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Abstract
Quantum illumination theoretically promises up to a 6 dB error‐exponent advantage in
target detection over the best classical protocol. The advantage is maximised by a regime
that includes a very high background, which occurs naturally when one considers mi-
crowave operation. Such a regime has well‐known practical limitations, though it is clear
that, theoretically, knowledge of the associated classical benchmark in the microwave is
lacking. The requirement of amplifiers for signal detection necessarily renders the optimal
classical protocol here different to that which is traditionally used, and only applicable in
the optical domain. This work outlines what is the true classical benchmark for the
microwave Quantum illumination using coherent states, providing new bounds on error
probability and closed formulae for the receiver operating characteristic, for both optimal
(based on quantum relative entropy) and homodyne detection schemes. An alternative
source generation procedure based on coherent states is also proposed, which demon-
strates the potential to make classically optimal performances achievable in optical ap-
plications. The same bounds and measures for the performance of such a source are
provided, and its potential utility in the future of room temperature quantum detection
schemes in the microwave is discussed.
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1 | INTRODUCTION

Quantum illumination (QI) [1–6] is a proposed protocol for
quantum radar based on signal‐idler entanglement, which
theoretically, may achieve a 6 dB advantage in signal‐to‐noise
ratio (SNR) (error‐exponent) over its optimal classical counter-
part, that is, one without entanglement, operating at the same
transmitted energy. This advantage persists even for weakly
reflecting targets embedded in a high background and despite the
fact that the protocol itself is entanglement‐breaking [7].

Original work on QI typically assumed operation at optical
wavelengths where experimental tools are more readily avail-
able. However, at these wavelengths, one of the criteria for an
optimal quantum advantage is not realistic: a high background.
The natural solution was the theoretical extension of QI's
operation to the microwave domain [8], though practical dif-
ficulties, including source‐generation and signal‐detection, are
well‐known [9]. Despite this, recent initial microwave QI ex-
periments [10, 11] have been carried out showing improved

performances over their chosen classical comparison cases.
This has been the subject of much debate, since these classical
comparison cases are indeed different from the traditionally
‘optimal’ one based on coherent states and, as such, their
performances may be viewed as sub‐optimal. However, there
are very few known methods used for generating a low‐energy
semi‐classical source for room temperature applications.
Currently, there are three potential procedures:

1. Source is generated with an amplifier. A microwave coherent
state at the single‐photon level must first be generated at an
ultra‐low temperature (∼7mK). Due to detector limitations
and free‐space loss, the signal must first be passed through an
amplifier prior to probing a target region at ∼300K. This
process necessarily introduces noise to the state rendering
the resultant source sub‐optimal in the traditional sense.

2. The source is generated without an amplifier. Recently,
solid‐state devices have been shown to be able to produce
‘microwave lasers’, or masers, at room temperature. In QI
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applications, however, these sources must be heavily
attenuated in order to achieve low enough photon numbers
to form sensible comparisons with entanglement‐based QI
sources. In order to minimise noise and maintain an
approximately coherent source, it is necessary to carry out
this attenuation at cryogenic temperatures as will be seen in
this work. Note that such a scheme has, as of yet, not been
experimentally demonstrated but will be proposed as an
alternative in this work with its efficacy studied.

3. Source is generated without an amplifier or cryogenic
attenuation. Such a protocol would require reliable low‐
energy microwave coherent state generation in addition to
quantum‐limited microwave detectors robust to thermal
noise. This would ultimately yield the theoretically ‘optimal’
classical source previously described, coinciding with what
can be seen, as of yet, only in optical applications; however,
there is no currently known way to realise this.

Note that the source generation method used in the pro-
totypical experiment [11] was in fact a hybrid between pro-
cedures (1) and (2): a room temperature microwave source
generated a weak coherent tone followed by a chain of low
temperature attenuators, which was then amplified to enable
returning signal detection. Further, despite the fact that the
procedure (3) is impossible to carry out with current experi-
mental capabilities, it persists to be assumed as the classical
benchmark in almost all literature pertaining to microwave QI
when benchmarking performances. While it is certainly valid
and optimal in the optical regime, this does not translate to the
microwave where it simply does not exist. Knowledge of the
true, regime‐dependent, classical benchmark is crucial in order
to ascertain the existence of a quantum advantage.

Regardless of the classical benchmarking procedure
considered, limitations on detectors pose problems for realistic
implementation of coherent state illumination. Irrespective of
how the source is generated and transmitted, use of a quantum
detector is needed in order to receive such low‐energy returning
signals since homodyne detection does not work; a quantum
detector design is required such that even if the input is coherent
(classical), the radar system, as a whole, is still in fact quantum.

This study outlines a true classical benchmark for micro-
wave QI for room temperature applications, based on the fact
that these techniques are, so far, the only known tools of
generating an optimal classical source at the microwave.
Section 2.1 outlines two protocols for microwave QI using
coherent states: the first, for a source generated with amplifi-
cation; the second, proposed by this work, based on the output
of a room temperature maser followed by heavy cryogenic
attenuation. The tools of quantum hypothesis testing (QHT)
are used in Sections 2.2 and 2.3 where formulae for the
quantum Chernoff bound (QCB) and quantum relative en-
tropy (QRE) are given under symmetric and asymmetric
considerations, respectively, yielding new error bounds for the
microwave classical benchmark. In Section 2.4, a protocol
involving homodyne detection of the returning signal is
considered with the resulting receiver operating characteristic
(ROC) computed. In all cases, the results for these new

classical benchmarks are compared with the traditional one
applicable only in the optical regime, constrained such that the
total energy by which the target is irradiated is maintained.
Until here, this work's analyses are confined to regimes
whereby the simultaneous study and comparison of classical
benchmarks (1), (2) and (3) are possible. The sheer magnitude
of the noise introduced by procedure (1) render the signal
energy per mode so large that any quantum advantage would
be diminished owing to the fact that the two‐mode, signal‐
idler, entanglement correlations enabling the QI advantage
become irrelevant at high brightness. Thus, in Section 3, the
results of Section 2 are studied as the classical benchmark and
compared with the performance of a two‐mode squeezed
vacuum (TMSV) source for entanglement‐based QI, within the
regime where such a protocol may be applied.

2 | CLASSICAL BENCHMARK FOR
MICROWAVE QI

2.1 | Protocols for microwave QI using
coherent states

2.1.1 | Source generated with an amplifier

For microwave QI experiments, the classical benchmark is ob-
tained by replacing the QI source with one for coherent states in
a fridge operating at ≃7mK. Amplifiers must be used to take the
source out of this environment in order to probe and detect the
presence or absence of a target existing at room temperature
(300K), otherwise the SNR at detection will be too low. Such a
process necessarily changes the returning state at the detector to
one whose properties are typically very different to those used so
far in classical benchmarking for QI. The protocol itself, illus-
trated in Figure 1, is outlined as follows:

• For the purpose of classical benchmarking, the input is
prepared in a coherent state jNS〉⊗M with mean number of

F I GURE 1 Protocol for experimental microwave quantum
illumination using a coherent state source generated with an amplifier. Each
source mode is prepared in a coherent state jNS〉 at 7mK, which is passed
through an amplifier of gain gA to probe a target with reflectivity η residing at
room temperature, 300K. The received signal is then mixed with the
background, which is in a thermal state ρth(NB)
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photons per mode, M, equal to NS. Quadrature operators are
given by x̭ 0 ¼ ðq0

̭
; p0

̭
ÞT with mean x0 ¼ ð

ffiffiffiffiffiffi

NS
p

; 0Þ and
covariance matrix V0 = (1/2)12.

• Upon exiting the fridge to probe a target region at T = 300K,
the source must pass through an amplifier characterised by
gain gA ≥ 1, which assuming phase‐preserving quantum‐
limited amplification, transforms quadratures as

x̭ 0 → x̭ 1 ¼
ffiffiffiffiffigA

p x̭ 0 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi

gA − 1
p

x̭ A; ð1Þ

where x̭ A are the quadrature operators associated with the
amplifier. Rescaling the input as x̭ 0 → x̭ 0=

ffiffiffiffiffigA
p yields the

output as

x̭ 1 ¼ x
̭
0 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi

gA − 1
p

x̭ A ð2Þ

with mean x1 ¼ x0 and covariance matrix V1 = NA12 where
NA ¼ NB þ 1

2gA is the number of photons added due to the
amplifier, constituting classical noise. Note that NA ≥ NB,
where NA is the mean number of photons associated with the
ambient background given by Planck's law, with equality when
gA = 1, a minimum. This state constitutes the source seen by
the target; the target is irradiated by a displaced thermal state
with higher total energy due to the combined photons from
the original coherent state and those added through the
necessary use of an amplifier.

� The interaction of the source x̭ 1 with the target may be
modelled as a beamsplitter with transmissivity η. The
returning signal at the receiver, x̭ 2, is mixed with background
photons constituting a thermal state ρth(NB) with NB/(1 − η)
average photons per mode and quadrature operators x̭ B such
that

x̭ 2 ¼
ffiffiffi

η
p x̭ 1 þ

ffiffiffiffiffiffiffiffiffiffi

1 − η
p

x̭ B: ð3Þ

this state has mean value x2 ¼ ð
ffiffiffiffiffiffiffiffiffi

ηNS
p

; 0Þ and variance,

V2 ¼ η

�

1
2
þ NA

�

12 þ ð1 − ηÞ
�

1
2
þ NB

1 − η

�

12

¼
�

1
2
þ ηNA þ NB

�

12:
ð4Þ

� Target detection is then reduced to discriminating between
two hypotheses: H0, target is absent, and the received signal
is just the thermal state x̭ B with zero mean and covariance
VB = (NB + 1/2)12; and H1, target is present, and the
received signal is x̭ 2.

2.1.2 | Source generated without an amplifier

An alternative benchmark for microwave QI starts by gener-
ating a high energy microwave coherent state, such as the
output of a room temperature maser. By passing this state
through an ultra‐cold beamsplitter, the source may be ener-
getically diminished, providing a suitable benchmark for QI. At

the same time, the necessary introduction of environmental
noise through the beam splitting process is minimised by
ensuring the local ambient temperature, and thus the local
ambient background is small. The protocol, illustrated in
Figure 2, is outlined as follows:

� The input is prepared in coherent state jNS〉⊗M with mean
number of photons per mode M equal to NS ≫ 1. Quad-
rature operators are given by x̭ 0 ¼ ðq0

̭
; p0

̭
ÞT with mean

x0 ¼ ð
ffiffiffiffiffiffi

NS
p

; 0Þ and covariance matrix V0 = (1/2)12.
� The source initially passes through a beamsplitter of trans-

missivity ϕ contained inside a fridge maintained at tem-
perature T. Its specifications are such that ϕ ≪ 1 such that
the resulting output state has a low energy suitable for use as
a QI benchmark. The state transforms as x̭ 0 → x̭ 1 with
mean x1 ¼ ð ffiffiffiffiffiffiffiffiffi

ϕNS
p

; 0Þ and covariance matrix
V1 ¼ ðnT þ 1=2Þ12, where nT ¼ ðexp½ℏν=kBT − 1�Þ−1.

� As previously described, the interaction of the source x̭ 1
with the target may be modelled as a beamsplitter with
transmissivity η such that, at the receiver, we have the return
state x̭ 2 with mean x2 ¼ ð

ffiffiffiffiffiffiffiffiffiffiffiffi

ηϕNS
p

; 0Þ and covariance matrix
V2 ¼ ðNB þ ηnT þ 1=2Þ12 is the number of environmental
photons per mode associated with the fridge operating at
temperature T.

� As before, target detection is then reduced to discriminating
between two hypotheses: H0, target is absent, and the
received signal is just the thermal state x̭ B with zero mean
and covariance VB = (NB + 1/2)12; and H1, target is present,
and the received signal is x̭ 2.

2.2 | Classical benchmark for symmetric
QHT

Under symmetric QHT one considers the minimisation of the
average error probability in the discrimination of two quantum

F I GURE 2 Protocol for experimental microwave quantum
illumination using a coherent state source generated without an amplifier.
Each source mode is prepared in a coherent state jNS〉 at 300K with
NS ≫ 1, that is, the output of a room temperature maser. Attenuation at
temperature T (K) with a beamsplitter with transmissivity ϕ mixes the source
with environmental noise nT yielding the final source, which probes the target
with reflectivity η residing at room temperature, 300K. The received signal is
then mixed with the background, which is in a thermal state ρth(NB)
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states. Applied to target detection, it provides a measure of the
distinguishability of the returning states under each of the two
alternative hypotheses: target present and target absent. The
QCB provides an upper bound to the minimum error proba-
bility and for Gaussian states, may be straightforwardly
computed using closed formulae (see Appendix A1 for details).

2.2.1 | Source generated with an amplifier

Beginning by considering the first protocol for microwave
coherent state generation with amplification, we can compute
the QCB for such a source. Using an algebraic computation
program, it can be found that the QCB for target detection
using amplified microwave coherent states is given by

PCS;amp
err ≤

1
2ξ1

e−MηNSξ2 ; ð5Þ

where

ξ1 ¼
�

1 þ 2NBð1 þ NBÞ þ ηðNA þ 2NANBÞ

−2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

NBð1 þNBÞðηNA þ NBÞð1 þ ηNA þ NBÞ
p

�1=2
;

ð6Þ

and

ξ2 ¼
ð
ffiffiffiffiffiffiffi

NB
p

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 þ NB
p

Þð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ηNA þ NB
p

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 þ ηNA þ NB
p Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1 þ NBÞð1 þ ηNA þ NBÞ
p

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

NBðηNA þ NBÞ
p :

ð7Þ

When amplifier noise NA → 0, the usual QI using coherent
state bound is recovered, which is valid in, for example, the
optical regime, where amplifiers are not required,

PCS
err ≤

1
2
e−MηNSð

ffiffiffiffiffiffiffiffiffi

NBþ1
p

−
ffiffiffiffiffi

NB
p

Þ2 : ð8Þ

This coincides with the performance of procedure
Equation (3) detailed in Section 1.

Further, in the limit where the background is very large,
NB ≫ 1 we have that

PCS;amp
err ¼ PCS

err ≈
1
2
e−MηNS=4NB ; ð9Þ

valid for any value of NA, over which QI using a TMSV state
has the well‐established factor of four error‐exponent
advantage,

PTMSV
err ≲

1
2
e−MηNS=NB ; ð10Þ

in the limit of large background, NB ≫ 1, and small reflectivity,
η ≪ 1.

2.2.2 | Source generated without an amplifier

The second, alternative, protocol for the generation of low‐
energy microwave coherent sources for the purpose of QI
benchmarking has not been experimentally demonstrated so
far. It requires precise use of a room temperature maser
alongside controlled beam splitting at cryogenic temperatures
in order to create a suitable state for illumination. As done
previously, using an algebraic computation program, it can be
found that the QCB for target detection using microwave
coherent states generated in this manner is given by

PCS;mas
err ≤

1
2χ1

e−MηNSϕχ2 ; ð11Þ

where

χ1 ¼
�

1 þ 2NBð1 þ NBÞ þ ηðnT þ 2nTNBÞ

− 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

NBð1 þ NBÞðηnT þ NBÞð1 þ ηnT þ NBÞ
q

�1=2
;

ð12Þ

and

χ2 ¼
ð
ffiffiffiffiffiffiffi

NB
p

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 þ NB
p

Þð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ηnT þ NB
p

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 þ ηnT þ NB
p

Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1 þ NBÞð1 þ ηnT þ NBÞ
p

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

NBðηnT þ NBÞ
p :

ð13Þ

Notice that the QCB for a room temperature‐generated
source, Equation (11), is a very similar form to that of one
generated with amplification, Equation (5). The change of
parameters ξ1(2) → χ1(2) is done by replacing the added noise
due to amplification NA → nT , the number of photons per
mode associated with the fridge operating at temperature T K.
Further, there is an additional factor ϕ, the transmissivity of
the cryogenic beamsplitter inside the fridge used to create the
low‐energy QI source in the error‐exponent, essentially
modulating the SNR by that same amount.

As the fridge temperature is T → 0 K, the added noise is
nT → 0 as well. Imposing this limit along with that for NB ≫ 1,
the error probability becomes

PCS;mas
err ≃

1
2
e−MηϕNS=4NB ; ð14Þ

and such a source generated at room temperature performs as
the well‐known classical benchmark for the optical regime.
However, in this scenario, such a performance may be achieved
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providing the temperature at which attenuation takes place is
suitably low.

Figure 3 plots the total error probability, using the QCB,
for the microwave QI classical benchmarks: (a) with the source
generated inside a fridge followed by amplification (amp), and
(b) with the source generated by a room temperature maser
followed by attenuation at temperature T (mas, T K),
compared with the un‐amplified optical coherent state per-
formance, which would coincide with protocol (c) from Sec-
tion 1 if it were possible (at the microwave). In order to
maintain the overall energy by which the target is irradiated, the
substitutions ϕNS →NS þNA − nT and NS → NS + NA are
made for the latter two, un‐amplified, cases. When the source is

generated by a maser followed by cryogenic attenuation, the
performance closely coincides with that of the coherent state
operating in the optical domain at only 10 K.

2.3 | Classical benchmark for asymmetric
quantum hypothesis testing

Asymmetric QHT, rather than minimising the total average
error probability, allows for some small, fixed type‐I (false
alarm) error, Pfa < ϵ, in an attempt to further minimise the
type‐II (missed detection) error, Pmd. Following quantum
Stein's lemma, the QRE and the QRE variance (QREV) give
the optimal decay rate of the type‐II error in this scenario
(see Appendix A2 for details). An alternative approach using
the quantum Hoeffding bound [12, 13] is not considered
here.

2.3.1 | Source generated with amplification

It can be found that the QRE and QREV for target detection
using microwave coherent states generated with amplification
are given by

DCS;amp ¼ 1
2

�

ð1 þ 2NB þ 2ηNSÞln
�

1 þ 1
ηNA þ NB

�

− ð1 þ 2NBÞln
�

1 þ 1
NB

�

þ ln
�ðηNA þ NBÞð1 þ ηNA þ NBÞ

NBð1 þ NBÞ

��

;

ð15Þ

and

V CS;amp ¼ NBð1 þ NBÞln2
�

1 þ 1
NB

�

− 2NBð1 þ NBÞln
�

1 þ 1
NB

�

ln
�

1 þ 1
ηNA þ NB

�

þ
�

NBð1 þNBÞ þ ηNS þ 2ηNSNB
�

ln2
�

1 þ 1
ηNA þ NB

�

;

ð16Þ

respectively. As in the symmetric case, when amplifier noise
NA → 0, these expressions recover the known quantities for a
coherent state transmitter [14, 15] given by

DCS ¼ ηNS ln
�

1 þ 1
NB

�

; ð17Þ

and

V CS ¼ ηNSð2NB þ 1Þln2
�

1 þ 1
NB

�

ð18Þ

F I GURE 3 Quantum Chernoff bound for microwave Quantum
illumination (QI) classical benchmarks: (a) with the source generated inside
a fridge followed by amplification (amp), and (b) with the source generated
by a room temperature maser followed by attenuation at temperature
T (mas, T K), compared with the optical coherent state performance. For
the latter two cases, we make the substitutions ϕNS → NS þNA − nT and
NS → NS + NA, respectively, with NS = 10−2. We assume the target is
maintained at temperature T = 300K, yielding NB = 6250. Upper panel: NA =
NB = 6250, the minimum, with reflectivity η = 10−2 corresponding to a target
range of 0.25 m assuming a receiver collecting area of 0.1 m2. Lower panel:
NA = 5 � 108, a typical experimental value, with reflectivity η = 10−7

corresponding to a target range ≃ 80m. Note with lower NA and thus signal
energy, (mas, 300 K) overlaps with amp (dashed line) highlighting the value of
cryogenic attenuation. At higher NA all of the (mas, T K) plots here overlap
with that for the optical coherent state due to the magnitude of NA and
resultant energies
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2.3.2 | Source generated without amplification

Alternatively, for the coherent state source generated without
amplification, the QRE and QREV for target detection are
given by

DCS;mas ¼ 1
2

 

ð1 þ 2NB þ 2ηϕNSÞln
 

1 þ 1
ηnT þ NB

!

− ð1 þ 2NBÞln
�

1 þ 1
NB

�

þ ln

 

ðηnT þ NBÞð1 þ ηnT þ NBÞ
NBð1 þ NBÞ

!!

;

ð19Þ
and

V CS;mas ¼ NBð1 þ NBÞln2
�

1 þ 1
NB

�

− 2NBð1 þ NBÞln
 

1 þ 1
NB

!

ln

 

1 þ 1
ηnT þ NB

!

þ
�

NBð1 þ NBÞ þ ηϕNS þ 2ηϕNSNB
�

ln2

 

1 þ 1
ηnT þ NB

!

;

ð20Þ

respectively. As in the case for the QCB, the forms of QRE
and QREV for the two coherent state sources are very similar
with the replacement NA → nT and an additional factor
NS → ϕNS due to the action of a beamsplitter.

Together, combined with the constraint that Pfa ≤ ϵ, these
can be used to compute the corresponding probability of
missed detection by

Pmd ¼ exp
n

−
h

MDþ
ffiffiffiffiffiffiffiffiffi

MV
p

Φ−1ðϵÞ þ Oðlog MÞ
io

; ð21Þ

enabling us to calculate the relevant ROC curves.
Figure 4 plots the ROCs, based on the QRE and QREV, for

microwave QI classical benchmarks: (a) with the source gener-
ated inside a fridge followed by amplification (amp), and (b) with
the source generated by a room temperature maser followed by
attenuation atTK(mas,TK), comparedwith the optical coherent
state performance, which would coincide with protocol (c) from
Section 1 if it were possible (at the microwave). For the latter two
cases, we make the substitutions ϕNS →NS þNA − nT andNS
→NS + NA, respectively, to ensure that the total energy bywhich
the target is irradiated is maintained. As seen in the symmetric
case with the QCB, attenuating the maser source at a cryogenic
temperature achieves an ROC closely coinciding with that of the
optical coherent state.

2.4 | ROC with homodyne detection

In the case of coherent states with homodyne detection
(combined with coherent integration and binary decision‐
making on the measurement results), the ROC is given by
combining the following expressions.

Phom
fa ðxÞ ¼ 1

2
erfc
�

x
ffiffiffiffiffiffiffiffiffiffiffi

2Mλ0
p

�

; ð22Þ

Phom
md ðxÞ ¼ 1

2
erfc

"

M
ffiffiffiffiffiffiffiffiffi

ηNS
p

− x
ffiffiffiffiffiffiffiffiffiffiffi

2Mλ1
p

#

; ð23Þ

where erfcðzÞ :¼ 1 − 2π−1=2 ∫ z
0 expð−t2Þdt is the comple-

mentary error function [15].
Regardless of means of source generation and in both

optical and microwave applications, the mean value of the
returning signal, in the case where the target is present, is the
same and equal to ð ffiffiffiffiffiffiffiffiffiffiffiffiffi

ηNS; 0
p Þ. Further, in the case of a null

hypothesis, for Equation (22) we have that λ0 = NB + 1/2
which holds in all considered classical benchmarking protocols.
However, the effect of both amplification and attenuation in
the two protocols considered is to introduce additional noise to
the system prior to target illumination. Thus for Equation (23),
we have that λ1 → λamp = ηNA + NB + 1/2 in the amplified
case, λ1 → λmas¼ ηnT þ NB þ 1=2 in the case of the cryo-
genically attenuated maser, and λ1 → λopt = NB + 1/2 in the
(optimal) optical case. Then, using the appropriate values for
variances, Equation (22) can be inverted and substituted into
Equation (23) to derive the corresponding ROC in each of the
considered protocols.

Figure 5 plots the ROC curves for coherent state microwave
illumination with homodyne detection: (a) with the source
generated inside a fridge followedby amplification (amp), and (b)
with the source generated by a room temperaturemaser followed
by attenuation at temperature T (mas, T K), compared with the
optical coherent state performance that would coincide with
protocol (c) from Section 1 if it were possible (at the microwave).
For the latter two cases, we make the substitutions
ϕNS → NS þ NA − nT and NS → NS + NA, respectively, to
maintain the total energy incident on the target. As seen with
previous results, the proposed technique for source generation
based on the output of a room temperature maser performs very
closely to the optimal, optical coherent state as long as the
attenuating temperature is low.

3 | USING THE NEW CLASSICAL
BENCHMARK

The purpose of the comparisons, seen in Figures 3–5, is to
allow for the proper comparison of the three classical bench-
marks first outlined in Section 1 by constraining the total en-
ergy by which the target is irradiated. Procedure (1) is
responsible for setting this constraint due to the magnitude of
the noise introduced by the room temperature amplifier. At a
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minimum, this is equal to the ambient background, which for
room temperature applications (T = 300 K), is given by NA =
NB ≃ 6250. This further determines the necessary values of
other parameters such as reflectivity η, which corresponds to
target range, to ultimately allow for the performance
comparison.

Of course, such high signal energies per mode are not a valid
regime for entanglement‐based QI since the correlations that
quantify the amount of entanglement are maximised forNS ≪ 1;
they become irrelevant for NS ≫ 1 [15]. Limiting our attentions
to only procedures (2), room temperature maser source followed

by cryogenic attenuation, and (3), currently only possible in the
optical domain, a final comparison can be made to the
entanglement‐based QI using a TMSV source.

Figure 6 plots the QCBs as a function of total number of
probingsM for the classical benchmark (b) (mas,TK) the optical
coherent state (c) and the TMSVQI protocol (see Reference [15]
for full details). Energetic constraints are determined by (mas,
TK) whereby the amplification process alters the total energy by
which the target is irradiated as NS →NS þ nT , and these are
the substitutions made for energy in the latter two cases. Note
that the values plotted for the TMSV source are exact and valid

F I GURE 4 Receiver operating characteristic curves generated using the quantum relative entropy and quantum relative entropy variance for microwave
quantum illumination (QI) classical benchmarks: (a) with the source generated inside a fridge followed by amplification (amp), and (b) with the source generated
by a room temperature maser followed by attenuation at temperature T (mas, T K), compared with the optical coherent state performance. For the latter two
cases, we make the substitutions ϕNS → NS þNA − nT and NS → NS + NA, respectively, with NS = 10−2. We assume the target is maintained at temperature
T = 300K, yielding NB = 6250. Upper panel: NA = NB = 6250, the minimum, with reflectivity η = 10−2 corresponding to a target range of 0.25 m assuming a
receiver collecting area of 0.1 m2. Lower panel: NA = 5 � 108, a typical experimental value, with reflectivity η = 10−7 corresponding to a target range ≃ 80m. In all
cases, we set M = 105. Note with lower NA and thus signal energy, (mas, 300 K) overlaps with amp (dashed line) highlighting the value of cryogenic attenuation. At
higher NA all of the (mas, T K) plots here overlap with that of the optical coherent state due to the magnitude of NA and resultant energies
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for all parameter values, that is, no assumptions have been made
as to their relative magnitudes.

Figure 7 shows the ROCs, based on the QRE and QREV
(see Reference [15] for full details), for the same sources and

F I GURE 5 Receiver operating characteristic curves for coherent state
microwave illumination with homodyne detection: (a) with the source
generated inside a fridge followed by amplification (amp), and (b) with the
source generated by a room temperature maser followed by attenuation at
temperature T (mas, T K), compared with the optical coherent state. For
the latter two cases, we make the substitutions ϕNS → NS þNA − nT and
NS → NS + NA, respectively, with NS = 10−2. Assume the target is maintained
at temperature T = 300K, yielding NB = 6250. Upper panel: NA = NB = 6250,
the minimum, with η = 10−5 corresponding to a target range ≃ 8m assuming a
receiver collecting area of 0.1 m2 and M = 105. Middle panel: NA = NB = 6250,
the minimum, with η = 10−8 and M = 103. For these two panels, with lower
NA and thus signal energy, (mas, 300 K) overlaps with amp (dashed line)
highlighting the value of cryogenic attenuation. Lower panel: NA = 5 � 108, a
typical experimental value, with η = 10−8 and M = 103. Note that all of the
(mas, T K) plots here overlap with that of the optical coherent state due to the
magnitude of NA and resultant energies. Middle and lower panels correspond
to a target range ≃ 250m assuming a receiver collecting area of 0.1 m2

F I GURE 6 Quantum Chernoff bound for two‐mode squeezed
vacuum microwave quantum illumination compared with the new classical
benchmarks. The considerations are (a) the source generated by a room
temperature maser followed by attenuation at temperature T (mas, T K),
(b) comparison with the optical coherent state performance, and (c) the
TMSV. For the latter two cases, we make the substitutions NS → NS þ nT
with NS = 10−2. We assume the target is maintained at temperature T = 300K,
yielding NB = 6250. Upper panel: T = 0.1 K ⇒ nT ¼ 1:6. Middle panel:
T = 0.01 K ⇒ nT ¼ 8:3 � 10−3 . Lower panel: T = 0.001 K ⇒ nT ¼
1:4 � 10−21. We set η = 10−2 corresponding to a target range of 0.25m
assuming a receiver collecting area of 0.1m2. As expected, procedure (b) for
practical microwave QI benchmarking coincides with the theoretically optimal,
optical, benchmark (equivalent to procedure (c)) at very low temperatures
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under the same energetic constraints as Figure 6. As for the
TMSV QCB, here we use the exact expressions for QRE and
QREV in the computation of the ROC such that it is valid for
any choice of parameter values.

Results show, as expected, that provided attenuation occurs
at small enough T, added noise may be diminished such that
the practical coherent state source generation (b) may achieve
performances coinciding with the ‘optimal’ classical bench-
mark (c), currently only achievable at the microwave. Further,
in the regimes that considered the TMSV state retains its
quantum advantage.

4 | CONCLUDING REMARKS

The aim of this work is to outline a true classical benchmark
for microwave QI. Current experimental abilities (also limita-
tions) mean that the only way to generate an ‘optimal’ classical

state in the microwave regime is also one which ultimately
renders the source ‘sub‐optimal’ compared to traditional no-
tions of the term, though these are based on optical applica-
tions where the impeding issues do not exist.

As yet, the only readily available technique for generating
microwave coherent states for room temperature applications
(for the purposes of QI benchmarking) requires the use of
amplifiers to enable detection of a transmitted signal from a
low‐temperature source environment to the target region. This
study outlines the practical protocol for microwave QI using
coherent states and computes the appropriate performance
metrics, which may be used for comparisons, in terms of the
total noise added due to the necessary use of amplifiers in the
protocol. A new bound on error probability for classical
benchmarking in the microwave is given, alongside closed
formulae for the ROCs using both the QRE for optimal
performances and with homodyne detection, showing the
inherent sub‐optimality of such a procedure.

A further method is proposed based on a source generated
via cryogenically attenuating the output of a room temperature
maser. Then, by choosing appropriate levels of attenuation
within a cold enough environment, one could potentially
generate any appropriately specified source for the given detec-
tion problem, taking detector limitations into account, forgoing
the need for amplification. Bounds on target detection error
probability using the QCB are given alongside ROCs based on
the QRE and a scheme based on homodyne detection. Results
show that such a protocol shows promise in being able to act as
an ‘optimal’ one in the microwave, demonstrating a performance
coinciding with optical coherent states provided attenuation
occurs at a low enough temperature to minimise added noise.

Recent developments in continuous wave room tempera-
ture masers using optically pumped nitrogen‐vacancy (NV−)
defect centres in diamond [16] and a pentacene‐doped crystal
[17] give promise to the eventual realisation of such a pro-
cedure. Operating at 1.45 GHz and reporting a peak output
power of ∼ − 90dBm and −25dBm, respectively, yielding a rate
of ∼1012 and ∼1018 photons per second, such devices could
potentially be used for microwave coherent state source gen-
eration provided their noise temperatures are kept low.

In Section 3, the results from preceding sections were
employed as the classical benchmark to compare with TMSV
performances, verifying results hold even in regimes where a
quantum advantage exists. Explicitly, this regime is one of low
brightness (NS ≪ 1), high background (NB ≫ 1), naturally
satisfied in the microwave domain, and low reflectivity (η ≪ 1).
There is, however, a trade‐off between the first and last
requirements—particularly with respect to the fact that η de-
termines to what problems QI may be applied as it in-
corporates the target range, which is, by far, the most dominant
loss factor. Confined to a single‐use protocol, there is no
theoretical limitation to the coherent state signal energy such
that propagation losses may be overcome to still yield a result.
For a protocol based on entanglement, having to keep NS small
means that the burden of overcoming such losses is shifted to
the number of uses M, rendering the value so large that, at least
in the near‐term, may be experimentally unfeasible.

F I GURE 7 Receiver operating characteristics for two‐mode squeezed
vacuum microwave quantum illumination (QI) compared with new classical
benchmarks. The considerations are: (a) the source generated by a room
temperature maser followed by attenuation at temperature T (mas, T K),
(b) compared with the optical coherent state performance, and (c) the
TMSV. For the latter two cases, we make the substitutions NS →NS þ nT
with NS = 10−2. We assume the target is maintained at temperature T = 300K,
yielding NB = 6250. Upper panel: T = 0.1 K ⇒ nT ¼ 1:6. Lower panel:
T = 0.001 K ⇒ nT ¼ 1:4 � 10−21. We set η = 10−2 corresponding to a target
range of 0.25 m assuming a receiver collecting area of 0.1 m2. As expected,
procedure (b) for practical microwave QI benchmarking coincides with the
theoretically optimal, optical, and benchmark (equivalent to procedure (c)) at
very low temperatures
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Although this work's focus has been on classical bench-
marking for microwave QI, the proposed alternative method,
which may prove optimal, as in the optical regime, relies on
technologies, which are fundamentally quantum. The under-
lying process in these room temperature maser devices is the
optical pumping of quantum spin states that are engineered to
exist within the relevant material. Furthermore, for this to be
effective and have signal states with quantum‐limited noise at
the microwave, the use of cryogenic temperature appears to be
essential. Yet, any illumination device comprises two distinct
components: the source generator and the signal detector. The
enhancement of either or both of these through quantum
means would ultimately yield a quantum‐enhanced device.
Thus, one could argue that the classical benchmark for mi-
crowave QI proposed here could play two roles: first, at short
ranges depending on experimental capabilities, as an optimal
classical benchmark for evaluating a quantum advantage; and
second, at medium‐long ranges, a potential QI device that
simply does not use entanglement.
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APPENDIX A

A.1 Gaussian state hypothesis testing and detection
Consider the task of discriminating between two arbitrary N‐
mode Gaussian states, ρ

̭
0ðx0;V0Þ and ρ

̭
1ðx1;V1Þ, with mean xi

and CM Vi with quadratures x̭ ¼ ðq̭ 1; p
̭

1;…; q
̭

N ; p
̭

NÞ
T and

associated symplectic form

Ω¼ ⊕
N

k¼1

�

0 1
−1 0

�

ðA1Þ

Consider M identical copies ρ
̭ ⊗M
i of the state ρ

̭
i encoding the

classical information bit i ∈ {0, 1}. The optimal measurement
for the discrimination is the dichotomic positive‐operator valued
measure (POVM) [18] E0 = Π(γ+), E1 = 1 − Π(γ+), where Π(γ+)
is the projector on the positive part γ+ of the non‐positive
Helstrom matrix γ :¼ ρ

̭ ⊗M
0 − ρ

̭ ⊗M
1 . This allows for ρ

̭
0 and ρ

̭
1

to be discriminated with a minimum error probability given by
the Helstrom bound, Pmin

err ¼ ½1 − Dðρ̭ ⊗M
0 ; ρ

̭ ⊗M
1 Þ�=2, where D is

the trace distance [19].
This forms the symmetric approach to QHT where one's

aim is to obtain a global minimisation over all errors, irre-
spective of their origin. In this case, one considers the mini-
misation of the average error probability

Perr :¼ PðH0ÞPðH1jH0Þ þ PðH1ÞPðH0jH1Þ; ðA2Þ

where P(H0) and P(H1) are the prior probabilities associated
with the two hypotheses.

In asymmetric QHT, we wish to minimise one type of
error as much as possible while allowing for some flexibility on
the other. Consider again M identical copies of the state ρ

̭
i

(ρ
̭ ⊗M
i ), encoding the classical bit i ∈ {0, 1}. As in the sym-

metric case, the optimal choice of measurement is a dichoto-
mic POVM {E0, E1}. From the binary outcome, we can define
the two types of errors, that is, the type‐I (false alarm) error

Pfa :¼ PðH1jH0Þ ¼ Tr
�

E1ρ
̭ ⊗M
0

�

; ðA3Þ

and the type‐II (missed detection) error

Pmd :¼ PðH0jH1Þ ¼ Tr
�

E0ρ
̭ ⊗M
1

�

ðA4Þ

These probabilities are dependent on the number M of
copies and, for M ≫ 1, they both tend to zero, that is,

Pfa ≃ e−αRM ; Pmd ≃ e−βRM ; ðA5Þ

where we define the ‘error‐exponents’ or ‘rate limits’ as

αR ¼ − lim
M→þ∞

1
M

ln Pfa; ðA6Þ

βR ¼ − lim
M→þ∞

1
M

lnPmd: ðA7Þ

A.2 Quantum Chernoff bound for symmetric QHT
Because this is difficult to compute analytically, the Helstrom
bound is often replaced with approximations such as the QCB
[20],

Pmin
err ≤ PQCB

err :¼ 1
2

�

inf
0≤s≤1

Cs

�
M

; Cs :¼Tr
�

ρ
̭ s
0ρ

̭ 1−s
1
�

ðA8Þ

Minimisation of the s‐overlap Cs occurs over all 0 ≤ s ≤ 1.
Forgoing minimisation and setting s = 1/2 one defines a
simpler, though weaker, upper bound, also known as the
quantum Bhattacharyya bound [21].

PQBB
err :¼ 1

2
Tr
�

ffiffiffiffiffi

ρ̂0
p ffiffiffiffiffi

ρ̂1
p

�M
: ðA9Þ

In the case of Gaussian states, we can compute these
quantities by means of closed analytical formulae [22].

We can write the s‐overlap as [22].

Cs ¼ 2N
ffiffiffiffiffiffiffiffiffiffiffiffiffi

det Πs

det Σs

r

exp
�

−
dTΣ−1

s d
2

�

; ðA10Þ

where d = x0 − x1. Here Πs and Σs are defined as

Πs :¼GsðV0
⊕ÞG1−sðV1

⊕Þ; ðA11Þ

Σs :¼ S0

h

Λs
�

V0
⊕ �
i

ST0 þ S1

h

Λ1−s
�

V1
⊕ ��ST1 ; ðA12Þ

introducing the two real functions

GsðxÞ ¼
1

ðx þ 1=2Þs − ðx − 1=2Þs

ΛsðxÞ ¼
ðx þ 1=2Þs þ ðx − 1=2Þs
ðx þ 1=2Þs − ðx − 1=2Þs ;

ðA13Þ

calculated over the Williamson forms Vi
⊕
:¼ ⊕N

k¼1 νk
i 12, where

Vi
⊕ ¼ SiVi

⊕ STi for symplectic Si and νk
i ≥ 1=2 are the sym-

plectic spectra [23, 24].

A.3 Quantum relative entropy for asymmetric QHT
The quantum Stein's lemma [25, 26] tells us that the QRE

D
�

ρ
̭
0kρ

̭
1
�

¼ Tr½ρ̭ 0ðln ρ
̭
0 − ln ρ

̭
1Þ�; ðA14Þ

between two quantum states, ρ
̭
0 and ρ

̭
1, is the optimal decay rate

for the type‐II error probability, given some fixed constraint, Pfa
< ϵ, on the type‐I error probability. Defining the QRE variance
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V
�

ρ
̭
0kρ

̭
1
�

¼ Tr½ρ̭ 0ðln ρ
̭
0 − ln ρ

̭
1Þ

2� − ½D
�

ρ
̭
0kρ

̭
1
��2

; ðA15Þ

and in turn establish that the optimal type‐II (missed detec-
tion) error probability, for sample size M, takes the expo-
nential form [27].

Pmd ¼ exp
�

−
�

MD
�

ρ
̭
0 kρ

̭
1
�

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

MV
�

ρ̂0kρ̂1
�

q

Φ−1ðϵÞ

þOðlog MÞ
�g; ðA16Þ

where ϵ ∈ (0, 1) bounds Pfa and

ΦðyÞ :¼ 1
ffiffiffiffiffiffi

2π
p ∫

y

−∞
dx exp

�

−x2�2
�

ðA17Þ

is the cumulative of a normal distribution. More precisely, for
finite third‐ordermoment (as in the present case) and sufficiently
large M, we may write the upper bound ([27], Theorem 5)

Pmd ≤ ~Pmd :¼ exp
�

−
�

MD
�

ρ
̭
0 kρ

̭
1
�

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

MV
�

ρ̂0kρ̂1
�

q

Φ−1ðϵÞ þ Oð1Þ
�
o

ðA18Þ

We can write explicit formulae for the relative entropy
Dðρ̭ 0kρ

̭
1Þ and the relative entropy variance V ðρ̭ 0kρ

̭
1Þ of two

arbitrary N‐mode Gaussian states, ρ
̭
0ðx0;V0Þ and ρ

̭
1ðx1;V1Þ.

The first one is given by [28].

D
�

ρ
̭
0kρ

̭
1
�

¼ −Σ
�

V0;V0
�

þ Σ
�

V0;V1
�

; ðA19Þ

where we have defined the function

Σ
�

V0;V1
�

¼ lndet ðV1 þ iΩ
2 Þ þ TrðV0G1Þ þ δTG1δ

2
;

ðA20Þ

with δ = x0 − x1 and G1 ¼ 2iΩcoth−1ð2iV1ΩÞ being the
Gibbs matrix [29]. The second one is given by

V
�

ρ
̭
0 kρ

̭
1
�

¼ Tr
�

ðΓV0Þ2
�

2
þ Tr

�

ðΓΩÞ2
�

8
þ δTG1V0G1δ; ðA21Þ

where Γ = G0 − G1 [30] (see also Reference [14] and Reference
[31], [Appendix A]).
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