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Abstract

Magneticfield sensors are an integral part ofmany industrial and biomedical applications, and their

utilization continues to grow at a high rate. The development is driven both by newuse cases and

demand like internet of things as well as by new technologies and capabilities like flexible and

stretchable devices.Magnetic field sensors exploit different physical principles for their operation,

resulting in different specificationswith respect to sensitivity, linearity,field range, power

consumption, costs etc. In this review, wewill focus on solid statemagnetic field sensors that enable

miniaturization and are suitable for integrated approaches to satisfy the needs of growing application

areas like biosensors, ubiquitous sensor networks, wearables, smart things etc. Such applications

require a high sensitivity, low power consumption, flexible substrates andminiaturization. Hence, the

sensor types covered in this review areHall Effect, GiantMagnetoresistance, TunnelMagnetoresis-

tance, AnisotropicMagnetoresistance andGiantMagnetoimpedance.

1. Introduction

The development ofmagnetic sensors has been a pursuit of human endeavor since centuries past. The driving

force behind this, for a long time, was sensing the geomagnetic field for the purpose of navigation. This led to the

invention of themagnetic compass, followingwhich,mankindwas no longer beholden to the stars to guide

them across the treacherous oceans. This single invention resulted in amonumental period of growth,

prosperity and progress. It is a testament to the versatility and sheer timelessness of this sensor that it still persists

to this day in the formofminiaturized solid-statemagnetic sensors that alongside other sensors enable vehicle

(ships, aeroplanes, automobiles) as well as personal navigation using smartphones andwearable smart devices

such as smartwatches [1, 2].

The exploration of the intrinsic link between electricity andmagnetism in the 19th century [3–6] led to the

discovery of other physical phenomena that could be used to sensemagnetism. This culminated in a plethora of

magnetic sensors, which are used formeasuring other properties such as pressure, proximity, position, fluid

flow, etc Today, these sensors are an indispensable component of the internet of things, which has numerous

applications infields as diverse as wearable technology, consumer electronics, healthcare, navigation,

agriculture, animal husbandry, etc The globalmagnetic sensor industry revenue is expected to exceed 2.5 billion

dollars in 2022 [7], driven by growth in automotive, industrial and biomedical sectors.

Magnetic sensors have been developed utilizing various physical phenomena such as Electromagnetic

Induction,Hall Effect, TunnelMagnetoresistance(TMR), GiantMagnetoresistance (GMR), Anisotropic

Magnetoresistance (AMR) andGiantMagnetoimpedance (GMI) [8]. For applications, where highest sensitives

are required, superconducting quantum interference devices (SQUID) are thefirst choice [9]. Induction based

coil type sensors are usually bulky and robust and find application in industrial sensing systems.However, these
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sensors are not easilyminiaturizable due to the difficulty in fabricating 3D coils and the poor performance of

planar coils compared to their wirewound counterparts. SQUID sensors require cooling down to low

temperatures, and evenwith the advent of high-temperature superconductors, they involve high costs and

complexity and only allow some of their components to beminiaturized [10]. On the other hand, solid-state

Hall effect, GMR, TMR,AMR andGMI sensors aremanufactured using planarmicrofabrication processes and

are capable of offering high sensitivity in a relatively compact footprint. The compatibility of solid-state

magnetic sensors with complementarymetal-oxide-semiconductor (CMOS) fabrication processesmakes it

feasible to achieve integration of sensor with sensing and computing circuitry at the same time, resulting in

systems on chip, which are highly attractive for internet of things applications. Further, Hall and

magnetoresistance sensors comprise 98%of themagnetic sensormarket [7]. Especially,MR sensors are

predicted to proliferate in the areas of biomedical applications, flexible electronics, position sensing/human-

computer interaction, non-destructive evaluation andmonitoring, and navigation and transportation, due to

improvements in sensing and operational performance [11]. Hence, out of themany different kinds ofmagnetic

field sensors, this reviewwill focus on the latest advances and applications ofHall effect, GMR, TMR,AMR,GMI

sensors.

Attentionwill be paid in particular to the development offlexible and conformalmagnetic sensors. Over the

past few years flexible electronics has resulted in novel applications in the fields of healthcare, entertainment and

consumer electronics. This led to the emergence of a robust and rapidly growingmarket, estimated to beworth

$7.6 Billion by 2027 [12]. In this environment, the development offlexiblemagnetic sensors is attractive for

commercial purposes as well as for enabling new application areas. Differentmethods such as substrate

thinning, polymeric substrates and inkjet printing are used for fabrication offlexible sensors. Existingflexible

magnetic sensors, their fabricationmethods and performancewill be studied in this review. This review also

emphasizesmagnetic sensors that are being deployed in the healthcare sector for both therapeutic as well as

diagnostic purposes. Novel approaches to investigatingmedically relevant phenomena, organisms, cells and

chemicals usingmagnetic sensors will also be included.

2.Hall effect sensors

2.1. Background

Hall effect sensors are transducersmeasuringmagnetic fields based on the principle of theHall effect that effect

was discovered in 1879 by the American physicist EdwinHerbertHall in gold leaves [13]. It is a result of the

magnetic Lorentz force, which deflectsmoving charge carriers that constitute the electric current in a

magnetic field.

In a solid conductor placed in amagnetic fieldB, themagnetic Lorentz force acting on a single charge carrier

can be expressed as

( )=F qv x B 1

where q is the charge of the carrier. And v is the instantaneous drift velocity vector of themoving carrier which is

calculated as

( ) ( )=v I nqwd 2

with I being the applied current andw and d being thewidth and thickness of the conductor, respectively.

When amagnetic field is applied in the direction perpendicular to the currentflow, themagnetic Lorentz

force causes a deflection of the current. As a consequence, charges of opposite sign accumulate at two surfaces or

edges of the conductor orthogonal to the currentflow (figure 1), leading to a differential voltage, i.e. theHall

voltageVH.When an equilibrium state is reached,

( )=qv x B V q w 3H

The value ofVH can be expressed in terms of I andB as

( ) ( ) ( )=V IB nqd 4H

In case of a n-type/p-type conductor,VH is then negative/positive with the positive values of I andB.

The key parameter determining the sensitivity of aHall effect sensor is the carriermobilityμ of its building

material [14]. For a long time after theHall effect was discovered, it was only utilized inmaterial classification.

Until 1950’s, with the development of semiconductormaterials, i.e. the III-V compounds (e.g. InAswith

μ∼ 20,000 cm2Vs−1, GaAswithμ∼ 8,000 cm2Vs−1, InSbwithμ∼ 60,000 cm2Vs−1), Hall effect sensors were

firstly introduced in laboratories asmagneticmeasurement instruments. Nowadays, silicon-basedHall sensors

are dominating themarket albeit with a lowmobility of∼1,000 cm2Vs−1. These sensors benefit from amature

siliconCMOS technology, which enables efficientmonolithic fabrication of the sensing element and other
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processing electronics. The silicon-basedHall sensors have a typical sensitivity of 100∼1000 V A−1T−1, a

resolution of∼1000 nT/ Hz , and an offset of∼10mT [15, 16]. For applications that require a higher sensitivity

of>1000 V A−1T−1, better resolution of∼100 nT/ Hz and a lower offset of∼1mT,Hall sensors based on high

mobility III/V semiconductors GaAs, InAs, and their 2-dimensional electron gases are necessary though at

much higher expense [17, 18].More recently, the rise of graphene has brought new opportunities toHall effect

sensors [19–22]. A record-high sensitivity of 5700 V A−1T−1 and resolution 50 nT/ Hz have been

demonstrated in the laboratory with a prototype grapheneHall sensor [23].

Hall effect sensors possess a number of advantages: simple device architecture, easymanufacture, low cost;

possibility of scaling down and integrationwithCMOS circuits; linear response; highly repeatable operation,

and excellent robustness.

However, Hall effect sensors suffer from several shortcomings. The output signal is weak compared to, e.g.

MR sensors; they drift with temperature, and have a finite offset signal. To overcome these problems,most

commercially availableHall effect sensors aremanufacturedwith sophisticated electronic circuits to provide

constant current, amplify the output voltage, compensate drift, correct offset, digitize signal, and perform signal

processing.

2.2. Applications

In general, the applications ofHall effect sensors are classified into twomain categories, i.e. the linear output

Hall sensors and digital outputHall effect sensors or theHall effect switches [14].

Linear outputHall sensorsmeasure themagnitude of themagneticfield andoutput a linear signal, and they are

commonly used in current andposition sensing.They canbe found in awide range of applications, such as disk

drives,motor control indicators, power supply protection, pressure diaphragms,flowmeters, damper controls,

brushlessDCmotors, rotary encoders, ferrousmetal detectors, vibration sensors, tachometers, etc [14].

Digital Hall sensors operate as electronic switches. Typically, they are designed to be ‘OFF’ at nomagnetic

field.When an appliedmagnetic field exceeds a pre-set value, the output of the digitalHall sensor switches to the

‘ON’ state without any contact bounce. Such a switch costs less than amechanical switch and ismore reliable

under severe conditions. Common applications include: rotation speed detectors, pulse counters in printers and

motor drives, valve position sensors, joy stick sensors, door interlocks, proximity detectors, lens position

sensors, paper sensors, shaft position sensors, etc [14].

In additional to these aforementioned applications in commercial electronics and industries,Hall sensors have

also beenwidely studied and employed in the emerging areas of biomedical sensing andwearable electronics.

Reproducedwith permission from [24].

Recent advances inmicrofluidics and lab-on-chip technology boost the development of the compact

medical diagnostic and bioscreening systems.MiniaturizedHall sensors have the advantages of low cost, simple

integration, and no interference by complex biomedical samples are commonly employed as a biosensor using

magnetic labels. Thereby, theHall sensor detects themagnetic nanoparticles, which label biological specimens,

bymeasuring their stray fields ofμT∼mT in an externalmagnetic field [25–30].

ConventionalHall sensors are thick and rigid, limiting their applicability in the field offlexible andwearable

electronics. Recently, flexibleHall sensors have been demonstrated on bendable and stretchable polymeric

substrates [31–34]. For instance, Bismuth thin film-basedHall sensors weremade on polyimide (PI) substrates.

They exhibited a relatively low sensitivity of 2.3 V A−1T−1which theymaintained for at least 50 bending cycles to

a radius of 8mm [32]. Amagnetic Permalloy-based planarHall sensorwasmade on polyethylenterephthalat

(PET) capable to detect sub-200 nTfields with a high sensitivity of 172 V A−1T−1 (with 5mAbias current) and

Figure 1. Schematic view of a bar (n-type)Hall device. A current, I, is applied along the bar as well as amagnetic field,B, perpendicular
to the surface, which gives rise to aHall voltage,VH. Note that the direction of the current I in the diagram is that of conventional
current, so that themotion of electrons is in the opposite direction.
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an extremely high resolution of 1.5 nT/Hz0.5, which is on parwith the state-of-the-art commercially available

rigid devices [31]. An excellent bending stability has been highlighted by the negligible 0.3%outputfluctuation

aftermore than 150 bending cycles to the radius lower than 1mm. In addition, the emergence of two-

dimensional graphene has also greatly promoted the applications offlexibleHall sensors with its outstanding

mechanicalflexibility [32, 35, 24] (figure 2). For example, an excellent flexibility with only 0.6%performance

degradation after 1000 bending cycles to a radius of 5mmhas been shown for grapheneHall sensors onKapton

foil with a high sensitivity of 79 V A−1T−1.

These encouraging results are promising for upcoming applications infields such as soft robotics, wearable

electronics and electronic skin. Togetherwith their robustness, easy fabrication, straigth forward integration

withCMOS, and low cost, Hall sensors will continue to play a dominant role in the globalmagnetic sensor

market with a high share for a long time in the future.

3. Anisotropicmagnetoresistance

3.1. Background

The resistance of certainmaterials is dependent on the angle between the directionof the applied current and the

magnetization of thematerial itself. This phenomenon is called anisotropicmagnetoresistance (AMR). Itwasfirst

discoveredbyLordKelvin in 1856,who reported that ferromagneticmetals (Fe andNi) exhibit higher resistance,

whenmagnetized parallel to the current, andminimumresistance, when themagnetization is perpendicular to the

current [36]. Itwas observed that themagnetoresistancewas thrice as strong inNickel than in Iron. The effect arises

due tomagnetizationdirection dependent scattering of conducting electronswith uncompensated spins.While

any simple bar of ferromagneticmaterialwill exhibitAMR, the effect is non-linearwith respect tofield strength.

Considering the case of a ferromagnetic structurewithmaximumresistance ofRmax, when themagnetization and

the current are parallel, andminimumresistance ofRmin, when themagnetization and current are orthogonal.

Thus, the change in resistance is given byΔR=Rmax.−.Rmin. If this structure has a totalmagnetic anisotropyfield,

Han, and applied externalfield,Happ, then the resistance is given as [37, 38]

⎜ ⎟⎛
⎝

⎞
⎠

( )= - DR R R
H

H
5max

app

an

2

Thus, the resistance of a simple ferromagnetic structure varies non-linearly with the applied field. Further,

when the applied field is small (Happ<<Han), the sensitivity of the sensor becomes extremely small. Using an

external biasfield or a conducting structure, which rotates the direction of the current by 45owith respect to the

Figure 2.A representative graphene-based flexibleHall sensor. (a), (c), (d)Device structure, (b)Device bendability, and (e) the
sensitivity evolution of the graphene flexibleHall sensor subjected to 1000 cycles of bending. Reproduced from [35]with permission
of The Royal Society of Chemistry.
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easy axis of thematerial are potential solutions to linearize this effect. Onemethod is to use aV-shaped strip of

ferromagneticmaterial and anothermethod is to use a barber pole structure (figure 3), made by depositing strips

of a good conductor on top of the ferromagneticmaterial and at an angle of 45o to it. In the lattermethod, the

current prefers travelling in the good conductor than in the ferromagnet, the direction of current in the

ferromagneticmaterial is rotated at 45o to the plane of the applied field. Thefield dependent resistance equation

for such structure is given by

⎜ ⎟⎛
⎝

⎞
⎠

( )= + D -R R R
H

H

H

H
1 6

app

an

app

an
0

2

For low values of appliedmagnetic field i.e. Happ<Han/2, the barber pole structure resistance expression exhibits

less than 5%non-linearity.

Themost popularly usedmaterial for AMR sensors is Permalloy, an alloy of iron and nickel. In particular,

theNi0.81Fe0.19 composition is relevant, as it offers low coercivity and negligiblemagnetostriction [39]. AMR

sensors have lower sensitivity thanGMRandTMR sensors, however they also are far easier to fabricate, offer

flexibility in device shape and resistance and have better signal-to-noise ratio at low frequencies [40–42].

3.2. Applications

Owing to its simple fabrication process, AMR sensors continue to be utilized for new sensor developments. Its

miniaturization is straight forward, and the robust structure allows its fabrication on a variety of substrates,

includingflexible and stretchable ones.

The usage of AMR sensorwith amicropatterned gas channel and a biasingmagnet to detect oxygen is

presented in [43]. Oxygen is paramagnetic and has greater susceptibility than any other gas in the environment,

whichmakes this sensor highly selective. TheAMR sensor can be used to detect oxygen content between 0%and

100%.AMR sensors alsofind applications in linear positioning systems, due to their robustness [44, 45]. Using a

3 axis AMR sensor in conjunctionwith an elastic domemechanically coupledwith a permanentmagnet, a tactile

sensor is presented in [46]. This sensor delivered a sensitivity of 58 mVN−1 to normal force and 78 mVN−1 to

shear force. In [47], out of plane sensitivity is imparted to a conventional Permalloy AMR sensor by patterning a

grid ofNimicropillars on top of it, which serve asflux concentrators converting the out of planemagnetic field

into an in-plane field. The sensor delivers a sensitivity of 84μV/Oe and a resolution of 47mOe/(Hz)1/2 to the

out of plane component, whichmakes it suited formagnetic compass applications. Using a quadruple Permalloy

layer AMR sensor, an angular position sensor is designed in [48]. The easy axes of the four Permalloy layers are

aligned at different angles (0o, 90o, 45o, 135o), resulting in anAMR stack, which is effectively isotropic in terms of

magnetic anisotropy,making this sensormore accurate than conventional single layer AMR sensors, especially

at low sensing biasfields (< 100Oe). AnAMRbased nuclearmagnetic resonance (NMR) system is reported in

[49], which has sensitivity and detection limits comparable withmicrocoils in superconductingmagnet based

systems. In thefield of non-destructive testing, anAMR sensor system is used in [50], implementingmulti-

frequency eddy current testing to identify defects in anCu-Cr-Zr alloy used tomake rocket nozzles.

Flexible AMR sensors have been demonstrated on a variety of substrates. For example, on 7μmthick

polymer foil [51]. The polymerwas spin coated on a Si wafer and ameander shaped Permalloy (Ni0.81Fe0.19)

sputteredfilm served as theAMR sensor. The Si waferwas subsequently selectively etched using deep reactive

ion etching (DRIE), forming the AMR sensor onflexible polymer foil suspended on a Si frame (figure 4).While,

this sensor itself isflexible the packaging process (Si frame) renders it rigid.

In [38], aflexible Permalloy (Ni0.81Fe0.19)AMR sensor on a polyethylene terephthalate (PET, 100μm

thickness) substrate, employing the aforementioned barber pole topology is reported. Onemajor challengewith

designing flexiblemagnetic sensors on polymer substrates is the higher surface roughness (when compared to

conventional oxidized Si rigid substrate), which causes domainwall pinning, increasing hysteresis and reducing

themagnetoresistive effect [52]. This issue is overcome by coating the PET layerwith a smooth layer of cured

Figure 3.Barber-pole structure twists the current direction at an angle to the anisotropy field, linearizing the dependence of
magnetoresistance on the applied field.
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photoresist. Selectively patterned gold is used to form the contacts and the barber pole structure. The sensor has

a resolution of 150 nT and a sensitivity of 4200 ppm/Oe (which is quite close to that obtained using a similar

AMR sensor on a rigid oxidized Si substrate) (figure 5). It is capable of workingwhen bent at a radius as small as

10mmand can recover functionality after being bent to a radius of 5mm.

Permalloy sputtered on paper is another interestingmethod to create flexiblemagnetic sensors [53]

(figure 6). Combining this sensor with origami to exploit paper’s ease of foldabilitymakes this an interesting

alternative approach toflexibility, compared to the usual polymer substrate-based sensors. The high surface

roughness of paper [2μm) results in 60% lesser sensitivity than a similar sensor fabricated on rigid oxidized

silicon.

AMR sensors are integratedwith amicrofluidic channel in [54] to allow real time detection of 9μmmagnetic

beads. This system could potentially be used for cytometry. One of the principle problems inmagnetic

microfluidic systems based on superparamagnetic nanobeads is transporting the beads to the sensor. In [55], an

L-shaped permalloy AMR stripwith two terminating disks is presented. In this structure, it is possible to

magnetically inject a transverse head to head domainwall (TDW), at the corner, which in turn becomes a

magnetic trap for the nanobeads (figure 7). The trapped beads are then sensed through change in resistivity. A

single nanobead (300 nmdiameter)was detected by thismethod. A disposable card based system incorporating

anAMR sensor to detect the 16 SRNAgene in theDNAof the bacteriumStreptococcus suis is demonstrated

in [56].

Figure 4.AMR sensor fabricated on polymer foil. The Si frame hinders theflexibility of this design. © [2012] IEEE. Reprinted, with
permission, from [51].

Figure 5.Effect of substrate roughness on sensitivity of flexible AMR sensor. The inset depicts the bending of the sensor. JohnWiley&
Sons. [©2016WILEY‐VCHVerlagGmbH&Co.KGaA,Weinheim] [38].
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4.GiantMagnetoresistance

4.1. Background

In a thinfilm structure composed of a non-magneticmetal layer sandwiched between twomagnetic layers, the

resistance of the stack changes, depending on the relative orientation ofmagnetization of the twomagnetic

layers (figure 8). This effect is a product of spin dependent scattering of electrons.When themagnetization of the

two layers is in the same direction, only electronswith one spin polarization are strongly scattered,minimizing

the resistance of this heterostructure. Conversely, when themagnetization of the layers is in opposite directions,

electronswith both up and down spin polarizations are strongly scattered resulting in large resistance. Albert

Fert and Peter Grunberg both independently discovered this phenomenon [57, 58] and for this discovery, they

were jointly awarded the 2007Nobel Prize in Physics. TheGMR effect is seen in both possible directions of

conduction i.e. from top to bottom (or vice-versa) and across the three layers from left to right (and vice-versa).

In a typical GMR spin valve sensor, one of the twomagnetic layers is fabricated to have afixed direction of

magnetization and this layer is called a pinned (or reference) layer. The other layer is called a free layer (figure 9).

It ismade of a softmagneticmaterial and the direction ofmagnetization of this layer rotates under the influence

of the appliedmagnetic field. In case of aGMRdevicewithminimum resistance Rmin andmaximum resistance

Rmax, theMR ratio of the device is given by

( )=
-

MR ratio
R R

R
7

max min

min

When amagneticfield is applied it changes the orientation of the free layer. Assuming that the pinned layer is

oriented at an angle of θp and the free layer is oriented at θf, the resistance of theGMRdevice [59] can be

empirically expressed as

Figure 7. Schematic of L-shapedAMR sensor, where the corner serves as amagnetic particle trap. Reproduced from [55]© IOP
Publishing Ltd. All rights reserved.

Figure 6.Paper basedAMR sensor. Reproducedwith permission from [53]. © 2018MeriemAkin et al.
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[ ( )]
( )

q q
= +

- -
R R

R MR 1 cos

2
8min

min f p

If the free layer is aligned orthogonally to the pinned layer as depicted infigure 8, the above equation reduces to

[ ( )]
( )

q
= +

-
R R

R MR 1 sin

2
9min

min f

Thus, the resistance of theGMRdevice is proportional to the sine of the angle bywhich the free layer rotates

under the influence of the applied field. For lower appliedfields, sin(θf) varies linearly with themagnetic field

strength, thus the output of the sensor is linearizedwhich is desirable formost sensor applications [60].

The free layer is usually fabricated using a softmagneticmaterial such as CoFeB orNiFe. Themagnetization

of a ferromagneticmetal in contact with an anti-ferromagneticmetal gets pinned and this phenomenon is

exploited to form the pinned/reference layer.However, exchange bias couplingwith the free layer leads to an

asymmetrical reversal ofmagnetoresistance with respect to the applied field, which is an undesirable trait [61].

One solution to this is to use a synthetic antiferromagnet,made up of two ferromagneticmaterials separated by a

nonmagnetic spacermaterial (Owing to strong antiferromagnetic coupling effect, Ru is themost popular option

[62]). In this stack, the three layers are coupled antiferromagnetically by Ruderman-Kittel-Kasuya-Yosida

coupling and by using the optimum thickness of the non-magnetic spacer layer, the antiferromagnet is stabilized

reducing the strayfields and asymmetry in the resistance versus field characteristics. Copper is a good candidate

for the non-magnetic spacer layer, due to its high conductivity and high interfacial spin dependent scattering

[62].Π-conjugated organic semiconductors have been proposed as spacermaterials, due to their relatively

strong electron-phonon coupling, large spin coherence and ease of fabrication [63]. However, failure to perform

well at room temperature has resulted in relative lack of interest in organic GMR sensors.

GMR sensors are quite attractive as they combine high sensitivity and resolutionwith low sensor resistance

[64]. This lower resistance in turn results in reduced noise levels, higher operational bandwidth and lowpower

consumption for a given sensing current.

4.2. Applications

GMR sensors have a small footprint and are capable of sensing the Earth’smagnetic field, whichmakes them

attractive for orientation, navigation and inertial positioning applications. ThreeGMR sensors packaged

orthogonally to each other are used to implement tri-axismagnetometers. In [65], this complex and

inconvenient packaging process is avoided by the use of aNi-Zn ferrite flux guide and 3 in-planeGMR sensors

oriented at 120o to create a tri-axismagnetometer (figure 10).

Magnetocardiography (MCG) is a non-invasive contactlessmethod formeasuring the activity of the heart

using themagnetic fields generated by the electrical impulses that control the operation of the heart. Thefields

Figure 9.GMR sensor configuration for linear response.

Figure 8.GiantMagnetoresistance Sensor schematic, depicting the allowed directions of conduction.
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involved areweak (∼10–11T) and SQUIDs are themost commonly usedMCG sensors. In [66], four liquidHe

cooledGMR sensors inWheatstone bridge configuration coupled to aNiobium loopwere used as a low power,

compactMCG sensor to study the activity of the human heart.

GMR sensors have been used for contactlessmeasurement of current flowing throughwires by quantifying

themagneticfield induced by the current [67]. Non-destructive contactless evaluation ofmetal quality in vehicle

parts, building structures, etc by eddy current sensing in the presence of an acmagnetic field is another

interesting application ofGMR sensors [68]with growing potential [11].

In [69], the fabrication ofGMRdevices onKapton and Polyester flexible substrates has been reported. The

devices were fabricated on the polymer substrates after smoothing the surface by spin coating photoresist on it.

These devices had betterMR ratio than similar devices fabricated on oxidized Si substrate, owing to a high

antiferromagnetic coupling fraction. An interesting approach to fabricating flexible GMR sensors is described in

[70]. The process starts with a conventional GMR stack deposition on a rigid substrate pre-coatedwith a

sacrificial layer. The stack is then released andmilled to formuniform flakes with an average size of 36+5μm.

Theseflakes are dispersed in polymer bonder to formGMRpaste, which can be printed onflexible PCBs to form

flexibleGMR sensors (figure 11). These sensors exhibitminimal change inGMR ratio and sensitivity with

bending radius as low as 1 cm.

Biological specimen detection and quantification using functionalizedmagnetic nanoparticles, nanowires,

etc in conjunctionwithmagnetic sensors is an active area of research. The detection of influenza A virus using

GMR sensor andmagnetic nanoparticles, with a detection limit of 1.5×102TCID50/ml (more sensitive than

ELISA) has been reported in [71]. In [72], a novel approach to themagnetic particle detection and classification

problem is explained, whereinGMR sensors were used to detect E. coli using the difference in velocity between

bacteria taggedmagneticmicroparticles and bare reference superparamagneticmicroparticles. In order for the

biological specimen to be detected accurately themagnetic beads need to be transported to the vicinity of the

GMR sensor. Current based concentrating structures [73] and flow focusing [74] can be used to accomplish this

goal. Flow cytometry usingGMR sensors shows promise as a low cost alternative to traditional fluorescence

cytometry [74]. GMR sensors functionalizedwith synthetic DNAprobes were utilized to detect cancer

(melanoma) using circulating tumorDNA (ctDNA) [75]. This liquid biopsy technique is capable of detecting

Figure 10. (a) Schematic and (b) photograph of triaxisflux-guideGMRmagnetometer. Reproducedwith permission from [65]AIP
Publishing.

Figure 11.GMR ink painted sensors. Reproducedwith permission from [70] JohnWiley& Sons. [©2014TheAuthors. Published by
WILEY-VCHVerlagGmbH&Co.KGaA,Weinheim].
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methylated ctDNA as little as 0.1%of total cell-freeDNA,which can enable early detection of cancer. TheGMR

sensor reported in [76] is capable ofmultiplexmeasurement of 12 different tumormarkers, whichmakes it an

effective tool in the early detection and therapeuticmanagement of cancers of lung, liver, digestive tract,

prostrate, etc (figure 12). The usage of aGMR sensor for real timemercuric ion (Hg+2) detection in drinking

water is illustrated in [77]. This system achieves a limit of detection of 10 nM,which is themaximumallowed

mercury level in drinkingwater according to theU.S. Environmental Protection Agency.

5. Tunnelmagnetoresistance

5.1. Background

A tunnelingmagnetoresistance (TMR) sensor consists of two ferromagnetic layers separated by a tunneling

barrier; hence also calledmagnetic tunnel junction (MTJ). The structure is similar to theGMR sensorwith the

conducting layer being replaced by an insulator (figure 13).When two ferromagnets aremagnetized in parallel

direction, there is higher probability of the electrons to tunnel through the insulation layer than if the

magnetizations of the two layers were antiparallel. Thus, the parallel configuration results inminimum

resistance and the antiparallel configuration results inmaximum resistance. Julliere first observed spin

dependent quantum tunneling inmagnetic tunnel junctions comprised of Fe andCo layers separated by an

amorphousGe layer [78].

In a typical TMR sensor, one of the ferromagnetic layers is free to rotate with the appliedfield, while the

magnetization of the other layer is pinned. Similar to theGMR sensors, empirically it can be shown that the

resistance of the TMR stack is proportional to the cosine of the angle between the free and the pinned layer

(equation (8)). Thus, in order to fabricate a TMR sensor with linear response to an appliedmagnetic field, it is

imperative that the reference layermagnetization be pinned perpendicular to the free layer (equation (9)).

Similar to theGMR sensor, the two ferromagnetic layers aremade using soft ferromagnetic alloys such as

NiFe, CoFe, CoFeB, etc The reference layermagnetization is pinned by contact with either a natural

antiferromagnet such as IrMnor a synthetic antiferromagnet as detailed in [61]. Due to the ease of deposition in

a pinhole-free well-adheredmanner, amorphous aluminumoxidewas a popular choice for the tunneling barrier

[79], and it resulted in devices withmagnetoresistance of few 10%. The prevalence of large tunnel

magnetoresistance (>1000%) in TMRdevices using epitaxially grown crystallineMgO as the tunnel barrier was

predicted in [80, 81]. The crystalline nature ofMgOallows for coherent tunneling ofΔ1Bloch states from either

side of the tunneling layer, which results in highermagnetoresistance than aluminumoxide-based TMR sensors

[82]. This prediction spurred on research inMgO crystalline tunneling barriers inMTJs, culminating in the

development of devices with extremely high room temperaturemagnetoresistance (e.g. 604%, [83, 84]).

TMR sensors aremore sensitive thanGMR sensors. However, they suffer fromhigher noise. They have

higher resistance and thereby consume lesser power than aGMR sensor at the same operating voltage. Also,

TMR sensors aremore expensive and difficult to fabricate, due the need for a high quality, pinhole free extremely

thin tunneling barrier. GMR sensor fabrication can be simplified by using in plane contacts, since the change in

resistance is observed for conduction through the three layers aswell as along them. TMR sensor cannot use in-

Figure 12.GMRMulti-biomarker Immunoassay for 12 tumormarkers. Reproduced from [76]Copyright (2019), with permission
fromElsevier.
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plane contacts, as the spin dependent scattering of tunneling electrons only occurs for electrons flowing through

the tunneling barrier either from top to bottomor vice-versa.

5.2. Applications

Due to their high sensitivity,MTJs are an attractive option for contactless currentmeasurement. In [85] anMTJ-

based current sensing systemwith sensitivity of 7.74 mV A−1 targeting smart grid systems is reported.MTJ

devices have been incorporated in conventional CMOS ICs tomonitor currentflow at themicroscale with a

sensitivity of 1.6mV/V/mA, as shown in [86].

The resistance of a TMRdevice in the anti-parallel state is sensitive to temperature, due to spin-wave

excitation. The response time of such a device is faster than conventional CMOS thermal sensor, which relies on

electron diffusion. TwoTMR sensors were used tomake an on-chip compensated temperature sensor for

temperaturemonitoring and IC overheat protection [87]. In [88], the temperature dependence of stochastic

TMR switching is exploited tomake a temperature biased randomnumber generator that consumes 1–2 orders

ofmagnitude lower energy than state-of-the-art CMOS sensors.

An array of 10TMR sensors connected in series is used to detectmetal cracks as shallow as 200μmin an

aluminum specimen, with a signal-to-noise-ratio (SNR) of approximately 34 dB, using eddy current sensing

[89]. An improved version of this systemwith 28 series connected TMR sensors demonstrated the ability to sense

aluminumdefects as shallow as 100μmwith 115 dB SNR [90]. It was shown that while the sensitivity of the

system increases with the number of TMR sensors connected in series, the resistance and noise also increases,

thereby an array of 28 TMRs delivered better resolution than a 52TMR sensor array [90].

By utilizing amagnetostrictivematerial as the free layer in a TMR sensor, strain acting on the TMRgets

converted to amagnetic fieldwhich causes a change in the sensor resistance. In [91], magnetostrictive

Co40Fe40B20 free layer is used in anMgObarrier based TMR sensor to fabricate a strain gaugewith a gauge factor

of 2150+30 under an applied biasfield of−3.2 kAm−1. The strain gauge designwas further improved in [92]

by using an amorphous Fe-B free layer, which results in a gauge factor of 5072, at an applied biasfield of

1.2 kA/m (figure 14). In this work it was also demonstrated, that by fabricating the amorphous Fe-BTMRon a

diaphragm, a SpinMEMSmicrophone of 57 dB(A) gain can be realized. TMRbased strain gauges offer large

gauge factors (∼25 times larger than state of the art Si piezoresistor strain gauges), however the need for a

uniformbiasingmagnetic field for proper strain gauge operation is a daunting requirement formost

applications.

Figure 14.Themelding of spintronics andMEMS created the high sensitivity Spin-MEMS strain gauge andmicrophone schematic.
Reproducedwith permission from [92]© [2017] IEEE.

Figure 13.TunnelMagnetoresistance sensor schematic showing the allowed directions of current through the sensor.
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The average resistance of a TMRdevice varies, when it is subjected to amicrowavemagnetic field. This

phenomenon is exploited in [93] to develop an on-chipmicrowave phase and spectrum analyzer. Farfield

microwave radiation is rectified by TMRs using the Seebeck effect with an efficiency of 1–10 mVmW−1
[94].

This techniquewas successfully used to detect hidden objects as small as fewwavelengths in themicrowave

regime (∼few cm).

Conventionally,magnetoresistance read heads are used in high densitymagnetic storagemedia (such as hard

drives). In [95], the usage of TMR to readmagnetic ink patterns for security and industrial applications is

demonstrated. The TMR sensor based scanningmicroscopewas shown to have spatial resolution better than

7μm,when used to image remanentmagnetic fields [96].

In [97], the use of substrate thinning to achieve a thin and flexible TMR sensor capable of operating reliably

down to a bending radius as small as 5mmand 1000flexing cycles is demonstrated. The TMRdevice is

fabricated using conventional processes on a Si substrate. Subsequently, the thickness of the substrate is reduced

from500μmto 14μmbydeep reactive ion etching from the back to impart flexibility. In [98], this process is

improved upon further by reducing the Si substrate thickness to 5μm.The resulting TMRdevice exhibits

enhanced flexibility and is capable of being bent to an astonishingly small radius of 0.5mmand canworkwell

beyond 1000flexing cycles (figure 15). This flexible TMR sensor has beenmounted on tip of cardiac catheter to

guide itsmotion through the blood vessels.

AflexibleMTJs fabricated on a buffered organic substrate is demonstrated in [99]. A commercially available

Gel-film®
flexible sheet serves as the substrate. The substrate surface is smoothened by coatingwith photoresist

and poly [3,4-ethylenedioxythiophene)poly(styrenesulfonate) (PEDOT-PSS) (figure 16). This device is capable

of functioning down to a bending radius of 15mm.

Figure 15. Flexing cycle invariant operation exhibited byflexible TMR sensor. Inset depictsflexing setup. Reproducedwith permission
from [98] JohnWiley& Sons. [©2018WILEY-VCHVerlagGmbH&Co.KGaA,Weinheim].

Figure 16.TMR sensor fabricated on flexible organic substrate: (a) schematic and (b) fabricated sensor. Reproduced from [99]with
the permission of AIP Publishing..
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Owing to their small size, large sensitivity and relative ease ofmeasurement, TMR sensors are attractive for

different biological applications. In [100], the detection of alpha-fetoprotein(AFP), which is an important

hepatic tumormarker in concentrations down to 0.002mg/ml using 20 nm superparamagnetic iron

nanoparticles andMgO-based TMR sensors in sandwich assay configuration is presented. The detection of

pathogenDNA fromhepatitis-E virus and listeria and salmonella bacteria using TMR sensors andmagnetic

nanoparticles with sub-nM range sensitivity is presented in [101] (figure 17(a)). The commonly usedmagnetic

biosensor concept employs a functionalization layer on top of the sensor surface to trap targetmoieties (bacteria,

viruses, DNA, etc). This has beenmodified by using amechanical trap [102] and later an electromechanical trap

[103], omitting theneed for a functionalization layer and simplifying the detectionprocess by reducing thework

steps. TMRsensorswere used for in-vitro sensing ofneuronal networks in [104] (figure 17(b)). Biocompatibility

and viableneuron culture onTMR sensorswere achieved by capping theTMRdevicewith SiO2(50nm)/Si3N4(25

nm)/SiO2(50nm) layer.

6.Giantmagnetoimpedance

6.1. Background

The large impedance change of an alternating current powered ferromagnetic conductor upon the change of a

magnetic field is referred asGiantMagnetoimpedance (GMI) effect. The complex impedance is determined by

the skin effect in conjunctionwith the complexmagnetic permeability. Detailed studies byCharles Kittle in 1946

on the characteristics of softmagneticmaterial’s permeability at high frequency was one of the early works that

revealed the theoretical basis of this classical electromagnetic phenomena [89]. In 1993, through large

impedance change observed in amorphouswire by Larissa V. Panina andKaneoMohri, GMIwas identified as a

sensing effect for thefirst time, and has since attracted strong interest due to its highmagnetic sensitivity,

achievedwith simple fabrication process and relatively low cost.

Figure 17. (a) Integrated TMRmicrofluidic system for detecting pathogenic DNA. Reproducedwith permission from [101]Copyright
(2017), with permission fromElsevier (b)Rat hippocampal neurons cultured atop cappedTMR sensor (mergedMAP-2 andTau
stain). Reproducedwith permission from [104], © 2018DanielaMoretti et al.
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The skin effect of amagnetic conductingmaterial is characterized by the penetration depth, given by

( )/d p sm= f1 10

where f is the frequency of the alternating current,σ andμ are electrical conductivity andmagnetic permeability

respectively.

The impedancemodel of amagnetic wire can be derived fromMaxwell equations, expressed as

( ) ( ) ( )x x=Z R kr kr kr2 11dc 0 1

where

( ) ( )= + dk j1 12

Rdc is the dc resistance of thewire,x ,0 x1 are the Bessel functions, r is the radius of thewire, j is the imaginary unit.

The analyticalmodel of theGMIwire is obtained through simplifications of the geometry. The approach

generally applies toGMI devices of uni-body softmagneticmaterials. A similar expression can be obtained for

softmagneticmaterial of single layer planar structure [105].

Since the introduction of theGMI amorphouswire, GMI sensors in ribbons [106], multilayer thin films

[107], andmultilayer thinfilmswith complex planar geometries [108]were developed, each showing unique

advantages in different applications.

Themaximum relative impedance change of aGMI device is defined asGMI ratio, given by

( ) ( )

( )
( )=

-
GMI

Z H Z H

Z H
13

max

max

whereZ(Hmax) is the impedance at saturationmagnetic field, when its relative permeability is close to 1, resulting

in aminimal impedance valueZmin=Z(Hmax) as a benchmark. GMI ratio is a simplyway to experimentally

characterize the device for performance evaluation. GMI ratios up to 800%were reported inGMI devices with

different configurations [109].

AlthoughGMI sensors share similar impedance characteristics under appliedmagnetic field, themajor

contributors to the impedance change vary upon the device configurations, geometries, and operating

frequencies. This is due to the fact that skin effect only plays amajor role in the impedance changewhen the

penetration depth reaches the order of the thickness of themagneticmaterial. For typical GMIwires and

ribbons, whose thicknesses are in the order of tens ofmicrometers, large impedance change in associatedwith

skin effect can be achieved in the frequency range of kHz toMHz. For thin film basedGMI sensors with film

thickness in the order of hundreds of nanometers, the corresponding frequency for effective skin effect is in

gigahertz range. The high frequency not only introduces complexity to themeasurement circuit, but also pushes

themagnetization behavior into the ferromagnetic resonance regime, which could result inflattenedGMI

characteristic curves [110].

Figure 18. (a) Schematic view of amultilayer thin filmGMI sensor. An alternating current, Iac, is applied in longitudinal direction,
which induces transversemagnetic fluxBt through interactions with the neighboringmagnetic layers. Upon application of an external
magnetic fieldHext, themagnetization rotates into the direction ofHext (dotted arrows), resulting in the change of permeability, skin
depth, and impedance of the device (b)Magnetization curves obtained by vibrating samplemagnetometry of amagnetic thinfilm in
transversal and longitudinal directions, revealing the transverse anisotropy in the softmagnetic layers. (c)Domain pattern of the
magnetic layer, which confirms thewell-defined transverse anisotropy.
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To achieve optimal GMI effect withmoderate frequencies, GMI thinfilm sensors are developedwith a

conducting layer sandwiched by softmagnetic layers, as shown infigure 18(a). The conducting layer offers a

large dynamic range of conductivity, whereas the softmagnetic layers are responsible for providing a dynamic

permeability throughmagnetization interactions with externalmagnetic field.

Figure 19.Mass production type amorphous wireMI element fabricated byAichi Steel Co. Reproducedwith permission from [118].
© 2015KaneoMohri et al.

Figure 20. Fabrication and characterization of on-chip-integratedGMI sensorics: (a) Schematics of the fabrication steps to realize
arrays of tubular GMI sensor elements. Opticalmicrograph of an array of (b) planar and (e) self-assembled device. 3Dmap of theGMI
response versus frequency andmagnetic fieldmeasured of the c)planar and h) self-assembled device.Magneticfield dependences of
theGMI response of (d) planar and (i) self-assembled structure. (f) SEM image of the tube edge. (g) FIB cut through the tube revealing
2windings firmly attached to each other without forming voids. Reproducedwith permission from [122] on from [103] JohnWiley&
Sons. [©2015TheAuthors. Published byWILEY-VCHVerlagGmbH&Co.KGaA,Weinheim].
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The analyticalmodel of the impedance for amagnetic/conducting/magnetic tri-layer structure is given by

[111]

⎜ ⎟
⎛
⎝

⎞
⎠

( )m
d

= -Z R j
d d

1 2 14

c

dc
1 2

2

whereRdc is the dc resistance of the inner conductor, 2d1 is the thickness of the conductor, d2 is the thickness of

themagnetic layers as shown infigure 18(a), δc is the skin depth of the conducting layer, the permeability of the

magnetic layerμ=μ( f,Hext) is a function of the frequency f and externalmagnetic fieldHext.

Regardless of structural variations, beingmagnetically soft andwithwell-definedmagnetic anisotropies are

the two key enablers for GMImaterials of superior performances [112, 113].Magnetostrictive Co-based and Fe-

based amorphousmagnetic alloys were used in fabrication ofGMIwires and ribbons. The circumferential and

transversemagnetic anisotropies are established through fabrication-induced stresses. As a comparison, thin

filmGMI sensors benefit from standardmicrofabrication process, and rely onfield deposition orfield annealing

to establish preferred transverse anisotropy (figures 18(b), (c)). Permalloy (Ni0.81Fe0.19) is commonly used as

material as it provides high permeability and zeromagnetostriction.

6.2. Applications

As early asQin dynasty in ancient China, compass was invented for navigation, aligning building directions and

fortune telling, whichmarked the successful implementations of themost primitivemagnetic sensors. In

modern society,magnetic sensors are implemented in a large number of applications including geographic

navigation,metal detection, drug delivery, data storage, to name a few, and are employed in different fields like

automotive, biomedical or consumer electronics. As amember ofmagnetic sensor family, GMI sensor is the

only ac-basedmagnetic sensor, which operates in awide range of frequencies fromkHz toGHz, providing a

large impedance change under the appliedmagnetic field. For this reason, GMI sensors have been explored and

integrated in a RF system as a passive wirelessmagnetic sensor [114]. In terms of detectablefield range, GMI

sensor covers awide range ofmagnetic fields from geomagnetic to biomagnetic, significantlymore sensitive than

Hall effect sensor, superior thanMR sensors (GMR,TMR), comparable toflux gate, and several orders less

sensitive than SQUID (superconducting quantum interference device).When it comes to the sensor size, GMI

element is typically sized from severalmillimeters to sub-millimeter as compared to themicrometerMR

sensors, although it’s larger, it does notmake a big difference via typical SMD (surfacemounting device)

packaging inmost commercial electronic applications.

Amorphous wireGMI sensorwas first commercialized andmass-produced byAichi Steel Co. Japan in 2005.

TheGMIwirewas excited by a pulse generation circuit, aMEMSpickup coil is fabricated around theGMI

element to generate linear output voltage through electromagnetic induction (figure 19). Based on this design,

3-axis GMI sensors withmagnetic field resolution of 160 nTwere developed and utilized in consumer electronic

device such as smart phones and smart watches and industrial applications. In addition, highly sensitive GMI

sensors withmagnetic field resolution of around 1 pTwere also commercialized for biomagnetic applications

such as for an in vitro biopsy fragment of guinea-pig stomach [115], the humanmagneto-cardiogram, the

human backmagnetocardiogram, and the humanmagneto-encephalogram [116–118].

Despite the success of the commercialization of the amorphouswireGMI sensors, the thin filmmultilayer

has been a popularGMI configuration in the research domain over the past decades thanks to its promising

performance and standardmicrofabricationmanufacturing process [119, 120]. The physical vapor deposition

basedmicrofabricationmethod enables easy fabrication and integration of thin filmGMI sensor in various

unique systems such as withflexible substrate [121],MEMS (figure 20) [122], surface acoustic wave devices

[112], microfluidic devices [123], nanowires [124], etc.

7.Discussion and summary

In this paper, differentmagnetic solid-statemagnetic field sensors were reviewed. The underlying physics and

the different device structures used to exploit and enhance the conversion of themagnetic field into electrically

measurable signals were discussed.

Figure 21 shows a comparison of the detectablefield range, sensor size and operatingmode of the

conventionalmagnetic sensors. Interestingly, as far as sensors reported in literature go, the sensitivity is highest

forGMI sensors, which commercially play aminor role. They are followed by TMR sensors with AMR,GMR

andHall sensors bringing up the rear (table 1).When it comes to commercially available sensors, the analog

front end and the associated processing circuitry become important factors influencing the performance of the

sensor. It also has amajor impact on the power consumption, when comparing commercial solutionswith their

research counterparts. In table 1, commercial analogmagnetic sensors [125–132] are compared.However, with
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the shift in industry towards application specific sensors (such as position sensors, current sensors, etc) and

sensors with digital readout, the parameters listed in the tablemay not be indicative of the best performance that

can be obtained using a particular sensor technology. Among theMR sensors, TMR sensors end up performing

the best. Not surprisingly, the TMR sensor is also themost expensive one. GMR sensors performbetter than

AMR sensors. Hall sensors have the least sensitivity and resolution; however, theymake up for it by offering a

high dynamic range at low cost. The low cost, adequate performance and high availabilitymakesHall effect

sensor themost popularmagnetic field sensor on themarket [7]. The best performance is offered by theGMI

sensors, however this comes at the expense of a large footprint.While all the other sensors reported in the table

are single IC sensors, theGMI sensors consist ofmultiple discrete components on a PCB [130, 131], whichmay

not be amenable to certain applications.

With the advent of the internet of things and the plethora of opportunities for applications relying on

continuousmagnetic fieldmonitoring in various fields such as industrial electronics,medical diagnostics, point

of care, remotemonitoring, there has been a need forflexible, conformal and compact sensors. Different

approaches to achieving thin and flexiblemagnetic sensors were presented and it was observed that buffered

polymer substrate-based sensors offer good performance (comparable to their rigid counterparts) and also the

potential for low costmanufacturing due to reduced substrate costs.

The use ofmagnetic sensing formedical applications presents an area of opportunity, growth and expansion

for themagnetic sensor industry.Magnetic sensing systems have been demonstrated for different applications

such as tumor detection, pathogenDNAdetection, neuronal network sensing, drinkingwater contaminant

detection,magnetic encephalograms, etcHowever, the need of the hour is to rigorously test and subject the

plethora ofmagnetic biomedical sensors discussed in research articles to clinical trials and bring them from the

lab to themarket. This will havewide-ranging impact on the cost and delivery of preventive, diagnostic and

curative healthcare.

Numerous phenomena have been exploited over the years to developmagnetic field sensing devices.

Currently, all sensingmethods used formagneticmeasurements are relativelymature. Improvedmaterials

and better electronics are delivering incremental improvements in performance, size and power

consumption. The demand for higher sensitivity in industrial applications will most likely lead to a partial

replacement ofHall effect sensors by GMRor TMR sensors, which in turn will have to becomemore

affordable. The performance increase of printing technologies, especially in terms of resolution, is a

promising development fromwhich innovation in the areas of sensor fabrication and integration can be

Figure 21.Comparison of themeasurement range ofmagnetic field sensors.
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Table 1.Comparison of different sensors.

Sensor Sensitivity Resolution (nT/ Hz ) Power (mW) Bandwidth (kHz) Cost (US$)

Research Hall (graphene [23]) 5700V/AT 50 − 3 −

AMR [38] 4200 ppm/Oe 150 0.4545 − −

GMR [64] 6800 ppm/Oe 2.7 − 100 −

TMR [84] 33000 ppm/Oe 0.95 0.089 100 −

GMI [120] 550000 ppm/Oe 0.122 − − −

Commercial Hall (AllegroA1324)[126] 5mV/Oe 130 35 17 2.2

Hall (AllegroA1325)[126] 3.125mV/Oe 130 35 17 2.2

Hall (AllegroA1326)[126] 2.5mV/Oe 130 35 17 2.2

AMR (HMC-1002) [127] 16mV/Oe 2.7 − 5000 34

AMR (KMX2XS) [128] 1.87mV/Oe − 45 − 8.71

AMR (HMC-1043L) [129] 5mV/Oe − 25 5000 −

GMR (AAH002-02E) [125] 72.5mV/Oe − 100 75 13.85

GMR (AAH004-00) [125] 4mV/Oe − N/A − 6.65

GMR (AA002-02) [125] 3.6mV/Oe − N/A − 9.6

TMR (STJ-240) [130] 120mV/Oe 5 14.4 5000 50

GMI (MI-CB-1DM) [131] 400mV/Oe 15 10 −

GMI (MI-CB-1DH) [132] 100000mV/Oe 0.001 75 1 −

1
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expected in the future. Discovery of newer transductionmethods,materials and device structures can further

pushmagnetic field sensing into a new paradigm.
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