
viruses

Article

Quantification of Type I Interferon Inhibition by Viral Proteins:
Ebola Virus as a Case Study

Macauley Locke 1 , Grant Lythe 1 , Martín López-García 1 , César Muñoz-Fontela 2,3 , Miles Carroll 4

and Carmen Molina-París 1,5,*

����������
�������

Citation: Locke, M.; Lythe, G.;

López-García, M.; Muñoz-Fontela, C.;

Carroll, M.; Molina-París, C.

Quantification of Type I Interferon

Inhibition by Viral Proteins: Ebola

Virus as a Case Study. Viruses 2021,

13, 2441. https://doi.org/10.3390/

v13122441

Academic Editors: Amber M. Smith

and Ruian Ke

Received: 11 October 2021

Accepted: 27 November 2021

Published: 4 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Applied Mathematics, School of Mathematics, University of Leeds, Leeds LS2 9JT, UK;
mmmwl@leeds.ac.uk (M.L.); grant@maths.leeds.ac.uk (G.L.); m.lopezgarcia@leeds.ac.uk (M.L.-G.)

2 Bernhard Nocht Institute for Tropical Medicine, Bernhard Nocht Straße 74, 20359 Hamburg, Germany;
munoz-fontela@bnitm.de

3 German Center for Infection Research (DZIF), Partner Site Hamburg, Bernhard Nocht Straße 74,
20359 Hamburg, Germany

4 Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford,
Oxford OX3 7BN, UK; miles.carroll@ndm.ox.ac.uk

5 T-6, Theoretical Biology and Biophysics, Theoretical Division, Los Alamos National Laboratory,
Los Alamos, NM 87545, USA

* Correspondence: molina-paris@lanl.gov

Abstract: Type I interferons (IFNs) are cytokines with both antiviral properties and protective roles
in innate immune responses to viral infection. They induce an antiviral cellular state and link
innate and adaptive immune responses. Yet, viruses have evolved different strategies to inhibit
such host responses. One of them is the existence of viral proteins which subvert type I IFN
responses to allow quick and successful viral replication, thus, sustaining the infection within a
host. We propose mathematical models to characterise the intra-cellular mechanisms involved in
viral protein antagonism of type I IFN responses, and compare three different molecular inhibition
strategies. We study the Ebola viral protein, VP35, with this mathematical approach. Approximate
Bayesian computation sequential Monte Carlo, together with experimental data and the mathematical
models proposed, are used to perform model calibration, as well as model selection of the different
hypotheses considered. Finally, we assess if model parameters are identifiable and discuss how such
identifiability can be improved with new experimental data.

Keywords: type I interferon; virus; Ebola; mathematical model; immune response inhibition;
antagonist protein

1. Introduction

We are exposed to a diversity of pathogens throughout our lives. Our immune system,
both its innate and adaptive arms, has developed molecular and cellular mechanisms to
sense, prevent and respond to such infections. Cells in the first line of protection, the
innate immune system, are equipped with pattern-recognition receptors (PRRs) that sense
pathogen-associated molecular patterns (PAMPs), such as microbial products (e.g., viral
RNA) [1]. Activation of PRRs in infected cells leads to secretion of type I interferon (IFN),
the main antiviral cytokine [2–5]. Binding of type I IFN to its receptor, in turn, induces the
transcription of a family of interferon-stimulated genes (ISGs), whose protein products
have both antiviral activity and immuno-modulatory effects [2,3,6].

The survival of a viral population in a host depends on viruses replicating and
avoiding intra-cellular defences. Many viruses have developed strategies to evade immune
detection [7], and thus, antagonise these defences [7]. There exist a great diversity of such
viral strategies and here we will only consider those mechanisms which interfere with
intra-cellular pathways to either regulate type I IFN secretion or type I IFN signalling. For
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instance, influenza, hepatitis C virus, vaccinia or herpes simplex virus [3,8] all inhibit type
I IFN responses.

Interferons are a family of cytokines which not only regulate cellular growth but also
have antiviral properties and immuno-modulatory activity [1]. They elicit an antiviral
state defined by intra-cellular antimicrobial programmes, which require the induction of
IFN stimulated genes. Interferons can be broadly classified into type I and type II. Type
I interferons (or viral IFNs), which are secreted by infected cells, include IFN-α, IFN-β,
IFN-ω and IFN-τ. Most cell types can produce IFN-β, which is the best characterised
member of the family. Hematopoietic cells produce IFN-α. IFN-γ is a type II IFN and is
only produced by certain immune (professional) cells, such as natural killer cells, CD4+

(helper) and CD8+ (cytotoxic) T cells [7].
Filoviruses, such as Ebola virus (EBOV) and Marburg virus, encode viral proteins

with the ability to counteract type I IFN responses in order to replicate in an efficient
manner and minimise the therapeutic antiviral power of IFNs. These type I IFN antagonist
proteins, or viral antagonistic proteins (VAPs), are essential to guarantee viral replication,
prevent the type I IFN-induced antiviral state in infected and bystander cells, as well as
impair the ability of antigen presenting cells to initiate adaptive immune responses [9].
This ability of filoviruses to replicate ‘unchecked’ by the host innate antiviral response
can partly account for their lethality of infection. Early innate immune evasion facilitates
fast and excessive viral replication, which in turn, activates a damaging host immune
response [2]. Unfortunately, filoviruses are not the only viral family to actively avoid
immune surveillance. Other examples include influenza A virus, hepatitis B virus, and
Bunyaviruses, such as Crimean-Congo haemorrhagic fever (CCHFV) or Rift Valley fever
viruses [10].

It is important to note that there exists stark contrast, and even conflicting evidence,
between responses to in vivo and in vitro models of infection. In EBOV infection, for
example, type I IFN production is abrogated after three days post-infection in in vitro
infection, yet for in vivo infection, type I IFN cytokines are secreted during the entire
infective period [11–13]. In this paper, we develop mathematical models of the intra-
cellular molecular processes that are known to antagonyse type I IFN production by viral
proteins [2,6]. Existing mathematical models of intra-cellular production of type I IFN
have many parameters that are difficult to estimate, or do not account for viral protein
antagonism of PRR pathways [14–16]. There are also models that describe inter-cellular
interactions via IFN α receptors [17]. Our goal is to model mechanisms of upstream
and downstream viral protein antagonism, and to provide a case study applied to Ebola
virus. We calibrate our models with clinical data from in vivo Ebola infection of rhesus
macaques [12]. Model selection allows us to compare different biological hypotheses. Our
approach could serve as an example to characterise and quantify inhibition of type I IFN
secretion by other pathogens, such as SARS-COV-2 virus [18,19], dengue and West Nile
viruses [20], hantaviruses [21], and bunyaviruses [22].

2. Materials and Methods
2.1. Mathematical Models of Type I IFN Inhibition by Viral Protein

There exist fourteen different IFN-α genes but only one IFN-β gene and one IFN-γ
gene. IFNs mediate their effect via interactions with type-specific receptors. IFN receptors
do not have enzymatic activity but they initiate a signalling cascade (or pathway) which
results in the transcription of a large number (of the order of a hundred) of IFN-stimulated
genes (ISGs) [7]. In what follows we shall focus on IFN-β secretion (or synthesis) and not
on IFN receptor signalling pathways.

IFN-β synthesis requires several transcription factor (TF) complexes, such as NF-κB or
ATF, and IFN-regulated factors (IRFs). These TFs are activated by phosphorylation of serine
residues. Activation of IRFs is triggered by viral infection, most likely, by the production
of viral RNA and other virus specific signals. Expression of IFN-β seems to be induced
early in a viral infection through the activation of IRF3, which is constitutively expressed,
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and does not require to be transcriptionally activated via IFN receptor-mediated signalling
and the JAK/STAT pathway. IRF7, on the other hand, is not constitutively expressed, and
in fact, IFN-β provides the initial signal that allows IRF7 to be synthesised, which in turn
leads to the expression of the full spectrum of IFNs and ISGs [1,7].

Type I IFN production is induced after the sensing of microbial products, such as
PAMPs, by PRRs [1]. PRRs include RIG-I-like receptors (RLRs), such as RIG-I. RLRs are
cytoplasmic RNA helicases that detect viral RNAs and promote IFN responses. In the case
of filovirus infection RIG-I is the most relevant RLR. The first step in the process is the
activation of RIG-I by immuno-stimulatory RNAs, such as viral RNA with 5′ triphosphates
and double stranded (ds) RNA, produced during filovirus replication. The activation of
RIG-I is mediated by its binding to RNA or dsRNA. Activated RIG-I activates the TBK1
kinase, which in turn phosphorylates the transcription factor IRF3. This event promotes
the nuclear accumulation of IRF3 to initiate the expression of type I IFNs. Once expressed,
type I IFNs secreted from cells can bind its hetero-dimeric receptor, the type I IFN receptor
(or IFNR), which will activate the JAK-STAT signalling pathway. This will lead to the
induction of ISG expression, which in turn triggers an antiviral state that renders cells
refractory to viral infection [2,9].

In the specific case of EBOV, which rather effectively counters this antiviral defence by
blocking the production of type I IFNs, this inhibition seems to depend on the observation
that EBOV genomic RNA can activate RIG-I by impairing the ability of the host cell to detect
the presence of viral products in the cytosol. EBOV VAP VP35 mediates this subversion of
cytosolic sensing and different mechanisms of inhibition have been observed both upstream
and downstream of the RLR-induced signalling cascade. Downstream targets of VP35 are
protein kinases IKKε and TBK1, since in fact, VP35 inhibits phosphorylation of both of
them [2,9]. These family of protein kinases coordinates the activation of interferon-regulatory
factor (IRF) proteins [2,6]. Upstream inhibitory activities are related to the dsRNA binding
ability of VP35. There is also evidence that VP35 can bind to a protein called PACT, which in
turn can bind to activated RIG-I. We note that VP35 can bind to PACT in the absence of dsRNA.
PACT is an activator of protein kinase R (PKR), with PKR an IFN-induced dsRNA-activated
kinase. Finally, VP35 has shown ability to inhibit IFN-induced antiviral proteins, and thus,
can elicit downstream suppression of RIG-I signalling [2,9,23,24].

We conclude with a reflection on the fact that the mechanisms of VP35 induced
inhibition of type I IFN pathways have not been completely elucidated yet [2,9,23,24]. Thus,
in this section we aim to propose three different mathematical models of VAP inhibition
of type I IFN expression, each of them considering different molecular mechanisms of
suppression, so that together with data from EBOV in vivo infection, we can compare
model predictions and carry out parameter calibration.

2.1.1. A First Model of Type I IFN Inhibition by VAP

A first mathematical model can be introduced to characterise the inhibition of type
I IFN secretion by viral antagonistic protein (VAP), and which considers the role of the
following proteins: RIG-I, viral RNA, VAP and TBK1, a protein kinase which coordinates
the activation of interferon-regulatory factor (IRF) proteins [2,6]. We note that RIG-I is
an important cytosolic PRR, and that the specific VAP will depend on the virus under
consideration; for instance, if the virus is EBOV, then VAP is VP35, and in the case of
Bunyaviruses VAP is the non-structural protein NSs [10]. We denote RIG-I by R, viral RNA
by D, VAP by V, and TBK1 by B. Driven by current experimental evidence, we propose
the following reactions [2,6] shown in Figure 1. The first reaction describes RIG-I and
viral RNA binding to form a RIG-I:RNA complex (R : D) with rate kR, and unbinding
with rate qR. We shall assume mass action kinetics in what follows. The second reaction
describes VAP and viral RNA binding to form a VAP:RNA complex (V:D) with rate kV ,
and unbinding with rate qV . The last reaction describes activation, i.e., phosphorylation,
of TBK1 with rate kB, and de-activation (de-phosphorylation) with rate qB. We denote
the activated B molecule by B∗. Let us refer to this model as ‘model 1’. We denote by nR,
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nD, nV , and nB, the per cell total number (or copy number) of RIG-I proteins, viral RNA
molecules, VAP proteins and TBK1 proteins, respectively. We neglect protein degradation
or synthesis, so that for the timescales considered, the total number of molecules of a
given species is conserved. We denote the number of RIG-I:RNA (or R : D) complexes
at time t ≥ 0 by nRD(t), the number of VAP:RNA (or V:D) complexes by nVD(t), and the
number of activated TBK1 (or B∗) complexes by nB∗(t) [25]. Conservation of copy numbers
implies that the number of free RIG-I molecules at any given time is given by nR − nRD(t),
the number of free viral RNA is given by nD − nRD(t)− nVD(t), the number of free VAP
molecules is given by nV − nVD(t), and the number of unphosphorylated TBK1 molecules
is given by nB − nB∗(t). Based on the reactions described in Figure 1, we now can write the
following system of ODEs to describe the dynamics of the mathematical model:

dnRD
dt

= kR(nD − nRD − nVD)(nR − nRD)− qRnRD ,

dnVD
dt

= kV(nD − nRD − nVD)(nV − nVD)− qVnVD ,

dnB∗

dt
=

kB(nB − nB∗)nRD
κV + (nV − nVD)

− qBnB∗ .

(1)

These equations encode both upstream and downstream viral antagonism in the IFN
type I secretion pathway [2,6,26,27]. Firstly we have RNA silencing carried out by VAP
(or V). This results in a competition process for viral RNA with RIG-I , since both VAP
and RIG-I can bind to viral RNA. This is the upstream mechanism of viral antagonism
to inhibit type I IFN expression. Additionally, the third ODE (see Equation (1)) for nB∗

describes activation of B in the presence of RIG-I:RNA complexes, nRD. This equation
includes the antagonistic effect of VAP in the phosphorylation of TBK1, encoded in the
denominator, κV + (nV − nVD), which implies free VAP lowers the ‘effective’ rate of
TBK1 phosphorylation, with a carrying capacity κV . In this way, model 1 incorporates a
downstream inhibitory mechanism as well.

RIG-1

PPP5’ PPP5’

RIG-1

+
R D R : D

kR

qR

VAP

PPP5’
kV

qV
+

PPP5’

VAP

V D V : D

TBK-1
kB

qB

P

TBK-1

B B∗

PPP5’

RIG-1

R : D
VAP

V

Figure 1. A first model of type I IFN inhibition by VAP (model 1). Model 1 considers the following
molecules: RIG-I denoted R, viral RNA denoted D, VAP denoted V, and TBK1 denoted B. In this
model there are six reactions and three molecular complexes. Free VAP inhibits phosphorylation of
TBK1, as indicated by the flat head red arrow.
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2.1.2. A Second Model of Type I IFN Inhibition by VAP: PACT Protein

The model shown in Figure 1 characterises two key aspects of the role of VAP: up-
stream antagonism with RIG-I when binding to viral RNA and downstream antagonism in
the activation of TBK1. Yet, there are additional strategies that viruses explore to inhibit
type I IFN secretion. Protein activator of the interferon-induced protein kinase (PACT)
has been identified as a secondary activator of RIG-I during viral infections [23,28]. This
molecule provides an additional activation route for RIG-I, and thus, a boost to type I IFN
induction (see Figure 2). However, just like RNA silencing (i.e., the binding of VAP to viral
RNA to compete with RIG-I), many viruses have mechanisms to inhibit the interaction
of PACT with RIG-I . Influenza virus protein NS1, Ebola VP35 and MERS-CoV protein
4a (p4a) have all been identified to cause antagonism of the interaction between PACT
and RIG-I [23,29,30]. Therefore, to include this second viral strategy of innate immunity
inhibition we propose a second model which includes PACT, and all the other molecular
species and reactions of model 1. R, D, V and B retain their previous definitions (see
Section 2.1.1), and we denote PACT by P. Based this experimental evidence we propose
the following set of reactions illustrated in Figure 2. The first, second and final reactions
remain unchanged from model 1 (see Figure 1). The third reaction includes the binding of
RIG-I and PACT to form a RIG-I:PACT complex (R:P) with rate kP, and dissociation rate
qP. The final new reaction (fourth reaction) includes the binding of VAP to PACT to form a
VAP:PACT complex (V:P) with binding rate kM, and unbinding rate qM. We shall refer to
this as ‘model 2’. Let us denote by nR, nD, nP, nV , and nB, the per cell total number of RIG-I,
viral RNA molecules, PACT, VAP and TBK1, respectively. As previously described we
neglect protein degradation and synthesis, so that the total number of molecules for each
protein species is conserved. We denote the total number of RIG-I:RNA (R:D) complexes at
time t ≥ 0 by nRD(t), VAP:RNA (V:D) by nVD(t), RIG-I:PACT (R:P) by nRP(t), VAP:PACT
(V:P) by nVP(t) and activated TBK1 (B∗) by nB∗(t). As before we introduce the following
set of differential equations:

dnRD
dt

= kR(nD − nRD − nVD)(nR − nRD − nRP)− qRnRD ,

dnVD
dt

= kV(nD − nRD − nVD)(nV − nVD − nVP)− qVnVD ,

dnRP
dt

= kP(nR − nRD − nRP)(nP − nRP − nVP)− qPnRP ,

dnVP
dt

= kM(nP − nRP − nVP)(nV − nVD − nVP)− qMnVP ,

dnB∗

dt
=

kB(nRD + nRP)(nB − nB∗)

κV + nV − nVD − nVP
− qBnB∗ .

(2)

These newly defined equations include the previous two (upstream and downstream)
inhibition mechanisms, as well as the additional role of PACT to activate RIG-I, in the form
of the complex nRP, and the upstream inhibition mechanism encoded in the competition
between R and V to bind to P. These are reflected in the fifth equation of Equation (2) for
activated TBK1 (nB∗ ): the phosphorylation of TBK1, with rate kB, is proportional to the
total amount of activated RIG-I molecules, nRD + nRP, and is inhibited by the presence of
VAP, nV − nVD − nVP, with carrying capacity κV .
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RIG-1

PPP5’ PPP5’

RIG-1

+
R D R : D

kR

qR

VAP

PPP5’
kV

qV
+

PPP5’

VAP

V D V : D

RIG-1

PACT PACT

RIG-1

+
R P R : P

kP

qP

VAP

+ PACT
VAP

PACT
kM

qMV P V : P

TBK-1
kB

qB

P

TBK-1

B B∗

VAP

VPACT

RIG-1

PPP5’

RIG-1

R : D R : D

Figure 2. A second model of type I IFN inhibition by viral protein (model 2). Model 2 includes
the role of protein activator of the interferon-induced protein kinase (PACT) molecules, since PACT
has been identified as a secondary activator of RIG-I during viral infections [23,28]. In this model
there are ten reactions and five molecular complexes. Free VAP inhibits phosphorylation of TBK1, as
indicated by the flat head red arrow.

2.1.3. A Third Model of Type I IFN Inhibition by VAP: PKR Signalling Pathway

We have proposed two models which examine the effects of VAP on RIG-I induced
type I interferon induction. However, as discussed in our introduction, other PRRs exist.
We now consider one such alternative pathway. Protein kinase R (PKR) also binds to viral
RNA, and the resulting bound complex, A:D in Figure 3, induces the type I IFN secretion
pathway [31,32]. This pathway can also be hijacked by viruses. In fact, influenza, herpes
simplex 1 and Ebola viruses have been observed to inhibit the PKR pathway [33,34]. In light
of the current experimental evidence, we introduce a third and final mathematical model.
In this model the complex, A:D (see Figure 3), plays the role performed by phosphorylated
TBK1 in models 1 and 2, as the downstream element in the pathway to induce type I IFN
secretion. That is, this model does not consider the RIG-I pathway, but it describes the PKR
one. Yet, we consider the role of RIG-I in sequestering viral RNA from both VAP and PKR,
and the role of RIG-I in sequestering PACT from VAP.

We consider molecules R, D, V and P, as in models 1 and 2. We now introduce A to
represent PKR. We retain the first four reactions shown in Figure 2 to keep competition for
viral RNA between VAP, RIG-I and PKR. We also keep the previous reactions that involve
free VAP molecules. The final set of reactions considered, with rates kA and qA, respectively,
are presented in Figure 3. Our fifth reaction is that of PKR binding to viral RNA, with rate
kA, resulting in the formation of phosphorylated PKR:RNA (A:D) complex. This complex
can become unphosphorylated and disassociate with rate qA. In the presence of VAP, PKR
can be actively dephosphorylated and disassociate with rate qAV . Thus, in this model,
there exists a new viral strategy to inhibit innate recognition via type I IFN. The ODEs
for this model are described in Equation (3). Variables nRD(t), nVD(t), nRP(t) and nVP(t)
represent the same complexes as in model 2. The new variable, which describes complex
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A:D, nAD(t), now represents the number of phosphorylated PKR:RNA complexes. We
refer to this model as ‘model 3’.

dnRD
dt

= kR(nR − nRD − nRP)(nD − nRD − nVD − nAD)− qRnRD ,

dnVD
dt

= kV(nV − nVD − nVP)(nD − nRD − nVD − nAD)− qVnVD ,

dnRP
dt

= kP(nR − nRD − nRP)(nP − nRP − nVP)− qPnRP ,

dnVP
dt

= kM(nV − nVD − nVP)(nP − nRP − nVP)− qMnVP ,

dnAD
dt

= kA(nA − nAD)(nD − nRD − nVD − nAD)− [qA + qAV(nV − nVD − nVP)]nAD .

(3)

We remind the reader that all reactions in this model are described by mass action
kinetics, except the one proportional to qAV . In this case, and in order to model the de-
phosphorylation and disassociation enhancement caused by the VAP, we have added a
term proportional to the number of free VAP molecules, nV − nVD − nVP. Finally, we note
that in this model TBK1 is assumed to be either non-functional as part of the signalling
pathway, or insufficiently stimulated, to contribute to production of type I IFN.

RIG-1

PPP5’ PPP5’

RIG-1

+
R D R : D

kR

qR

VAP

PPP5’
kV

qV
+

PPP5’

VAP

V D V : D

RIG-1

PACT PACT

RIG-1

+
R P R : P

kP

qP

VAP

+ PACT
VAP

PACT
kM

qMV P V : P

PKR PPP5’+
kA

qA
PPP5’

P

PKR

A D A : DqAV

VAP

V

Figure 3. A third model of type I IFN inhibition by viral protein (model 3). It includes the contribution
of the PKR pathway. In this model there are ten reactions and five molecular complexes. In the
presence of free VAP, phosphorylated PKR is actively de-phosphorylated, as indicated by the red
reverse reaction arrow with rate qAV .

As discussed in the introduction, the three models proposed in this section can po-
tentially be applied to a number of different viruses, which exhibit similar antagonism
strategies. In what follows we will restrict our study to Ebola virus. In the case of EBOV,
the antagonistic viral protein to type I IFN secretion pathways is called VP35 [26,35,36]. We
will make use of approximate Bayesian computation to perform model calibration, as well
as model selection to identify and quantify which hypothesis (viral inhibition strategy)
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better explains the data set. In the next section we describe the nature of the data set that
we have used to carry out model selection and calibration.

2.2. Transcriptomic Data

Kotliar et al. made use of single-cell transcriptomics and CyTOF-based single-cell
protein quantification to characterise peripheral immune cells during EBOV infection in
rhesus monkeys [12]. Their analysis allowed them to conclude that the interferon response
is suppressed in infected cells. We make use of their transcriptomic data set for parameter
calibration of the mathematical models introduced in the previous sections (see Section 2.1).
In particular, we perform approximate Bayesian computation sequential Monte Carlo (ABC-
SMC) [37,38]. Eighteen non-human primates (NHPs) were exposed to the EBOV/Kikwit
isolate (Kikwit-9510621) diluted to a target concentration of 103 plaque forming units (PFU)
in a volume of 1 mL/doses [12]. Two baseline blood samples were collected between 0 and
14 and 14–30 days prior to infection. Post-infection (PI) clinical observations and whole
blood collection were carried out daily until day eight PI (see Figure 1 in Ref. [12]). A
total of 19× 203 genes were tested with single cell RNA-sequencing. We shall make use of
transcript counts (104) for IFN-β to perform parameter calibration for each mathematical
model [12]. The data are summarised in Table 1.

Table 1. Mean transcript counts (with standard deviation) for IFN-β from a longitudinal study of
EBOV infection in rhesus macaques [12].

Day Mean Counts per 104 (SD)

0 0 (0)
3 1 (0)
5 3 (2.83)
6 2.6 (1.26)
8 0 (0)

2.3. Bayesian Inference

Reports of parameter values for this biological system are limited, thus, we estimate
parameters with the approximate Bayesian computation sequential Monte Carlo algorithm
(ABC-SMC) [37]. Posterior distributions of model parameters are obtained through se-
quential application of the ABC algorithm for K iterations [38]. For this algorithm we
define a prior distribution for the first iteration, where subsequent iterations use posterior
distributions from the one preceding as a prior. We assume all parameters follow a uniform
prior distribution as defined in Table 2. For each iteration we require a threshold value,
εk > 0 , k = 1, . . . , K, perturbation kernel, and distance measure, d [37]. To maximise
exploration of parameter ranges uniform distributions are taken from the exponent base 10.
Given a set of parameters, θ, for any of the three mathematical models introduced in the
previous sections, we define a Euclidean distance measure to be

d(x, y|θ) =
√

∑
t∈T

(x(t)− y(t))2 ,

where T is the set of time points in the data set, x(t) denotes the output from the mathe-
matical model at time t for parameters θ, and y(t) represents experimental data at time t.
We note that in this case, x(t) will be the variable representing phosphorylated TBK1 for
models 1 and 2 (nB∗(t)), while for model 3 we consider phosphorylated PKR (nAD(t)). We
assume a linear relationship between transcripts and protein numbers, which is of course a
good approximation. Our first iteration threshold ε1 is defined as the median of 106 initial
realisations via ABC with prior samples obtained from the distributions in Table 2. We then
define threshold εk as the median distance from iteration k− 1. Our perturbation kernel
will be uniform and will be used to perturb the parameter values during each iteration.
Each iteration will be run until a total n = 25× 102 parameter sets are accepted.
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Table 2. Parameter ranges used for Bayesian inference. Ranges were taken based on the published and
data, with two to three orders of magnitude taken on either side of these values [11,15,26,27,39]. We
consider uniform distributions of exponent base 10 for all prior choices. We then restrict parameters
kV and qV by making sure their ratio, kV

qV
, lies within the dissociation constant range 3.40 µM–1.1 nM

reported in Refs. [26,27].

Parameter Search Range Units References Model

kR 0.04836 h−1 per molecule pair [39] 1, 2, 3
qR 7.632 h−1 per molecule [39] 1, 2, 3
kV U[−7, 2] h−1 per molecule pair [26,27] 1, 2, 3
qV U[−6, 2] h−1 per molecule [26,27] 1, 2, 3
kP U[−7,−2] h−1 per molecule pair 2, 3
qP U[−6, 0] h−1 per molecule 2, 3
kM U[−7,−2] h−1 per molecule pair 2, 3
qM U[−6, 0] h−1 per molecule 2, 3
kB U[−6, 8] h−1 per molecule [15,40] 1, 2
qB U[−6, 3] h−1per molecule [15,40] 1, 2
kA U[−7, 2] h−1 per molecule pair 3
qA U[−6, 2] h−1 per molecule 3

qAV U[−6, 2] h−1 per molecule 3
κV U[1, 7] 1, 2
nD U[0, 7] 1, 2, 3
nR U[0, 6] 1, 2, 3
nV U[0, 6] 1, 2, 3
nB U[0, 6] 1, 2
nA U[0, 6] 3

3. Results
3.1. Identifiability of Model Parameters

Before carrying out model calibration it is important to study the structural identifia-
bility of the parameters. Since many of the parameters of our mathematical models have
not been previously determined, we must understand whether we can estimate their values
given our limited data set [41]. Examining model 1 we find that qB, kB and nB are locally
identifiable parameters. This is due to the fact that the variable nB∗(t), phosphorylated
TBK1, is the model output which we compare to data. Using the Structural Identifiability
Analyzer (SIAN) we find that qV is locally identifiable [42]. Since qR and kR have been
previously determined [43], we omit these when considering the identifiability of our
model [39]. The remaining parameters are all unidentifiable. Thus, we conclude that model
1 is structurally unidentifiable.

We carry out the same analysis for model 2 and find a similar trend. Disassociation
rates for complexes R:D, V:D, R:P and V:P are all locally identifiable, as well as kB, qB
and nB. The rest of the parameters of this model are unidentifiable, so that model 2 is
unidentifiable too. Finally, and for model 3, making use of SIAN and the methods of
Ref. [41] we find that all its parameters are locally identifiable. Therefore while carrying
out parameter calibration it is important to keep in mind that with the data at hand, for
models 1 and 2 we may limit what we may learn from the posterior distributions of their
parameters. On the other hand, for model 3, since all parameters are locally identifiable we
should be able to characterise the posterior distributions from this limited data set within
some neighbourhood of the parameter space.

3.2. Sensitivity Analysis

Given the limited experimental data available to parameterise our models, it is vital
to understand the significance of each parameter on the corresponding model output. To
this end we make use of Sobol sensitivity analysis [44]. We choose the parameter ranges
in Table 2 and make use of the Python package ‘SALib’. For each model we generated
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104(2N + 2) parameter sets using Satelli sampler, where N is the number of parameters for
the model being considered [44–46]. For models 1 (Figure 1) and model 2 (Figure 2) we
will examine how a change in parameter values affects the output, phosphorylated TBK1
(B?). For model 3 (Figure 3) we instead examine the effect of changes in parameter values
on the output, phosphorylated PKR:RNA complexes (A:D).

Table 3 lists the total order Sobol sensitivity indices for each of the three proposed
mathematical models. For models 1 and 2 our analysis indicates that the most important
parameter is nB, the total number of TBK1 molecules. Changes in this parameter result
in significant fluctuations in the chosen model output. The TBK1 phosphorylation rate,
kB, exhibits a large Sobol index of 0.482 and 0.462 for models 1 and 2, respectively. The
binding rates kV and kR along with their associated unbinding rates carry an insignificant
contribution to variation in model output (index ≤ 0.1) for both models 1 and 2. A similar
trend is observed for the binding and unbinding rates involving the protein PACT in
model 2. When considering the sensitivities of model 3 we notice that unbinding rates
are insignificant, with a low index (<0.1). Parameters nA and nD are the most important
ones in model 3. These have indices of 0.868 and 0.698, indicating any change in these
parameters results in large model output fluctuations. The remaining parameters have
a roughly equal level of importance. We note that in all three cases the total number of
molecules for each model output has the largest sensitivity index. In models 1 and 2 this is
followed by the TBK1 phosphorylation rate kB, while for model 3 it is total number of viral
RNA, nD. Figures 4–6 illustrate the time evolution of the sensitivity indices for each model.
As can be observed the two most important parameters for each model remain so for the
entire time course. Only in models 1 and 2 the importance of qB increased with time. Other
parameters show little variation over time in their index value. Figure 6 shows that the
Sobol sensitivity indices for model 3 remain constant with respect to time.

Table 3. Total order Sobol sensitivity indices for each proposed model. Parameters are listed from
most important to least, according to sensitivity index [44]. 104 samples were generated with
sensitivity to nB∗ for model 1, nB∗ for models 2 and nAD for model 3.

Model 1 Model 2 Model 3

Parameter Index Parameter Index Parameter Index

Most important nB 0.887 nB 0.932 nA 0.868
kB 0.482 kB 0.462 nD 0.698
qB 0.236 qB 0.289 kR 0.266
nD 0.199 κV 0.225 nR 0.241
κV 0.165 nR 0.201 kA 0.238
nR 0.159 nV 0.142 kM 0.228
nV 0.133 nD 0.135 qAV 0.227
kV 0.050 nP 0.117 nV 0.226
kR 0.046 kR 0.100 kV 0.226
qV 0.029 kP 0.093 kP 0.226
qR 0.012 kM 0.074 nP 0.182

kV 0.071 qA 0.07
qP 0.053 qM 0.058
qM 0.051 qP 0.053
qV 0.038 qV 0.030

Least important qR 0.026 qR 0.014
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Figure 4. Time evolution of total order Sobol sensitivity indices (model 1). Model output for this
model is activated TBK1, nB∗ . Shaded region accounts for a 95% confidence interval.

Figure 5. Time evolution of total order Sobol sensitivity indices (model 2). Model output for this
model is activated TBK1, nB∗ . Shaded region accounts for a 95% confidence interval.
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Figure 6. Time evolution of total order Sobol sensitivity indices (model 3). Model output for this
model is phosphorylated PKR, nAD. Shaded region accounts for a 95% confidence interval.

3.3. Parameter Calibration

We have introduced three different mathematical models which require parameter
calibration. Data presented in Table 1 with approximate Bayesian computation sequential
Monte Carlo (ABC-SMC) will be used to calibrate our models [37]. The rates associated with
RIG-I, kR and qV , are fixed using values obtained from the literature [39]. VAP rates, kV and
qV , are chosen to remain within the value of its dissociation constant [26,27]. As described
by Toni et al. we execute K = 18 iterations of the ABC-SMC method with n = 2500 accepted
parameter sets [37]. Figures 7, 9 and 10 present posterior histograms from the final iteration
along with the model median and the 95% credible intervals. Tables 4–6 present posterior
median and mean values for each parameter, with 95% credible interval also reported. For
model 1 we fit nB∗ , for model 2 nB∗ and for model 3 we fit nAD.

Table 4. Summary statistics for each accepted parameter value sets from model 1. Mean, median and
a 95% credible interval are summarised in the table.

Parameter Median Mean Credible Interval

kV 4.37× 10−6 2.04× 10−2 [
1.42× 10−7, 5.58× 10−2]

qV 1.03× 10−5 3.42× 10−5 [
1.35× 10−6, 2.22× 10−4]

kB 1.50 4.69× 102 [
5.78× 10−4, 5.62× 10−3]

qB 1.29× 10−2 2.74× 10−2 [
6.24× 10−3, 1.49× 10−1]

κV 6.70× 103 374× 105 [
2.00× 101, 4.08× 106]

nD 3.37× 102 3.34× 103 [
1, 2.92× 104]

nR 6.80× 101 2.82× 104 [
1, 3.67× 105]

nV 1.39× 104 4.38× 104 [
5.2× 101, 2.69× 105]

nB 2.26× 102 1.91× 104 [
1, 2.54× 105]
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Table 5. Summary statistics for each accepted parameter value sets from model 2. Mean, median and
a 95% credible interval are summarised in the table.

Parameter Median Mean Credible Interval

kV 5.19× 10−5 1.38
[
1.96× 10−7, 1.52× 101]

qV 5.04× 10−6 6.36× 10−2 [
1.07× 10−6, 4.81× 10−2]

kP 1.05× 10−5 3.45× 10−2 [
1.60× 10−7, 1.00× 10−1]

qP 5.06× 10−2 3.03
[
1.02× 10−5, 3.44× 101]

kM 6.08× 10−3 3.27
[
2.12× 10−7, 3.89× 101]

qM 1.69× 10−3 6.83× 10−1 [
1.45× 10−6, 4.949

]
kB 1.55× 105 4.75× 106 [

1.134, 4.95× 107]
qB 1.41× 10−1 3.29

[
8.75× 10−3, 27.86

]
κV 3.96× 103 2.67× 105 [

1.7× 101, 2.68× 106]
nD 1.14× 102 2.64× 103 [

2, 2.59× 104]
nR 9.2× 101 1.36× 104 [

1, 1.36× 105]
nV 1.76× 104 6.74× 104 [

1.98× 102, 4.57× 105]
nB 2 2.61× 103 [

1, 2.97× 102]
nP 4.5× 101 1.98× 103 [

1, 1.72× 104]
Table 6. Summary statistics for each accepted parameter value sets from model 3. Mean, median and
a 95% credible interval are summarised in the table.

Parameter Median Mean Credible Interval

kV 3.87× 10−5 3.00× 10−2 [
2.84× 10−7, 1.40× 10−2]

qV 1.92× 10−3 2.36× 10−1 [
2.43× 10−6, 1.66

]
kP 4.55× 10−6 7.74× 10−2 [

1.79× 10−7, 3.15× 10−4]
qP 1.26× 10−5 3.20× 10−3 [

1.22× 10−6, 1.38× 10−3]
kM 1.30× 10−1 3.30

[
2.61× 10−7, 2.90× 101]

qM 1.14× 10−4 1.56
[
1.72× 10−6, 1.81× 101]

kA 8.41× 10−2 2.30× 101 [
6.54× 10−4, 2.80× 102]

qA 2.32× 10−3 1.71× 101 [
4.90× 10−6, 2.07× 102]

qAV 6.31× 101 9.32× 101 [
1.25× 101, 3.82× 102]

nD 1.30× 101 2.37× 103 [
2, 5.98× 102]

nR 4.16× 103 9.90× 103 [
3.24× 102, 5.16× 104]

nV 1.70× 101 3.46× 103 [
1, 2.00× 104]

nA 1.20× 101 1.61× 104 [
2, 2.00× 105]

nP 3.74× 102 2.19× 104 [
1.40× 101, 1.76× 105]

Posterior histograms in Figure 7 for model 1 illustrate our inference can characterise
the value qB, with narrow posterior compared to its prior distribution. This is particularly
important since sensitivity analysis indicated this was the third most important parameter,
as shown in Table 3. We also obtain narrower posterior distributions for kV , qV and nV .
Sensitivity analysis indicated that kB and nB were the two most important parameters to
control within our model. However if we examine the correlations between these two
variables we find a strong negative correlation between them (r=-0.83). Therefore, we will
only be able to learn about their ratio. There also exists a positive correlation (r = 0.65)
between nD and nV as shown in Figure 8, so that with the data set and Bayesian inference,
we can learn about the ratio of these two parameters. Upon re-examination of the issue of
parameter identifiability when we allow the ratio of nD to nV to be constant, and making
use of SIAN, we find the model becomes identifiable. We could therefore fix this ratio to
obtain better estimates of our parameter values. This is out of the scope of this paper and
has not been carried out.
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(a) Model 1 posterior histograms (b) Model 1 ABC-SMC time course

Figure 7. (a) Posterior histograms obtained from the ABC-SMC algorithm. Blue histograms indicate
prior distributions and purple histograms illustrate posterior ones. (b) Model fit from accepted
parameter sets obtained during the final iteration of the ABC-SMC algorithm. Blue triangles represent
data presented in Table 1 plotted with its standard deviation. The black line illustrates the point-wise
median value from the accepted parameter sets (shaded in green) with a 95% credible interval. These
results represent 18 iterations with 2500 accepted parameter sets for model 1.

Figure 8. Left: bivariate posterior histogram of log10(nD) and log10(nV) showing a positive correla-
tion (r = 0.65). Right: posterior distribution for the ratio log(nV/nD).

Our Bayesian inference analysis for model 2 (see Figure 9) clearly indicates that very
little is learnt for most parameters, including the rates associated with PACT binding to
VAP, kM, and its corresponding disassociation rate, qM. Sensitivity analysis revealed the
rates for TBK1 phosphorylation kB and de-phosphorylation qB along with nB, the number
of TBK1 molecules, are important to minimize variation in model output. Inference of
the aforementioned parameters indicates narrow posterior histograms, which illustrates
Bayesian inference is allowing us to learn about these three parameters. However, it is
important to note the median number of molecules nB is low, which leads us to question its
biological realism. Medians presented in Figures 7 and 9 have a comparable trend. We note
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that model 2, additionally, has a rather sharp jump at the start of the time course. This is
most likely due to the inclusion of PACT as a secondary activator. Importantly, the credible
intervals of model 1 are narrower than those of model 2.

(a) Model 2 posterior Histograms (b) Model 2 ABC-SMC time course

Figure 9. (a) Posterior histograms obtained from the ABC-SMC algorithm. Blue histograms indicate
prior distributions and purple histograms illustrate posterior ones. (b) Model fit from accepted
parameter sets obtained during the final iteration of the ABC-SMC algorithm. Blue triangles represent
data presented in Table 1 plotted with its standard deviation. The black line illustrates the point-wise
median value from the accepted parameter sets (shaded in green) with a 95% credible interval. These
results represent 18 iterations with 2500 accepted parameter sets for model 2.

Figure 10 presents results from the Bayesian inference with model 3. The median
course is similar to those in Figure 7 and 9. Compared to model 2, the time course seems
to better describe the data. In contrast, the median of model 1 is similar but has a smaller
credible interval. When we examine the posterior distributions, we can see improve
learning. Parameters for the number of viral RNA nD and PKR molecules nA have rather
narrow posterior distributions compared to their prior ones. As mentioned in previous
sections, these are rather important parameters as identified by Sobol sensitivity analysis.
Thus, such improved learning is a rather desired feature of model 3, when compared to
models 1 and 2. Many parameters have narrower posterior distributions when compared
to their prior ones, which indicates overall learning for most parameter values. The rates
kM and qM for the binding and unbinding of VP35 and PACT have the widest posterior
distributions. Both rates could benefit from additional iteration steps in the of ABC-SMC
method. Strong correlations exist particularly between kM and nA (r = −0.70) and nP
(r = −0.71), which means we may only learn about the ratios of these values. Figure 11
illustrates a positive correlation between qM and nV (r = 0.60), once again indicating
learning about their ratio.



Viruses 2021, 13, 2441 16 of 23

(a) Model 3 posterior histograms (b) Model 3 ABC-SMC time course

Figure 10. (a) Posterior histograms obtained from the ABC-SMC algorithm. Blue histograms indicate
prior distributions and purple histograms illustrate posterior ones. (b) Model fit from accepted
parameter sets obtained during the final iteration of the ABC-SMC algorithm. Blue triangles represent
data presented in Table 1 plotted with its standard deviation. The black line illustrates the point-wise
median value from accepted parameter sets (shaded in green) with a 95% credible interval. These
results represent 18 iterations with 2500 accepted parameter sets for model 3.

Figure 11. Left: bivariate posterior histogram of log10(qM) and log10(nV) showing a positive correla-
tion (r = 0.60). Right: Posterior distribution of the ratio log(qM/nV).

3.4. Model Selection

We have proposed three separate mathematical models, determined the sensitivity
of their associated parameters, and used Bayesian inference to calibrate each model. We
have also assessed their structural identifiability. Our initial findings would indicate that
either model 1 or 3 would be suitable to appropriately describe the data, since they have
the best posterior histograms and overall time course. We can therefore make use of ABC
model selection and calculate the Akaike information criterion (AIC) to quantify which
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model better describes the data, and thus, which mechanism of type I IFN inhibition is
preferred [47]. The second order AIC for small sample sizes is defined as

AICc = −2log(L(θ)) + 2Kθ

(
ns

ns − Kθ − 1

)
,

with L(θ) the log-likelihood given parameters θ, defined in Section 2.3, Kθ defined as the
number of estimated parameters for a given model, and ns(= 5) the number of samples
used to generate the data presented in Table 1. The AIC value generated will be compared
for each model, with a lower index being an indication of preferential model selection. We
use a standard ABC rejection method, which unlike the ABC-SMC algorithm described
previously, does not perform successive iterations. Here we define a threshold value, ε,
fixed, and we accept parameters such that d < ε, where d is a distance measure. Here
we use the Euclidean distance defined in Section 2.3. We run the ABC rejection method
with ε = 3 and count how many sampling instances are required to accept a total of 105

parameter sets. Table 7 summarises our results.

Table 7. Table with number of sample parameter sets required for 105 sets to be accepted. An
Euclidean distance measure was used with ε = 3 as threshold value for acceptance. Percentage of
accepted parameter sets also shown.

Number of Samples % Accepted Relative Probability

Model 1 1,868,652 5.35 0.274
Model 2 1,952,835 5.12 0.263
Model 3 1,107,525 9.03 0.463

Models 1 and 2 both have similar acceptance percentages: 5.35% of parameters sets
accepted for model 1 and 5.12% for model 2. Model 3 has the largest percentage of accepted
parameter sets at 9.03%, much higher than those by models 1 and 2. We note that model 3
has more parameters than models 1 and 2. Since we have a small number of data points
and a large number of parameters, we make use of the second order AIC [47]. This method
gives us AIC values of −19.25, −15.75 and −15.80 for models 1, 2 and 3, respectively.
This shows that accounting for the number of parameters model 1 is the best, followed by
model 3 then 2. Taking into account the ABC rejection results, we conclude that model 2
characterises the data poorly, and as such is less suitable than models 1 and 3. We now
carry out a pair-wise comparison between models 1 and 3. We find a probability of 0.372
for choosing model 1, and of 0.628 for model 3. Thus, we conclude that Bayesian model
selection indicates model 3 better explains the given limited data available.

4. Discussion

The ability of highly pathogenic viruses, such as Ebola virus, SARS-CoV-2 or CCHFV,
to subvert innate immune responses results in severe infection and high fatality rates. The
current pandemic has tragically illustrated the need to improve our understanding of the
strategies viruses make use of to evade immune surveillance [48]. Of special relevance to
viral infection are a family of cytokines: type I IFNs. Type I IFN responses (their expression
induced by viral infection or the signalling cascades induced by their binding to specific IFN
receptors) are frequently antagonised by viruses due to their importance in the initiation
of innate immune responses [8]. Therefore, we believe it is timely and useful to develop
quantitative approaches to characterise and quantify these evasion mechanisms, in a way
that can be applied to different viruses.

In this manuscript we have focused on viral strategies to antagonise cytosolic type I
IFN secretion pathways via PRRs [3], and have proposed three potential mathematical mod-
els with both upstream and downstream type I IFN inhibition mechanisms. These models
have been formulated based on our current biological understanding of the interactions
between the intra-cellular proteins involved [8,26]. In particular, we have investigated the
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role of a family of intra-cellular receptors, RLRs, which detect viral RNAs and promote IFN
responses. VAPs may perturb a given RLR signalling pathway in its ‘upstream’ portion,
at the level of dsRNA recognition, by competing with RLRs for dsRNA binding, or by
removing PAMP signatures recognised by RLRs. Viral proteins such as NS1 (Influenza A),
VP35 (Ebola), and N (SARS-COV), all bind viral RNAs, thus inhibiting PRRs from binding
and signalling [8,26,27,49,50]. PAMPs such as NP (Lassa Fever) and NSP14 (SARS-COV)
are removed, preventing RLR recognition. ‘Downstream’ effects include the inhibition,
mediated by VAPs, of RLR-induced antiviral proteins [3,8]. For instance, VAPs may modify
binding sites of proteins, inhibit formation of signalling complexes, or prevent translocation
and phosphorylation [8]. Specific examples include the SARS-COV M protein which binds
TRAF3 to form a long-lived complex, impeding its association with TBK1 and IKK-ε kinases
to forge a functional signalling complex [51]. In the case of EBOV, its protein VP35 acts as a
competing molecule for TBK1/IKK-ε with interferon regulatory factors IRF3 and IRF7, but
also prevents their translocation to the cellular nucleus [52].

Mathematical models have been previously proposed to model interferon inhibition
by viruses [14–16] or to describe inter-cellular interactions via IFN-α receptors [17]. These
models are either virus specific or require detailed knowledge of many protein–protein
interactions along the signalling pathway under consideration. Our aim in this manuscript
is to characterise key biological hypotheses in a quantitative fashion, while avoiding, in
principle, unnecessary complexity. Since clinical data sets from early viral infections are
typically limited, it is important to have mathematical models in place that can be parame-
terised given this severe restriction, while our proposed models do not include all possible
mechanisms of viral protein antagonism and inhibition of signalling pathways which
result in type I IFN induction, the three models presented are a good first approximation.
Moreover these models can be generalised to account for other mechanisms, proteins, or
additional signalling pathways.

We proposed three separate models for the inhibition of type I interferon expression
by VAPs. Each model considers a different biological mechanism or an alternate signalling
pathway. Figures 1–3 represent mechanisms which have been recently proposed in the
literature [3,15,27,49]. For each model we have assessed its sensitivity and parameter
identifiability, as well as carried out model selection and parameter calibration. In particular,
we have made use of Sobol sensitivity analysis to identify, for each model and its output,
which parameters would need to be closely controlled. We found that two parameters in
each model need to be well characterised to avoid large variations in our model outputs.
For models 1 and 2 these are the total number of TBK1 molecules, nB, and its activation
rate, kB. In the case of model 3, the most important parameters are the total number of PKR
molecules, nA, and the total copy number of viral RNA molecules, nD.

Unfortunately very little is known about the values for the parameters considered
in our models. Thus, our aim was to carry out Bayesian inference to narrow down these
values. To this end, it was also important to carry out a structural identifiability analysis.
This analysis led to the following results: model 3 (considering the PKR pathway) is locally
identifiable, but models 1 and 2 are not. We note that these results are in light of the limited
data set we had at hand. Yet, this indicated that even with limited data, model 3 might be
better, when compared to the other two models, at allowing us to infer parameter values.
This was further supported by model selection and parameter inference [37,41]: the PKR
signalling pathway has a higher percentage of acceptance as illustrated in Table 7 and
narrower posterior distributions for most parameter values (see Figure 10). Overall model
2 was deemed the worst model of the three: many parameters were non-identifiable, it
led to the worst percentage of parameter set acceptance from model selection, and wide
posterior distributions for its parameters. Model 1 cannot be rejected since it had the lowest
AIC coefficient. However as previously mentioned this model leads to poor learning for
most parameter values and is structurally unidentifiable.

While the deterministic models we have presented can be generalised to be applicable
to other viruses, it should be remembered that there exist additional signalling pathways
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and molecular mechanisms which have not been included in the models. Ebola virus
infection, which we have examined as a case study, has a number of specific features
not characterised by the mechanisms included in our models. Plasmacytoid dendritic
cells (pDCs) have been shown to be refractory to EBOV infection, where as common
dendritic cells are susceptible [53]. This could be due to the fact that pDCs express basal
(or constitutive) levels of IRF7 prior to infection [54], and therefore, can be considered in
an antiviral state. Thus, when considering the development of a mathematical model it
is important to understand not only the virus but also the cellular tropism of the virus
and the host (i.e., invertebrate or vertebrate); that is, which cells are the target cells of the
virus [55]. Here we have focused on type I IFNs as essential antiviral cytokines, yet immune
responses require a complex and coordinated interaction of a large collection of cytokines
and cells, which are out of the scope of this paper. We argue that a more comprehensive
data set will be required to consider the development of mathematical models of such
complexity [56,57].

A final point to consider is the difference between in vivo and in vitro infection. Our
models have been parameterised with an in vivo data set. It has been recently highlighted
that there exists a stark contrast in responses when comparing in vivo and in vitro infection;
in particular, and for the in vitro case, type I IFN production is abrogated after three days
post-infection, whereas in the case of in vivo infection type I IFN is present throughout
the entire infective period [11,12]. Hence it is critical to keep this in mind when carrying
out parameter calibration. Along this line of thought, it is also important to note that
differences in in vivo experimental models can lead to rather different innate immune
responses. For instance, bats are a proposed reservoir for Ebola virus but are known to be
asymptomatic for disease. Experiments have indicated that bats have detectable viral RNA
levels, but no detectable viremia [58]. Yet, in the case of humans and non-human primates,
the clinical presentation tends to be symptomatic and with measurable viremia [59,60].
Bat dendritic cells have shown an enhanced capacity to initiate IFN-dependent responses
upon filovirus infection in comparison with, for example, human cells [61]. Other studies
have reported a difference in immune responses depending on the specific tissue analysed:
Ebola viral RNA levels persist in male gonads even after a negative PCR test from blood
samples [62].

We believe the mathematical approaches presented in this manuscript have allowed
us to explore different mechanisms of viral antagonism of type I IFN production. These
models could be further expanded to incorporate other intra-cellular or viral mechanisms,
or additional signalling pathways. Additional data sets, e.g., from quantitative proteomics,
could be used to improve parameter inference, not only for Ebola virus but for other
viruses which are of global concern and a public health threat (see Figure 12). A general
(or abstract) model of viral type I IFN inhibition should consider the following proteins
and molecules: V, the viral antagonistic protein for the virus under consideration; D, the
viral RNA; R1, a PRR; P, a dsRNA binding protein; R2, an RNA-activated kinase; and E, a
downstream enzyme kinase. The model can be described by the following reactions, which
assume mass action kinetics:

• A pattern recognition receptor, R1 binds to D to form R1 : D, with forward rate kR1

and backward rate qR1 . This is the first step in the R1 signalling pathway.
• R1 binds to P to form R1:P, with forward rate kP and backward rate qP.
• V binds to D to form V:D, with forward rate kV and backward rate qV . This is an

upstream inhibition mechanisms: V sequesters D from its potential binding to R1.
• V binds to P to form V:P, with forward rate kM and backward rate qM. This is a

second upstream inhibition mechanisms: V sequesters P from its potential binding
to R1.

• Downstream enzyme kinase, E, gets phosphorylated in the presence of complexes
R1:P and R1:D. This phosphorylation event is inhibited by the presence of V. This
encodes downstream inhibition by V. Phosphorylation and de-phosphorylation rates
of E and E? are kE and qE, respectively.
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• A second intra-cellular signalling pathway can be considered, in addition to the one
initiated by R1. To this end, we consider an RNA-activated kinase, R2, which can bind
to D to form the signalling complex R2:D. A final mechanism of inhibition by V is
included in this pathway. V enhances the disassociation of R2:D.
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Figure 12. A general model of viral type I IFN inhibition. The model includes: V, the viral antagonistic
protein for the virus under consideration; D, the viral RNA; R1, a PRR; P, a dsRNA binding protein;
R2, an RNA-activated kinase; and E, a downstream enzyme kinase. The model includes two potential
signalling pathways that result in stimulation of type I IFN secretion.

One last note to conclude. Our models have been restricted to be of a deterministic
nature and not stochastic. We plan to generalise the models introduced here to birth
and death Markov processes [63] to include the effects that might arise due to a small
number of proteins, as can be the case during the first stages of intra-cellular infection.
Effects which have been completely ignored in our models, since we have assumed the
initial number of molecules (nB, nD, nR, nV and nA) is large to allow us for a deterministic
approach. This might not be the case always, and thus, an stochastic perspective will be
desirable and required.
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