally used in statistical mechanics,
such as Ising-like spin models, have been systematically exploited in ‘sociophysics’ or
‘opinion dynamics’ [9–14]. As a result, there is an intense field of research dedicated
to the study of social networks by means of models and tools borrowed from statistical
physics [15–18]. In particular, various dynamical processes have been studied on complex
networks whose structure is random but static, see, e.g. [19–26], while in other models
agents and links co-evolve [27–33].

Naturally, collective phenomena such as phase transitions and polarization that
emerge from agent interactions have received great attention. An important example
of social interaction is homophily , which is the tendency for nodes to create links with
similar ones [7, 17, 34–37], while the tendency to establish ties with different others
is referred to as heterophily [38–41]. Homophily is commonly seen in political parties
[42–48], and the effects of this form of ‘assortative mixing’ on network dynamics have
been investigated in sociological [8, 34, 35, 37, 49–52] and interdisciplinary physics
studies [53–59]. In this literature, homophily is often modeled by assuming a biased
probability of creating an edge or of rewiring an existing link (edge weighting), and
notably features in growing [52, 55, 57, 60] and nodal attribute network models [53,
54, 61], and is often considered together with other ‘structural balance’ processes that
mitigate tensions between connected agents [58, 61, 62].

While homophily appears to be ubiquitous in social networks with many examples
of ‘birds of a feather flock together’ behaviors, heterophily appears to be more elu-
sive, with some empirical evidence in team formation processes [63], and in professional
cooperation networks [38, 40]. Quite interestingly however, in a two-community growing
network according to preferential attachment, it has recently been found that het-
erophily is responsible for the increase of the average degree of the agents of the smaller
group [55].

Here we consider an evolving network model in which links fluctuate continuously
as the result of the homophilic/heterophilic interactions between individuals of two
communities, holding one of two different opinions that remains fixed, who try to satisfy
a prescribed preferred degree [64–66].

The objective of this work is to understand in some detail how homophily and het-
erophily affect the stationary state of the network and its emerging properties. While
some of these aspects are considered in [67] for the special case of opinion groups of the
same size, here we focus on the general case of communities of arbitrary sizes, show-
ing that this leads to surprising results at a price of a considerably more challenging
analysis. Our main contribution is the detailed characterization of the ‘overwhelming
transition’ arising under enough heterophily in communities of different sizes. Remark-
ably, as observed in [67], the network then undergoes a transition separating a phase
where it is homogeneous and an ‘overwhelming phase’ in which agents of the smaller
community are overwhelmed by links from those of the larger group, with degrees greatly
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exceeding the preferred degree. Here, we unveil the properties of the overwhelming phase
(and ordinary regime) notably in terms of the total and joint degree distributions (JDDs)
by devising suitable mean-field theories and Monte Carlo simulations.

The remainder of the paper is organized as follows: the formulation of the model and
quantities of interest are introduced in the next section. In section 3, we summarize the
main properties of the symmetric system reported in [67]. Our main findings regarding
the ordinary and overwhelming phases are presented in sections 4 and 5 centred respec-
tively on simulation results and mean-field analysis. Our conclusions are presented in
section 6. Further details are provided in the supplementary material (https://stacks.
iop.org/JSTAT/2022/013402/mmedia).

2. Model formulation and quantities of interest

Our model consists of N agents (nodes) with a varying number of connections (links)
between them, forming a fluctuating network. Each agent j = 1, . . . ,N is endowed with
one of two possible states (‘opinions’), σj = ±1, and a preferred number of links κ.
A fraction n± of the agents is in opinion state ±1, so that the network consists of a
number N± = Nn± of agents holding opinion ±1. Using the terminology of Ising-like
models [68], (N+,N−) can be replaced by (N ,m), where m ≡ (N+ −N−) /N = n+ − n−
is an intensive quantity called ‘magnetization’.

The basis of our model is a preferred degree network (PDN) [64–66, 69] in which,
at discrete time steps, different individuals (nodes) are chosen to add or cut links to
others depending on whether its degree is less or greater than κ. The former are referred
to as ‘adders’ and the latter as ‘cutters’. So as to avoid frozen networks, κ is chosen
to be a half integer. Here, the PDN dynamics is supplemented by two ingredients: (i)
the network consists of two communities of differing opinions and sizes; (ii) there are
social interactions among agents embodied by the notion of homophily . Controlled by a
parameter J ∈ [−1, 1], homophily models the behavior of individuals who prefer to ‘make
friends’ and establish links with those holding the same opinion (positive homophily or
simply homophily, J > 0) or those with opposite opinions (negative homophily or simply
heterophily, J < 0), see figure S1 and section S1 in the supplementary material.

By combining Monte Carlo and mean-field techniques, we here investigate how the
network topology respond to parameters (κ, J ,N ,m) in its out-of-equilibrium station-
ary state (see section S2 of the supplementary material), and focus on the unexpected
phenomena arising when m �= 0, briefly reported in [67].

2.1. Model update rules

The dynamic rules of our model are conveniently stated by assuming discrete time steps,
t = 1, 2, . . . . These rules are illustrated in figure 1. At each t, an agent i(i = 1, . . . ,N)
of degree ki ∈ [0,N − 1] is randomly chosen. For convenience, we will refer to nodes
connected to i as its ‘neighbors’ and those not connected as ‘non-neighbors’. Then, after
i is chosen,

• if ki > κ, choose a neighbor j and delete the link
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Figure 1. Illustration of the model for κ = 2.5. Dark nodes represent +1 voters
(majority group) and light nodes are −1 voters (minority group). (a) Cutting pro-
cess of an ij link when ki > κ. (b) Adding of an ij link when ki < κ. Dashed:
cross links (CLs) between agents of different groups; solid: internal links (ILs)
between voters of the same group. The probabilities of cutting an IL and adding
a CL are J̌ = (1− J)/2 and Ĵ = (1 + J)/2, respectively. Similarly, the respective
probabilities of cutting a CL and adding an IL are Ĵ and J̌ , see text.

∗ with probability J̌ if σi = σj, or

∗ with probability Ĵ if σi �= σj,

• if ki < κ, choose one of the non-neighbors j and add a link

∗ with probability Ĵ if σi = σj , or

∗ with probability J̌ if σi �= σj .

Ĵ and J̌ are defined by

Ĵ ≡ (1 + J) /2 and J̌ ≡ (1− J) /2.

J thus plays a role similar to the nearest neighbor interaction in the ordinary Ising
model (spin alignment). Note that for J = 0, the distinction between the communities
is only nominal and as the opinions are irrelevant for the dynamics, and the system
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becomes similar to the PDN models of [64, 69], see section S1 in the supplementary
material.

2.2. Quantities of interest

To study the behavior of this evolving network in various regimes of parameter space,
we focus on a few quantities of interest, summarized in the table of section S3 of the
supplementary material. The most common of these is the degree distribution (DD)
pσ(k) associated with agents in community σ, and from these p’s, we can extract the
average degrees μσ ≡

∑
kkpσ (k) for each community σ = ±, as well as the variances

Vσ ≡
∑

kk
2pσ − μ2

σ. We also distinguish the number of links an agent has to neighbors
with opinion τ ∈ {−, +}, and denote these by �τ (where k = �+ + �−). With �τ , we
compile the JDDs [66] for the two communities: Pσ (�+, �−), and from these can compute
the averages:

(
�̄±
)
σ
≡

∑
�+,�−

�±Pσ (�+, �−) , (1)

which can be regarded as the ‘centers of mass’ (CM) of the two JDDs, see figure 9 of
[67]. The average degree in community σ is thus μσ =

(
�̄+
)
σ
+
(
�̄−
)
σ
. Another convenient

characteristic is the conditional distribution of cross-links:

qσ (w | k) ≡ Pσ (�+, �−)

pσ (k)
; w = �−σ, �+ + �− = k, (2)

which gives the probability for a node in the group σ to have w cross-links (CLs),
provided it has total degree k.

We also study the (fluctuating) total number of connections, which is a global quan-
tity denoted by L = L� + L×, where L� is the overall number of internal links (ILs) and
L× is the total number of CLs. Denoting by Lστ the links between agents opinions σ
and τ , we have L� = L++ + L−− and L× = L+− = L−+, and hence

L = L� + L× ≡ L++ + L−− + L+−.

Since we focus on the steady state averages of these quantities, we simplify the notation
by writing L in lieu of 〈L〉, etc. (The same below with α and ρ.) Clearly, these averages
are related to

(
�̄τ
)
σ
:

2Lσσ = Nσ

(
�̄σ
)
σ
; L× = N+

(
�̄−
)
+
= N−

(
�̄+
)
−. (3)

A natural way to describe polarization (extent of division between the communities)
is to start with the ratio of CLs to the total number of links [32]

ρ ≡ L×/L, (4)

and then a measure of polarization is given by

Λ ≡ 1− 2ρ = (L� − L×) /L, (5)

https://doi.org/10.1088/1742-5468/ac410f 6

https://doi.org/10.1088/1742-5468/ac410f


J.S
tat.

M
ech.

(2022)
013402

Effects of homophily and heterophily on preferred-degree networks: mean-field analysis and overwhelming transition

so that Λ (J = ±1) = ±1. For asymmetric systems, however, the ratios for the two
communities are distinct:

ρσ ≡
(
�̄−σ

)
σ

μσ
=

L×

L× + 2Lσσ
. (6)

Further, as will be discussed in section 4.5 below, Λ suffers from some deficiencies.
Instead, let us introduce an alternative measure of polarization, Π, which relies on the
(normalized) difference between the two CMs,

δx ≡
(�̄+)+ − (�̄+)−
(�̄+)+ + (�̄+)−

, δy ≡
(�̄−)− − (�̄−)+
(�̄−)− + (�̄−)+

.

Specifically, we define

Π ≡ δx + δy
2

∈ [−1, 1] . (7)

In order to account for the (fluctuating) number of nodes to add/cut links, we denote
by N a and N c the number of ‘adders’ and ‘cutters’, respectively. Further we denote by
Nβ

σ with σ ∈ {+,−} and β ∈ {a, c}, the number of agents who are adders (β = a) or
cutters (β = c) and hold opinion σ. Hence N a +N c = N and Nσ = N a

σ +N c
σ, and the

associated fractions are

nβ
σ ≡ Nβ

σ /N ; nσ = Σβn
β
σ
; nβ = Σσn

β
σ. (8)

Clearly, Σσ,βn
β
σ = 1. The fraction of adders, denoted by

α ≡ na = N a/N , (9)

plays an important role. It is useful to define the fraction of adders in each group σ by

ασ ≡ N a
σ/Nσ = na

σ/nσ, (10)

with n+α+ + n−α− = α and α± = α when m = 0.

3. Symmetric case, m = 0: summary of results

For the sake of reference and completeness, we summarize the findings on the symmetric
case m = 0 reported in [67]. We showed that by solving the balance equations for L×
and L� in the context of a mean-field approximation, the fractions of adders and CLs
in the steady state of the symmetric case are

α =
1− J2

2
, ρ =

1

2
− J

1 + J2
, (11)

which implies that the response to homophily in a clear unique mean-field expression of
the polarization:

Λ = Π = 1− 2ρ =
2J

1 + J2
. (12)
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We also studied the stationary DDs p (k) and q (w|k). For the former, we found

p

(
k
>
<
κ

)
=

(
1± J2

3± J2

)k̃

; with k̃ =
k − 
κ�
�κ − k

, (13)

from which we obtain the degree average and its variance:

μ = μσ = κ+ 3J2/2, V = Vσ =
(
7 + J4

)
/4. (14)

We also consider the JDD, Pσ (�+, �−), with P+ (x, y) = P− (y, x) which, due to symmetry,
gives the probability for either a + or − node to have x ILs and y CLs. The JDD is
obtained from (2), where the conditional distribution of cross-links is approximated by

a binomial distribution, i.e. q � qbin (w|k) =
(
k
w

)
ρw(1− ρ)k−w [67]. Hence, with (13) and

(11), the product

Pσ

(
k + u

2
,
k − u

2

)
� p (k) qbin ((k − σu) /2|k) (15)

is a suitable approximation of the JDD for our purposes. As explained in section 4.4,
for the generic m �= 0 case with |mJ | � 1, the form (15) can be used to get a three-
dimensional impression of the network’s properties (see figure 7).

4. Asymmetric case, m �= 0: simulation results

In our simulations, m varies from −0.04 to −0.6, and we will see that m = −0.04 and
m = −0.6 represent two very different regimes, i.e. the ordinary phase and the over-
whelming phase, the system displays properties quite distinct from those summarized
in section 3, see below.

We initiate the system with no initial links, run for typically over 102 Monte Carlo
step (MCS), and verify that quantities like ασ and ρσ have settled into steady values.
One MCS is N updates. Thereafter, simulation runs are carried on for up to another
106 MCS, during which we measured various quantities every MCS. For simplicity, we
show mainly the data associated with N = 1000 and κ = 60.5, so that 1 � κ � N±.
The data collected for other values give some impression of finite-size effects, which can
be serious when N and κ are lowered by an order of magnitude. In addition, we have
carried out 10 runs with different random number generators in a handful of cases, to
get a better idea of statistical errors. In all cases tested, the scatter for global quantities
like α and ρ is much smaller than the size of the symbols (i.e. at most one part in a
thousand).

4.1. Fraction of adders and cross-community links

As figure 2(a) illustrates, the asymmetric case is of great difference from the symmetric
case even for the smallest m, except that asymmetry has no effect on the fraction of
adders at J = 0. The effect of homophily appears to be opposite for the two α’s: when

https://doi.org/10.1088/1742-5468/ac410f 8
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Figure 2. α± and ρ± vs J in the asymmetric case with different values of m with
N = 1000 and κ = 60.5. Red lines and markers: agents of opinion +1 (minority);
blue lines and markers: agents of opinion −1 (majority). Symbols ◦, � and 
 are
associated with the simulation results when m = −0.1,−0.2 and −0.6, respectively.
Blue and red lines are mean-field predictions obtained by solving (16)–(18) and
(26), see section 5. For comparison, green lines show the predictions (11) for m = 0.

J > 0 and m < 0, α+ is greater than α in the symmetric case, while α− is less than that
α in the case m = 0. On the heterophily side (J < 0), we find richer phenomena, namely,
the presence of a ‘kink’ in the α− (J) curves at larger −J , accompanied by α+ becoming
vanishingly small. This phenomenon is most clearly seen in the m = −0.6 data, shown
in figure 2(a), when −J is larger than ∼0.5. The transition to this overwhelmed state
is accompanied by rapid changes in the slopes of α− (J). Such kinks can be seen even
for low asymmetry systems (e.g. m � −0.1), provided the strength of heterophily is
sufficiently large, see section 4.3 As we probe deeper into this regime (i.e. larger −J),
we find α− (J) turning downwards, which is consistent with α vanishing in the limits
|J | = 1.
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Figure 3. In all panels and insets, markers and lines denote κ = 20.5 (◦, dotted),
60.5 (�, dashed), and 120.5 (∗, dash-dotted). Red and blue respectively refer to
the minority (+) and majority (−) group. Symbols are from simulation data with
N = 1000. In (a), (c) and (g), m = −0.1 while m = −0.6 in (b), (d)–(f)
and (h). In (a)–(d), the green lines show the predictions (14) for m = 0.
(a), (b) μ− κ vs J , under low (a) and high (b) asymmetry. Lines are solutions
equations (16)–(18) and (26) of section 5. The extent of the J axis does not attain
high heterophily. (c), (d) μ− κ vs J for J ∈ [−1,−0.4] (significant heterophily). (e),
(f) M∓ vs J for the majority (e) and minority (f). The inset of (f) shows a blow
up of M+ vs J about transition region (more data points). (g), (h) DD variances
V − (blue) and V + (red) vs J under low (g) and high (h) asymmetry. Insets: V +/κ
vs J , see text.
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For the fraction ρσ(J) of CLs associated in the group holding opinion σ, we have
ρ± (0) = n∓ = (1∓m)/2 and find a monotonic decrease with J in figure 2(b). Similar
to the behavior of α±, the curves of ρ± vs J also deviate from the symmetric case in
opposite directions. We find that the minority fraction, ρ+ approaches 1, just as the
majority ρ− develops a kink, as J is decreased toward −1. As may be expected, these
features occur at about the same value of J ≈ J c as those in α± (J). Beyond the critical
J , all ρ± approach 1 rapidly when J < J c, a property which can also be understood
intuitively: heterophily is so strong in this regime that the entire population is locked
into establishing CLs.

4.2. Mean degrees and associated variances

We now consider the mean degrees (μσ) and associated variances (V σ) of each community
σ = ±. As in the case of α± and ρ±, the two μ’s deviate in opposite ways as we increase
|J |, see figures 3(a) and (b). As the data for the larger κ’s show, the differences μ± − κ
in this regime converge on values which are O (1), which indicates that the communities
are not interacting much. In stark contrast, interactions across the communities affect
the network dramatically under larger heterophily, see figures 3(c) and (d): while μ−
remains relatively close to κ, μ+ − κ in the minority group is strongly κ dependent,
with a pronounced effect for large asymmetry, see figure 3(d) (note the scale of the μ− κ
axis). In this regime, the minority starts being ‘overwhelmed’ once −J rises beyond the
aforementioned −J c. Indeed, the average degree of minority agents can be enhanced by
a factor E ≡ μ+/κ � J̌N−/N+ which can be much larger than unity [70]. Thus, instead
of the difference μσ − κ, we plot (for large asymmetry, m = −0.6)

Mσ ≡ μσ − κ

κ

vs J in figures 3(e) and (f). From simulation results for M− in figure 3(e), we con-
clude that M− → 0 as κ→∞, consistently with μ− − κ = O (1). In figure 3(f), we plot
M+ = E − 1 vs J and, from the data collapse of the simulation results (red symbols),
we conjecture that M+ converges to some definite, non-trivial thermodynamic limit.
The behavior of M+ is hence reminiscent of the Ising magnetization, becoming non-
zero below a critical temperature. In our simulation results, M+ appears to execute a
smooth crossover through the transition region (inset of figure 3(f)). The DD variances
paint a similar picture, with Vσ = O (1) in the ordinary regime and V+ = O (κ) in the
overwhelmed state, see figures 3(g) and (h). The overall behavior is qualitatively clear,
but the dependence on the parameters is complex as illustrated in figure 3(h) (note the
scale of the axis). In the inset of figure 3(h), V +/κ scales, to some extent, with κ but
without converging as κ→∞, which suggests the need for a further study of finite-size
effects to draw conclusions about the thermodynamic limit.

4.3. Overwhelming transition region characteristics

Here, we highlight the transition region between the ordinary and overwhelming phases
by providing a perspective of the simulation data based on the derivatives of α−,
ρ−, μ+, V + in figure 4, see section S4 in the supplementary material. We report the
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Figure 4. Highlights of the transition region for systems with m = −0.6 (where
()′ ≡ d/dJ): (a) −α′′

− vs J ; (b) ρ′′− vs J ; (c) μ′′
+ vs J ; (d) −V ′

+ vs J . All results
indicate a sharp peak around J ≈ −0.42. Other parameters are: N = 1000 (�),
N = 3000 (◦) and κ = 60.5 in (a) and (b); N = 1000, κ = 20.5 (�), κ = 60.5 (◦),
and κ = 120.5 (∗) in (c) and (d).

discrete derivatives of these quantities, and all results clearly indicate the existence
of a sharp peak in the vicinity of J ≈ −0.42. These peaks correspond to the ‘kinks’
shown in figure 2, at which the transition between ordinary and overwhelming phases
occurs (‘overwhelming transition’). The critical point J c at which this transition occurs
depends on m, and (m, Jc(m)) is where p(
κ�) � p(
κ�+ 1) at stationarity, see below
and figure 6(d). Clearly, Jc is monotonically decreasing when m is negative, implying
that the larger |m|, the less heterophily is needed to enter the overwhelming regime.
When m = 0, the system falls into the ordinary regime for any value of J [67]. Remark-
ably, for any non-zero value of m (non-vanishing level of asymmetry), there is always
a critical level of heterophily |J c|, with J c < 0, above which the system is in the over-
whelming regime. The features of the transition line (m, J c(m)) are well captured by
the mean-field prediction given by equation (39), see section 5.4 and figure 5.

4.4. Degree distributions and joint degree distributions

We now study the total and JDDs. At low asymmetry and/or heterophily (|m| � 1
and/or J > J c), the DDs p±(k) remain approximate exponentials (Laplacian distribu-
tion), dropping as k gets further from κ. As shown in figures 6(a)–(c), the Laplacian
distributions are not symmetric, as the slopes on each side (log-linear plot) differ slightly,
producing μσ �= κ, with the slopes of the DDs in the log-linear plots and widths being
O (1). In our simulations, we found little dependence of the DDs on κ and N±. The
slopes of p± differ in the opposite directions for the two communities, corresponding
to α± deviating from the m = 0 curve in opposite ways. In figure 6(c) we see that the
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Figure 5. Jc vs m (with N+ < N−, i.e. m < 0) showing the transition line sep-
arating the ordinary (white) and overwhelming phases (shaded). Markers show
(m,J c) for which simulation data satisfying p(
κ�) � p(
κ�+ 1). Here, N = 1000
and κ = 60.5; while the line is from equation (39). Note that a mirror diagram with
m→−m is obtained in systems when N+ > N− (m > 0).

right half of the DD of the minority is bent in the log-linear plot, and a Gaussian-like
distribution for the cutters in the minority develops gradually as J is decreased fur-
ther (increased heterophily), with J down to −0.6 in figures 6(d)–(f). These findings
illustrate the process of the system transiting from the ordinary into the overwhelming
regime. To locate the change of phase, the ‘overwhelming transition’, we assume that
the system is in the transition regime when p(
κ�) � p(
κ�+ 1), i.e. the slope of the
DD at 
κ� of cutters in the minority equals 0, see figure 6(d). Within the overwhelming
regime, the fraction of adders (k < κ) decreases substantially, and p+(k) from an expo-
nential becomes a Gaussian-like distribution. In figures 6(e) and (f), we show the DDs
deep in the overwhelming phase, where novel behavior emerges: while the majority keep
their DD to be narrowly distributed around κ, the dramatic rise of the average degree
of the minority agents is accompanied by significant changes to p+ (k) and a substantial
decrease of the adders in the minority. As illustrated in figure 6(f) for m = J = −0.6,
there are no minority nodes with k < κ = 60.5 (i.e. no minority adders), while the dis-
tribution is essentially a Gaussian peaking at k � 145, well over twice κ. Unlike the
narrow Laplacian, the variance of this Gaussian is considerably higher, V + � 217. The
inset of figure 6(f) shows the striking difference between the DDs on linear scale.

We also consider the JDDs, Pσ (�+, �−) = pσ (k) qσ (�−σ|k) in the ordinary phase, see
equation (2), where k = �+ + �−. In the regime where |mJ | is small, we can approximate
the conditional distribution of cross-links by a binomial distribution, i.e. qσ(�−σ|k) �(

k
�−σ

)
ρ�−σ
σ (1− ρσ)

k−�−σ [67] as in the symmetric case, yielding for the JDDs Pσ (�+, �−) �(
k
�−σ

)
pσ (k) ρ

�−σ
σ (1− ρσ)

k−�−σ , that are of the same form as (15). Accordingly, the narrow

Laplacian and broad Gaussian are embodied as different perspectives—in pσ (k) and
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Figure 6. Total DDs p±(k) for various parameter sets in different regimes with
N = 1000 and κ = 60.5. (a)–(c) p± vs k in the ordinary regime; (a) (m,J) =
(−0.04,−0.5); (b) (m,J) = (−0.6, 0.5); (c) (m,J) = (−0.6,−0.3). (d) p± vs
k(m,J) = (−0.6,−0.425), at onset of overwhelming transition where p(
κ�) �
p(
κ�+ 1), see text. (e), (f) p± vs k in the overwhelming regime; (e) (m,J) =
(−0.6,−0.5); (f) (m,J) = (−0.6,−0.6). Straight blue lines in (a)–(f) are from
equation (23) given in section 5.2; the Gaussian-like curves in (d)–(g) are from
equation (30), derived in section 5.4. Red curves in (d)–(f) are from equation (30)
used together with equation (31), μa,c

− ≈ κ and equation (34); the cyan curve in (f)
is from equation (31) with α− obtained from the simulation data (and μa,c

− ≈ κ).

qσ (�−σ|k). A three-dimensional plot of Pσ (�+, �−) is the best way to view the ‘knife-
edge’ of the JDD caused by pσ(k) following a narrow asymmetric Laplacian distribution
in the ordinary phase. As examples, in figure 7, we present the JDDs for the case of
low asymmetry and intermediate heterophily, and the case of high asymmetry (and low
heterophily).

In figures 7(a) and (b), the two perspectives for the majority JDD are shown, one
along the knife-edge and the other, broadside. Note that k = �+ + �−, so that the per-
spective of the former is aligned with constant k. The latter clearly gives the impression
of a Gaussian stemming from qσ. This picture is qualitatively the same for the minority
agents. In figures 7(c) and (d), we present the broadside perspective of the minority
JDD in linear and semi-logarithmic scales. The latter reveals the initial stages of the
minority being overwhelmed: in figure 7(d), the right side of the Gaussian is truncated
near �+ = 0, and squeezed toward �+ = 0, implying that the probability of a minority
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Figure 7. JDD Pσ(�+, �−) with N = 1000 and κ = 60.5 in the ordinary regime.
Parameters are: (N+,N−) = (480, 520), i.e. m = −0.04, and J = −0.5 in (a)–(d);
(N+,N−) = (200, 800), i.e. m = −0.6, and J = −0.3 in (e)–(f). (a), (b) Linear plots
showing the ‘knife-edge’ (a) and broad Gaussian (b) perspectives of P−(�+, �−). (c),
(d) Linear (c) and semi log-scale (d) plots of P+(�+, �−), where the minority JDD
is pressed onto �+ = 0, see text. (e), (f) Linear (e) and semi-log (f) scale plots of
P+(�+, �−) under high asymmetry (m = −0.6) and low heterophily.

node to have a small number of ILs (small �+) is not vanishingly small. The graphs of
figures 7(e) and (f), are similar, but for a low level of heterophily: the effect of het-
erophily is moderate, with almost half of the Gaussian being squeezed into the �+ = 0
plane, with the narrowing of the JDD along �+ being accompanied by its broadening
along �−. In this cross-over regime, the partition of P+(�+, �−) into the product of a
narrow Laplacian and a broad Gaussian is not valid (see figure 6(d)). Finally, deep in
the overwhelming phase, the minority JDD collapses entirely onto the �+ = 0 plane, and
the product expression is trivially valid: P+ (�+, �−) = δ�+,0p+ (k = �−), where p+ (k) is a
broad Gaussian in the overwhelmed state. Meanwhile, the JDD of the majority agents,
P− (�+, �−), continues to display the same ‘knife-edge’ characteristics, as in the ordinary
phase. In the transition region, the minority JDD cannot be simply approximated by
the product of the DD and the conditional DD.

https://doi.org/10.1088/1742-5468/ac410f 15

https://doi.org/10.1088/1742-5468/ac410f


J.S
tat.

M
ech.

(2022)
013402

Effects of homophily and heterophily on preferred-degree networks: mean-field analysis and overwhelming transition

Figure 8. Polarization measures Λ and Π as functions of J form = 0 (circles, solid),
−0.2 (squares, dashed) and −0.6 (stars, dash-dotted); symbols are from simulation
data and lines are mean-field predictions. Here, N = 1000 and κ = 60.5. (a) Λ vs J .
(b) Π vs J . Lines in (a) are from equation (S6) and in (b) from equation (S8) of the
supplementary material, with ρ± obtained from the mean-field theory of section 5.2,
see text.

4.5. Measures of polarization

When measuring the network polarization, the quantity Λ is commonly used and some-
times referred to as ‘average edge homogeneity’ [47, 71]. See section S6 in the supple-
mentary material for the derivation of Λ in terms of ρ± which are functions of J and
m obtained from the mean-field theory of section 5.2. Λ provides a sensible measure
of polarization in systems with low asymmetry (m ≈ 0). However, this is generally not
the case when m �= 0, especially when J ≈ 0 and Λ ≈ m2 fail to predict a vanishing
polarization when J → 0, see figure 8(a) and [67]. This led us to introduce Π, defined by
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equation (7), which is constructed to avoid the deficiencies of Λ by providing a mean-
ingful measure of polarization for any values of m. Although Π was motivated by the
separation of the CMs of Pσ (the JDDs of the two groups), we have shown that in the con-
text of the mean-field approximation, Π can be computed from ρ± and m, see equation
(S7) in the supplementary material. While Π contains the same information displayed
in figure 2(b), its mean-field expression is an instructive combination of ρ± offering a
single meaningful quantity for polarization. We indeed find that Π ∝ 1− ρ+ − ρ− which
vanishes for J = 0 and any value of m (since ρ± = n∓), while it reduces to Λ for m = 0.
When J = ±1, Π(±1,m) = Λ(±1,m) = ±1. This implies that the sign of Π alone signi-
fies if the system is homophilic or heterophilic, as seen in figure 8(b) where the mean-field
predictions are in excellent agreement with simulation data (symbols) for all values of
m and J . While Π does not appear to be independent of m, the dependence found in
figure 8(b) turns out to be weak. Finally, we note that in figure 8, as expected, Λ and
Π display a signal of the transition from the ordinary to the overwhelmed state about
J ≈ J c(m).

5. Asymmetric systems: theoretical considerations

From the phenomena presented in the last section, it is clear that there are two different
regimes, the ordinary and overwhelming phases, with quite distinct properties. This
section is devoted to their theoretical characterization in terms of mean-field theories.
While we believe it is possible to formulate a single mean-field based theory which would
completely describe both regimes, such a theory will be quite complex. Instead, here
we adopt a simpler approach which has the advantage of being pragmatic and easily
comprehensible, see section 5.2, at the price of being less effective in the overwhelming
regime, an issue that we circumvent in section 5.3 with a refined (complementary)
mean-field theory.

5.1. Framework for a general mean-field analysis

Our starting point to set a general framework for a mean-field analysis that applies for
any choice of N±, for arbitrary m, is to generalize the mean-field theory devised in [67]
for the symmetric case m = 0, see also section 3.

For arbitrary m, we now have four unknowns: α± (or na
±) and ρ± [72]. As in the

symmetric case we have two equations and still need two other equations to obtain
a self-contained theory. One such equation is for each Lσσ, while the other is a strict
constraint involving ρ± in the identity L+− = L−+.

Focusing first on global quantities like L, we must consider the changes for Lσσ,
with σ = ±. Proceeding as in [67], the gain and loss rates are na

σnσĴ and nc
σ (1− ρσ) J̌ ,

respectively. For the former, nσ means that a node can choose to add a link to unequal
fraction of partners [73], rather than 1/2 when m = 0. Now, there are four ways Lσσ can
arrive at a stationary state. Two correspond to extreme values of J , when one of the rates
vanishes and Lσσ reaches its own bound. Another is when both na

σ and 1− ρσ vanish (or
are vanishingly small), an interesting possibility we will return to in subsection 5.3. Here,
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we are most interested in the last scenario, when both rates reach stationary, generic
values. Balancing these, we find for the steady state: Ĵna

σnσ = J̌nc
σ (1− ρσ), which is

equivalent to

ασnσB = (1− ασ) (1− ρσ) , (16)

where

B ≡ Ĵ/J̌ =
1 + J

1− J

is a convenient way to express the bias due to homophily: B > 1 for J > 0. For CLs,
the generalization of the gain/loss rates is slightly more complicated, yielding

(na
+n− + na

−n+) J̌ = (nc
+ρ+ + nc

−ρ−) Ĵ , (17)

where we can read the contributions from both groups.
Another equation comes from the constraint L+− = L−+. In terms of the variables

here, this equality (trivially satisfied in the symmetric case) reads

N+μ+ρ+ = N−μ−ρ−. (18)

In order to apply equation (18), we must first generalize the technique of [67] for the
DDs p± (k) when m �= 0, from which to extract μ± in terms of α± and ρ±. Thus, we
devote the next subsections to studies of the DDs.

5.2. Systems with low asymmetry or −J � 1

As seen in the simulation data, the DDs for asymmetric system with small m and
−J � 1 are qualitatively the same as in the case m = 0. Proceeding as in the symmetric
case [67], we start from the balance equation for the addition/deletion of a link at a single
node:

Ra
σ (k) pσ (k) = Rc

σ (k + 1) pσ (k + 1) , (19)

for which we need expressions for the four Ra,c
σ which are the probabilities in a time

unit at which a connection is added (Ra
σ) and cut (Rc

σ) in the community σ. Each R has
contributions from both communities, and the probabilities for adding and cutting links
are here associated with the symbols η and χ, respectively. We will further distinguish
contributions due to the actions (η,χ) of the chosen node, or from the rest of the
population (η̃, χ̃) [67]. In the context of our mean-field theory, the former pair simply
reads:

ησ = nσĴ + n−σJ̌ , χσ = (1− ρσ) J̌ + ρσĴ (20)
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as the prefactors of the J ’s just refer to the chances our node adds/cuts a link to an
agent in its community or otherwise. The latter is similar, except for the extra factors
accounting for the fraction of adders/cutters in the σ group, yielding

η̃σ = ασnσĴ + α−σn−σJ̌

χ̃σ = (1− ασ) (1− ρσ) J̌ + (1− α−σ) ρ−σ (n−σ/nσ) Ĵ .
(21)

These enter into the R’s as in the case m = 0 [67]:

Ra
σ =

[H (κ− k) ησ + η̃σ]

N
; Rc

σ =
[H (k − κ)χσ + χ̃σ]

N
. (22)

Proceeding as in the symmetric case, solving the recursion relation (19) [67], we obtain
again asymmetric Laplacian distributions (see section S5 in the supplementary material
and (13)):

pσ (k < κ) = pσ (�κ) [γσ<]�κ−k

pσ (k > κ) = pσ (
κ�) [γσ>]k−
κ�
,

(23)

where, with (20) and (21),

γσ< =
χ̃σ

ησ + η̃σ
; γσ> =

η̃σ
χσ + χ̃σ

(24)

are the factors controlling the exponentials. Finally, by imposing the normalization
conditions

pσ (�κ)
1− γσ<

= α±,
pσ (
κ�)
1− γσ>

= 1− α±, (25)

both p’s are uniquely determined in terms of the unknowns α± and ρ±.
Our goal is to find the averages μσ of these distributions, which allow us to apply

equation (18) and in turn complete our mean-field theory. From equations (23) and (25),
we have

μσ = �κ − γσ<ασ

1− γσ<
+

1− ασ

1− γσ>
, (26)

where we have neglected terms of order O(γ

κ�
σ> , γ


κ�
σ< ) since κ � 1. Equation (26) gives

us the expression of μ± in terms of α± and ρ±, which can be determined by solving
equations (16)–(18), and in turn allow us to obtain the predictions of this theory. Yet,
since equations (16) and (18) are non-linear, we do not have explicit solutions. Instead
we have solved equations (16)–(18) and (26) numerically by standard methods.

5.2.1. Mean-field predictions of ασ, ρσ,μσ and pσ. The theoretical results based on
equations (23), (16), (17), (18) and (26) have been directly used to obtain the mean-
field predictions of α± and ρ±, Λ and Π (see section S6 in the supplementary material),
μ± and M± = (μ±/κ )–1, and also the degree distribution pσ(k).

The blue and red lines of figure 2 show the predictions of ασ and ρσ which are found
in good accord with simulation data for all values of J , across both the ordinary and
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overwhelming phases. The agreement is excellent in the ordinary regime, and we note
that our mean-field theory remarkably captures the ‘kinks’ of α− and ρ− at the onset
of the overwhelming transition. In the overwhelming phase, |m| = O(1) and J < J c < 0
(see section 4.3), the degrees of the minority agents are no longer small compared to N ,
which violates a key assumption of our mean-field theory. This leads to systematic but
rather modest deviations between the mean-field predictions and simulation data.

The comparison of simulation and theoretical results for Λ and Π in figure 8 shows
a remarkable agreement for different values of m over the entire range of J , i.e. across
both ordinary and overwhelming phases. In particular, the mean-field theory correctly
captures the weak m-dependence of Π, and signals the transition from the ordinary to
overwhelming regimes for both Λ and Π.

For μ± andM±, as shown in figure 3, mean-field predictions generally agree well with
simulation results, with an agreement that improves as κ � N , with κ � 1. Remarkably,
the mean-field results give sensible results for μ±, and M± also in the overwhelming
regime, see section 5.3 and section S8 in the supplementary material.

Theoretical predictions of pσ(k) are used to obtain the red and blue lines in figure 6,
which are generally in good agreement with simulation data, especially in the ordinary
regime, i.e. |mJ | � 1 or J > 0, see figures 6(a) and (b). As shown in figure 6(c), for
|m| = O(1) and above a certain level of heterophily (J < 0 with |J | = O(1)), a Gaussian-
like distribution for the cutters in the minority begins to develop, which is not captured
by the above mean-field theory. In fact, deep in the overwhelming phase the DD of the
minority no longer falls off exponentially as predicted by (23), but is a broad Gaussian,
see figure 6(f), characterized in section 5.3. We note that the DD of the majority always
falls off exponentially and, in both ordinary and overwhelming phases, is well described
by (23), see blue lines in figures 6(a)–(f).

5.3. A refined mean-field theory for the degree distribution of the overwhelmed minority

Clearly, the overwhelmed states lie beyond the domain of validity of the above mean-
field theory. This chiefly results from the DDs of the minority agents having morphed,
see figures 6(e) and (f). To get a reasonable characterization of the quantities in this
region, we have to study the DD of the minority agents more carefully.

For this, we revise the above theory following the approach of [66], and write the
balance equation obeyed by the minority DD with a full non-trivial k-dependence of
adding/cutting probabilities Ra,c(k):

Ra
+ (k − 1) p+ (k − 1) = p+ (k)Rc

+ (k) . (27)

Furthermore, guided by simulation data, we assume that deep in the overwhelming phase
we have α+ = 0 (see also at the end of this section). To determine Ra (k), we recognize
that there are just (N− − k) majority nodes which can add a link to our agent of degree
k, each of which can be chosen with probability 1/N , and only a fraction α− of them
would add. There is also the bias J̌ for adding CLs. Finally, the adder will choose our

agent with probability 1/
(
N − k̃ − 1

)
, where k̃ is the number of links it has, which is

a fluctuating quantity. In the spirit of a mean-field approximation, k̃ is replaced by μa
−
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(average degree of majority adders). Putting everything together, we have

Ra
+ (k − 1) � N− − k + 1

N

α−

N − 1− μa
−
J̌ . (28)

Similar arguments give the expression of Rc
+ (k):

Rc
+ (k) � 1

N

(
1 + k

1− α−

μc
−

)
Ĵ . (29)

With (28) and (29), the solution of the recursion (27) is a ‘shifted binomial’ (see section
S7 in the supplementary material):

p+ (k) ∝ (Qc/Qa)k (N−)!

Γ (Qc + k + 1) (N− − k)!
, (30)

where

Qa = (N − μa
− − 1)B/α− ; Qc = μc

−/ (1− α−) . (31)

Since Qc > 0, this expression is well-defined as far as k = 0. Since α+ ≈ 0 is our
assumption in the overwhelming state we expect this theory to be fairly good deep
in the overwhelming regime, but to fail near the transition line.

For the characterization of the DD by (30), we expect p+(k) to approach a Gaussian

in the limit of large N , κ with generic values of m, J . Thus, we use the mode k̂ for μ+

and the curvature of ln p+ for V +, see also section S7 in the supplementary material

μ+ � k̂ � N− + 1−Qa

1 +Qa/Qc
. (32)

V+ =
N−Q

cQa

(Qa +Qc)2
+

(Qa)2 + 2QaQc − (Qc)2 + 2Qa(Qc)2

2(Qa +Qc)2
. (33)

To determine Qa and Qc, guided by simulation data showing that the DDs for the
majority agents still follow the asymmetric Laplacian distribution (23), we assume that
μa
− ≈ μc

− ≈ κ. Also, consistently with our previous assumption, in the overwhelming
state, we set α+ = 0 in (16) and (17), and obtain

α− =
1− J2

(1−mJ) (1−m)
. (34)

These together give us the approximation of Qa and Qc in the overwhelming state, and
thus the DD p+(k) of the minority agents (almost all ‘cutters’) shown as red curves in
figures 6(d)–(f). Since (30) with (34) and μa,c

− ≈ κ rely on the observed absence of adders
and ILs in the minority community, it is a ‘semi-phenomenological’ refined mean-field
theory. A fully self-consistent refined mean-field theory is outlined in section S9 of the
supplementary material. Comparison with simulation results of figure 6 shows that this
semi-phenomenological theory gives a good description of the minority DD not too deep
in the overwhelming phase, see figures 6(d) and (e). Yet, deep in the overwhelming
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regime of very heterophilic systems (−J close to 1), there are quantitative deviations
between the theoretical predictions and simulation data, see the red curve in figure 6(f).
These are traced back to the use of (34), and a significantly better agreement is found
when (30) is used with α− directly obtained from simulations (and μa,c

− ≈ κ), leading to
the cyan curve in figure 6(f). The accuracy of the predictions of (30) with (34) improves
as the system size is increased, i.e. the red and cyan curves of figure 6(f) will get closer
for larger N and κ.

As a simple assessment of our refined mean-field theory, we compare its predictions
with the simulation data in the case of N = 1000 and κ = 60.5, with m = J = −0.6. As
shown in figure 6(f), p+ (k) in this case study is clearly Gaussian-like, with measured
μ+ � 146 and V + � 217. These values are compared with the predictions of our theory
based on equations (31), (30) and (34), yielding (μ+,V +) � (128, 203) from (32) and
(33). These results are in reasonable but not perfect agreement with those of simulation.
The data can also be compared with (32) and (33) when these are used with α− directly
measured from simulations, yielding (μ+,V +) � (146, 216), which are the approximation
of the mean and variance of the cyan curve and compare remarkably well with those
obtained from simulations. This agreement gives us confidence that we have devised a
suitable mean-field description of the DD of the minority agents.

We conclude that our results, illustrated by figures 2–8, show that the ordinary
MF approximation gives a sound qualitative and quantitative characterization of all
quantities in the ordinary phase, as well as of the global quantities in the overwhelming
phase and DDs of the majority phase. Yet, the refined MF is necessary to describe the
DD of the minority in the overwhelming phase, see also section S8 and figure S2 in the
supplementary material.

5.4. Transition line

In this section, we use the theoretical results of sections 5.2 and 5.3 to derive the
mean-field prediction of the transition line (m, Jc(m)) separating the ordinary and over-
whelming phases (respectively at J > J c and J < J c, with m fixed), see figure 5. For
the sake of concreteness, and without loss of generality, here we consider m < 0.

To find the point where the transition occurs, we start from the balance equation
for a minority node of degree k = 
κ� which, from (19), reads

Ra
+(
k�)p+(
k�) = p+(
k�+ 1)Rc

+(
k�+ 1), (35)

with

Ra
+(
k�) = η̃+/N , Rc

+(
k�) = (χ+ + χ̃+) /N , (36)

where we have used (22) with H(κ− 
κ�) = 0 and H(
κ� − κ) = 1. As discussed in
section 4.3, we consider that the transition between the ordinary and overwhelming
phases occurs when p+(
k�) = p+(
k�+ 1), see figure 6(d). With (35) and (36), this
readily gives

η̃+ = χ+ + χ̃+. (37)
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Further, we assume that at the onset of the transition, the features of both phases hold:
α+ = 0, ρ+ = 1 (see figure 2), and μ+≈ μ−. With these assumptions and equations (3),
(6), (20), (21) and (37), we have

α−n−J̌ = Ĵ + (1− α−)Ĵ , (38)

where n− = (1−m)/2 and α−(J ,m) can be approximated by equation (34). The unique
physical root of (38) thus gives us the mean-field expression of Jc(m), which explicitly
reads (for m < 0):

Jc =

(
3m− 1− 2m2 + 2

√
m (m3 − 3m2 + 4m− 1)

)
1 +m

. (39)

This expression is plotted in figure 5. The predictions of (39) are found to generally agree
well with simulation data, with an excellent agreement form � −0.4 and some noticeable
deviations close to the symmetric case (|m| � 1). These are due to the deterioration of
the approximation of (α+, ρ+) ≈ (0, 1) that we attribute chiefly to finite size effects,
expected to be important close to the ordinary phase consisting of a finite fraction of
adders and CLs (given by (11) in both communities). Naturally, this and the limited
validity of the crude assumption μ+ ≈ μ− affect the applicability of (39) [74].

6. Conclusion and outlook

We have investigated a dynamic, out-of-equilibrium network of individuals that may hold
one of two different ‘opinions’ in a two-party society. In this work, the opinions of agents
are held fixed while inter-party and cross-party links are endlessly created and deleted
in order to satisfy a preferred degree. The evolving network has therefore a fluctuating
number of links and is shaped by homophily and heterophily which model forms of
social interactions by which agents tend to establish links with others having similar or
dissimilar opinion, respectively. In our model, homophily/heterophily is modeled by an
evolutionary process leading to the continuous ‘birth’ and ‘death’ of links within and
between the communities. While the features of the system where the two opinion groups
are of the same size (symmetric case) have been studied elsewhere [67], here we have
focused on the generic case of communities of different sizes. We have thus investigated
how the joint effect of community size asymmetry and homophily/heterophily influences
the network structure in its steady state and leads to new phenomena.

The most striking feature of our model is the transition between distinct phases as
the level of homophily/heterophily is varied. As main findings, we unveil the emergence
of an ‘overwhelming phase’ whose properties are analyzed in detail by a variety of
analytical and computational methods presented in sections 4 and 5.

When the level of heterophily is non-existing or modest, the system is in an ‘ordinary
phase’ similar to that characterizing the network with communities of equal size. Under
intermediate to large heterophily, for sufficient asymmetry in the size of the communi-
ties, the agents of the majority group ‘overwhelm’ those of the minority by creating a
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large number of cross-party links. We refer to this change of regime as the ‘overwhelming
transition’, and to the regime itself as the ‘overwhelming phase’. In the overwhelming
phase, the minority consists of agents having only cross-party links and large degrees
following a broad distribution whose average can greatly exceed the preferred degree. By
means of extensive Monte Carlo simulations and mean-field theories, we have determined
the transition line separating the ordinary and overwhelming phases, and characterized
in detail both regimes. In particular, we have studied the dependence on the level of
homophily/heterophily and community size asymmetry of the number of cross-party
links, fraction of agents with fewer links than the preferred degree, as well as the
average degree in each community and the level of polarization in the network. In addi-
tion to these global quantities, we have also determined the total and JDDs of both
communities.

We have found that the ordinary phase is characterized by features similar to those
of the symmetric case [67]. The analysis of these follows from a direct two-community
generalization of the mean-field approach used in the absence of group size asymmetry.
The excellent agreement between simulation and analytical results has allowed us to
show that in the ordinary regime, the network is essentially homogeneous, with total DD
centred about the preferred degree and falling off exponentially (asymmetric Laplacian
distribution), and with a broad distribution of cross-party links resulting in a ‘knife-edge’
JDD.

Remarkably, the overwhelming phase displays a number of surprising features: gen-
erally, the agents of the minority, all have a number of edges exceeding greatly the
preferred degrees, and all of these are cross-party links. This results in a DD of the
minority community that follows a broad Gaussian-like distribution. To characterize
the latter, we have devised a nontrivial generalization of the ordinary-phase mean-field
analysis which is found to be in good agreement with simulation data. Interestingly,
the majority community in the overwhelming regime has essentially the same properties
as in the ordinary phase: it forms a homogeneous network whose DD is centred about
the preferred degree and that falls off exponentially. The transition from the ordinary
to the overwhelming phase occurs at finite level of heterophily (when group sizes are
asymmetric), and therefore differs from the fragmentation/fission, arising in other net-
work models with homophily [27, 30, 32]. Such a transition, by which the network is
split into disconnected communities, is also found in our model but only under extreme
homophily.

It would be interesting to understand whether the existence of an overwhelming
transition, the most distinctive features of our simple model, is robust against gener-
alizations of our simple dynamic network model. As natural further avenues we could
consider more than one preferred degree, or to allow agents to draw their preferred
degree from a finite range. It would also be instructive to investigate other forms of
update rules, e.g. like networks subject to heterophily and growing with preferential
attachment [55]. An even more realistic, yet challenging, generalization would be to
consider the co-evolutionary dynamics where network varies in response to changes of
node states and the changes of those are coupled to updates of the network links. It
would be quite relevant to investigate whether an overwhelming phase is a common
feature of all these model extensions, and to what extent our analytical methods can
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be generalized to tackle the latter. This endeavor, while challenging and likely to unveil
even richer and more complex phenomenology, would allow us to shed further light on
the important problem of better understanding the general features of dynamic network
shaped by social interactions.
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≈ −1, we have found α+ ∈ [0.024, 0.027] instead of being strictly equal to zero. Furthermore, in this example,
μ− ≈ κ while μ+ � 70, hence with μ− − μ+ � 1 rather than μ− ≈ μ+.
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