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Abstract 

Vehicle control by humans is possible because the central nervous system is capable of using 

visual information to produce complex sensorimotor actions. Drivers must monitor errors and 

initiate steering corrections of appropriate magnitude and timing to maintain a safe lane 

position. The perceptual mechanisms determining how a driver processes visual information 

and initiates steering corrections remain unclear. Previous research suggests two potential 

alternative mechanisms for responding to errors: (i) perceptual evidence (error) satisficing 

fixed constant thresholds (Threshold), or (ii) the integration of perceptual evidence over time 

(Accumulator). To distinguish between these mechanisms an experiment was conducted 

using a computer-generated steering correction paradigm. Drivers (N=20) steered towards an 

intermittently appearing ‘road-line’ that varied in position and orientation with respect to the 

driver’s position and trajectory. One key prediction from a Threshold framework is a fixed 

absolute error response across conditions regardless of the rate of error development, 

whereas the Accumulator framework predicts that drivers would respond to larger absolute 

errors when the error signal develops at a faster rate.  Results were consistent 

with an Accumulator framework, thus we propose that models of steering should integrate 

perceived control error over time in order to accurately capture human perceptual 

performance. 

 

Keywords: Sensorimotor, Control, Perception, Action, Cognition, Driving, Automation 

Public significance statement: Drivers don’t simply respond when an error signal reaches a 

fixed threshold, rather perceptual information is accumulated over time in order to initiate an 

appropriate steering action. This research effectively demonstrates path dependency on the 

timing and magnitude of online steering control initiation, which has implications for the design 

of automated vehicles. 

 

 

 

 

 

 

 



  
 

 

Introduction 

Sensorimotor action can be understood as 

a human controlling their body motion in 

order to reach a particular goal within a 

specific environment. Goal-orientated 

action is a fundamental building block of 

human behaviour, and examples can be 

found at all levels of the motor system, from 

moment-to-moment eye-movements 

looking at objects (Land & Hayhoe, 2001), 

through to complex coordinated 

movements such as whole-body 

locomotion toward a target (Warren, Zosh, 

Sahuc, Duchon, & Kay, 2000; Wilkie & 

Wann, 2003). For successful goal-

orientated actions to be produced, humans 

must process incoming signals that provide 

information about the state of the world. 

These signals are used to initiate motor 

control responses that are appropriately 

timed and of the correct magnitude. This 

manuscript will examine the likely 

mechanisms that underpin humans 

producing visual-motor goal orientated 

actions when steering towards a visual 

target. 

Driving a vehicle is a highly skilled task, 

which can be broken down into various 

visual-motor sub-components that can be 

rigorously studied in the laboratory, while 

retaining key characteristics of a real-world 

overlearned task (see Lappi & Mole (2018) 

for a review). The control of lateral lane 

position (referred to henceforth as 

steering), is a sub-component of driving 

that has been modelled in a variety of ways 

in order to predict human control 

behaviours (DinparastDjadid et al., 2018; 

Markkula, Boer, Romano, & Merat, 2018; 

Nash & Cole, 2018; Salvucci & Gray, 

2004). Traditional accounts suggest that 

steering is a more or less continuous 

process (Salvucci & Gray, 2004), however 

recent computational models have 

highlighted the intermittent nature of 

steering control (Markkula et al., 2018; 

Martínez-García, Zhang, & Gordon, 2016) 

and of sensorimotor control in general 

(Gawthrop, Loram, Lakie, & Gollee, 2011). 

Intermittent control puts a heavy emphasis 

on the requirement to effectively and 

repeatedly produce control initiation 

commands (‘action initiation’) when there 

are continuously changing visual signals 

providing multiple potential sources of 

information, but the best framework for 

modelling such intermittency remains 

unclear. A specific aim of the present study 

was to investigate which theoretical 

framework of action initiation best captures 

the initiation of steering control when 

reacquiring control of a vehicle during a 

steering manoeuvre.  

The initiation of action can be described 

using two distinct control frameworks: 

Threshold versus Accumulator accounts. 

The Threshold framework posits that 

actions are initiated when the magnitude of 

a perceptual signal exceeds some fixed 

threshold. Examples include Hanneton, 

Berthoz, Droulez, & Slotine (1997) who 

investigated hand movement trajectories 



  
 

 

whilst participants tracked a moving target. 

Their results indicated that the tracking 

error threshold value at the initiation of 

each action varied little across left or right 

movements, or even between participants. 

This would seem to suggest that the 

sensorimotor actions were initiated once 

the error signal surpassed a single fixed 

threshold. These threshold-based 

assumptions have also been included in 

task-specific models that describe a wide 

range of sensorimotor actions: examples 

include postural control (Asai et al., 2009) 

as well as lane keeping (Martínez-García et 

al., 2016). Task-general computational 

models have also described some visual-

motor behaviours using the Threshold 

framework as the mechanism for initiating 

sensorimotor action. To the authors’ 

knowledge, Gawthrop and colleagues 

(Gawthrop, Gollee, & Loram, 2015; 

Gawthrop, Lee, Halaki, & O’Dwyer, 2013; 

Gawthrop et al., 2011) were the first to 

specify such a model, comprising three 

parts – a continuous visual sampling 

element, an intermittency element 

(whereby intermittent sensorimotor 

responses occur due to minimum 

refractory periods between control activity), 

and finally, a fixed perceived control error 

threshold that needed to be surpassed to 

initiate action. Predictions from this model 

were compared to human responses 

during a stick balancing task. Gawthrop et 

al (2011) instructed participants to keep a 

computer generated ‘pendulum’ balanced, 

whilst also maximising time between their 

control adjustments. Pendulum position 

was displayed to the participants using an 

oscilloscope, whereby deviation from the 

centre (vertical) indicated that the 

pendulum was becoming unbalanced 

(Loram, Lakie, & Gawthrop, 2009). Human 

action points (the error at action initiation) 

could be adequately described by a 

bimodal Gaussian distribution, with the two 

peaks being centred on equivalent positive 

and negative angles. A similar pattern of 

responses were also observed during 

intermittent control simulations that 

specified fixed angular thresholds for 

action initiation, so each corrective action 

was initiated only when the error signal 

became sufficiently large. This Threshold 

framework allows for sensory ‘dead-zones’ 

whereby a small but constant error signal 

that remains below a fixed threshold is not 

responded to. While a fixed threshold 

model seems to capture some human 

behaviours well (Gawthrop et al., 2011; 

Hanneton et al., 1997a), there are counter-

examples where participants apparently do 

not respond when an error signal 

surpasses a fixed threshold. Zgonnikov, 

Lubashevsky, Kanemoto, Miyazawa, & 

Suzuki (2014) implemented a similar 

pendulum balancing task and found that 

the distribution of stick angles decayed 

exponentially. This distribution indicates a 

high likelihood of large action point 

deviations, providing evidence against a 

Threshold framework (which would have 

predicted normal distributions of action 



  
 

 

points centred on the fixed threshold value; 

(Gawthrop et al., 2011)).  

To capture human responses that are 

sensitive to changing information sampled 

over longer periods of time requires an 

alternative approach to the Threshold 

framework. The Accumulator framework 

suggests that perceptual evidence is 

integrated over time and that actions are 

only initiated once this integrated 

perceptual evidence surpasses a 

threshold, known as a decision boundary 

(Kovaceva, Bärgman, & Dozza, 2020). 

Traditionally, models using an Accumulator 

framework have been applied to perceptual 

decision making (Ratcliff, Smith, Brown, & 

McKoon, 2016) or value based choice 

tasks (Polanía, Krajbich, Grueschow, & 

Ruff, 2014), however, more recently 

Accumulator frameworks have started to 

be used within the context of sensorimotor 

control (Markkula et al., 2018). Threshold 

and Accumulator frameworks differ in the 

manner that the perceived control error 

signal feeds into action initiation. Threshold 

frameworks focus upon directly evaluating 

the perceived control error (𝐸) against a 

fixed threshold at a given time point 

(Gawthrop et al., 2011; Hanneton, Berthoz, 

Droulez, & Slotine, 1997; Lee, 1976), so an 

action is only initiated if 𝐸 surpasses the 

threshold. Conversely, Accumulator 

frameworks focus on integrating perceptual 

evidence over time (Markkula, 2014), only 

responding once it exceeds the decision 

boundary. To illustrate this, Figure 1 

compares Accumulator and Threshold 

predictions for error signals that increase at 

different rates (�̇�). If a response is 

determined by an Accumulator framework, 

we would expect responses to occur when 

the integral below the line surpasses a 

certain threshold (the points marked by 

stars in Figure 1). Note that for 

Accumulator framework responses, the 

shaded portion under the lines are equal in 

area. Hence this explains why under an 

Accumulator framework, responses would 

occur at larger 𝐸 when �̇� is higher 

(Markkula, Uludag, Wilkie, & Billington, 

2021). This characteristic could explain 

findings where humans do not always 

respond to a fixed error signal when 

initiating sensorimotor actions: e.g. when 

examining braking responses, Lamble, 

Laakso, & Summala (1999) found that 

drivers responded to higher final optical 

expansion values for faster optical 

expansion rates. Under a Threshold 

framework, responses would only be 

initiated when the magnitude of 𝐸 exceeds 

a fixed threshold (the points marked by 

circles, falling on the dashed horizontal line 

in Figure 1). In this case, regardless of �̇�, a 

response would only be initiated once the 

signal surpasses the fixed threshold.   

 

 

 

 



  
 

 

 

Figure 1: Threshold versus Accumulator 

predictions for responses to perceived 

control error that either increases at fast 

(green) or slow (purple) rates (�̇�). The 

Accumulator framework predicts a 

response once the area below the line 

(integral) exceeds a certain threshold. For 

a Threshold framework, response onset 

occurs when the magnitude of the signal 

exceeds the fixed threshold (dashed 

horizontal line). The shaded portions under 

each line are equal in area, indicating equal 

error accumulation.   

Markkula et al (2018) presented a task-

specific computational model that aimed to 

predict and replicate human steering 

responses. One of their aims was to better 

understand whether steering could be 

explained via the use of an Accumulator or 

Threshold framework. Human data were 

obtained from a sustained lane-keeping 

paradigm, and analysis revealed that for 

smaller adjustment magnitudes, the time 

between each adjustment was larger. This 

pattern of steering behaviours could be 

indicative of the participants accumulating 

the perceived control error, because the 

integration of small error quantities over a 

long time is equivalent to the integration of 

large error quantities over a short time 

(Markkula, 2014). Hence smaller steering 

adjustments required more time over which 

to integrate small errors, resulting in more 

time elapsing between each adjustment. 

However, the experimental paradigm 

generating these data was not specifically 

designed for studying action initiation, and 

the analysis methods were approximate 

(e.g., combining data from multiple 

participants into a joint distribution). The 

present study aims to complement this 

work with more targeted experimental 

methods and analyses. 

Modelling attempts by Markkula et al 

(2018) were independent of the source of 

the perceived control error. Rather, 

Markkula et al (2018) suggest that the error 

signal can take any arbitrary form, 

depending on the sensorimotor control task 

in question. Given that research into the 

visual-motor control of locomotion shows 

that humans are able to effectively use 

multiple sources of information (Wilkie & 

Wann, 2002) it seems likely that perceived 

control error could be provided by more 

than one source. Potential sources include 

optic flow (the apparent motion of surface 

textures caused by self-motion; (Gibson, 

1958)), the use of near and far features of 

the road (to maintain central lane position 



  
 

 

and match steering to the curvature of the 

upcoming roadway, respectively (Salvucci 

& Gray, 2004)), or the visual angle of a 

steering target (𝛼) (Beall & Loomis, 1996; 

Llewellyn, 1971; van der El, Pool, & Mulder, 

2019; Wilkie & Wann, 2003), or rate of 

change of visual angle (�̇�) (Wilkie, Wann, & 

Allison, 2008). It is possible that different 

signals contribute to ‘error’ perception in 

different ways, which could make the 

modelling of data gathered from 

information-rich driving scenarios difficult 

since multiple sources of information will be 

present (e.g. Markkula et al., 2018). 

In the present manuscript, an experiment 

was designed to test the behavioural 

predictions set out by control initiation 

frameworks and determine whether the 

Threshold or Accumulator frameworks best 

explain human initiation of steering 

responses. To ensure experimental 

control, a computer generated driving 

environment (with purposely limited visual 

scene elements) was employed, with 

locomotor speed kept constant. Steering 

behaviour when responding to an 

intermittent visual target was recorded in 

order to determine the nature and timing of 

the initial steering adjustment in relation to 

the apparent (visual) error. Three steering 

metrics were examined in this experiment: 

the magnitude of the initial steering 

response, the position in the world when 

the response occurred, and the reaction 

time relative to the onset of the visual 

target. The aim was to use these steering 

metrics to determine whether Accumulator 

or Threshold framework predictions best 

captured the pattern of human steering 

responses. Specific hypotheses linked to 

each metric are outlined in the method 

section. 

Method 

A steering task was designed to manipulate 

how steering error developed over time. 

This was achieved by manipulating two 

variables. Firstly, the orientation of the 

driver’s direction of motion was altered 

relative to an intermittently visible road-line 

to produce a trajectory error that required 

correction. Secondly, the initial lateral 

position of the driver position relative to the 

road-line was varied. Steering responses 

across different initial error (position), and 

rates of error development (orientation) 

were compared against predictions based 

on Threshold and Accumulator 

frameworks.  

Manipulation of orientation and starting 

position 

The experiment manipulated orientation by 

altering the direction of travel relative to a 

straight road-line that disappeared from 

view at regular intervals. The experimental 

setup had two main sources of visual 

information that the driver could use when 

making steering corrections: error signals 

derived directly from the road-line, and 

optic flow information from movement of 

the texture elements across the display 

(Figure 2). 



  
 

 

 

 

 

 

 

Figure 2: Screenshot of the visual display 

as presented to participants. The green 

‘gravel’ texture applied to the ground was 

used to ensure participants experienced a 

compelling sensation of self-motion 

through the virtual environment. The 

moment captured is the start of a new trial 

when the road line has just been made 

visible. 

Whilst optic flow did not directly specify the 

error (unlike the road-line), previous 

research has shown that optic flow can still 

influence steering under similar conditions 

(Kountouriotis, Mole, Merat, & Wilkie, 

2016; Kountouriotis et al., 2013; 

Kountouriotis & Wilkie, 2013). In the 

present experiment a single ground texture 

was used across all conditions to ensure 

that participants experienced a sensation 

of forward self-motion when viewing the 

display (displays without optic flow can 

sometimes lead to the observer feeling 

stationary). As outlined in the introduction, 

in the absence of road curvature the visual 

angle to the target (𝛼, the angle between 

the driver’s direction of travel at the current 

position and the direction to a point on the 

visible road-line) is a primary source of 

visual information when steering. For the 

experiment,  five linearly separated angles 

(-2°, -1°, 0°, 1°, 2°) were chosen. 

Orientation angles of this magnitude would 

produce rates of error development that 

were low enough to be sub-

threshold/decision boundary at initial 

presentation, but high enough so as to 

produce steering responses within the 

timeframe of each trial (see supplementary 

materials for detailed consideration of 

these characteristics). Alongside the 

manipulation of orientation, the starting 

position of the driver was also varied 

relative to the road-line when it became 

visible (a lateral position of 0 m, 4 m or 8 m, 

measured along the vehicle’s direction of 

motion; see Figure 3).  

 

 

 

 

 

 

 

 

 

 

 

 



  
 

 

  

 

 

 

 

 

 

 

Figure 3: Birds eye view of the experimental paradigm. The circles show examples of the 

position of the vehicle at the start of a trial (T0) and at a later point in time (T1). The bold 

vertical line represents the position of the visible road-line, the dashed lines represent the 

relative orientation of the trajectory, and the arrows represent the direction of the camera view 

(generating the image shown in the visual display). To remove the initial egocentric 𝛼 at T0 

for 0 m starting position conditions, the camera view was counter-rotated by the same number 

of degrees as the orientation, to ensure the camera view was aligned with the road-line at T0, 

thus nullifying initial error signals due to orientation (𝐸). Lateral position error (LPE) was 

measured as the lateral distance between the road-line and the vehicle position at steering 

onset.  

Altering starting position manipulated the 

initial perceived control error (𝐸) that a 

driver was faced within upon the 

presentation of the road-line. Such a 

manipulation produces divergent 

predictions between Accumulator and 

Threshold frameworks. The Accumulator 

framework takes into account the previous 

history of the error signal (Kovaceva et al., 

2020) because the error signal is integrated 

over time. Conversely, a Threshold 

framework relies upon an input signal only 

at the current time point, and compares this 

to a fixed threshold (Kovaceva et al., 2020). 

Whilst subtle, these differences produce 

alternative predictions (Figure 4) when an 

observer is presented with an initial 𝐸 

signal (by altering the initial lateral position 

of the driver relative to the road-line). The 

Accumulator framework predicts that when 

the initial 𝐸 is larger, drivers should 

respond to a larger perceived control error 

(𝐸) because the integration of perceptual 

information begins from a higher starting 

point, resulting in the control error (𝐸) 

having reached an even higher value once 

the integral surpasses the decision 

boundary. This is in contrast to the 



  
 

 

Threshold framework, which predicts 

responses at the same fixed 𝐸 regardless 

of the initial 𝐸 (as long as the initial 𝐸 is 

below the fixed response threshold). 

Furthermore, when a set of conditions are 

created where the between-level 

differences in initial 𝐸 is constant (note the 

equally sized vertical arrows in Figure 4) 

and the rate of error increase (�̇�) is 

constant (Figure 4, each of the lines has 

the same gradient) the two frameworks 

lead to different predictions. The Threshold 

framework predicts that response time will 

increase proportional to the increase in 𝐸 

(between-level differences will remain 

constant) whereas the Accumulator frame 

predicts that the time taken to respond to 

will reduce as 𝐸 increases (between-level 

differences are not constant; note the size 

difference between horizontal arrows in 

Figure 4). Threshold and Accumulator 

predictions also differ in some further 

respects, best demonstrated by means of 

framework simulations, as introduced in 

the hypotheses section. 

 

 

 

 

 

 

 

Figure 4: Schematic representation of 

Threshold versus Accumulator predictions 

for steering responses as a function of 

initial  𝐸. The vertical arrows highlight the 

fact that the initial 𝐸 increases are constant. 

The Accumulator framework predicts that 

response onset occurs once the area 

below the lines (integral) exceeds a certain 

threshold (decision boundary). For a 

Threshold framework, response onset 

occurs when the magnitude of the signal 

exceeds the fixed threshold (dashed 

horizontal line). Note that the shaded 

portion under each line is equivalent. This 

highlights how altering the initial 𝐸 signal 

generates different response patterns for 

Accumulator and Threshold frameworks, 

both in terms of the value of 𝐸 at response, 

and in terms of the between-level 

differences in response times.   

 

 



  
 

 

Hypotheses 

The manipulation of orientation (affecting �̇�) and starting position (affecting initial 𝐸) 

were designed to test the following 

hypotheses: 

H1.1 Reaction time 

Increasing the angle of orientation between 

the trajectory and the road-line increases �̇�. Both the Threshold and Accumulator 

frameworks predict that reaction times will 

decrease as orientation increases because 

it will take less time to surpass the fixed 

threshold/decision boundary. Both 

frameworks predict that the manipulation of 

starting position should cause a decrease 

in reaction time as starting position 

increases. Framework predictions diverge, 

however, when focusing on between-level 

differences in starting position. As 

highlighted in the previous section (Figure 

4), the Accumulator framework predicts 

smaller between-level differences in 

reaction times between 4 m and 8 m 

compared to 4 m and 0 m, whereas the 

Threshold framework predicts similar 

between-level differences across starting 

position levels. Furthermore, the 

Accumulator framework also predicts an 

orientation-starting position interaction on 

reaction times, whereby the between-level 

starting position reaction time differences 

become smaller as orientations become 

larger (Figure 5A). This is because the 

difference in the time taken to accumulate 

and surpass the decision boundary is 

smaller between 4 m and 8 m starting 

positions, than between 4 m and 0 m 

starting positions, and this effect should be 

exaggerated for higher orientations. 

Conversely, the Threshold framework 

predicts constant between-level 

differences in starting position regardless 

of the orientation offset (Figure 5B). 

It is worth considering possible response 

patterns should the starting position 

manipulations produce an initial 𝐸  that is 

already above threshold upon road-line 

presentation. If, for example, the 8 m 

starting position produces an initial 𝐸 

already greater than a fixed 

threshold/decision boundary, both 

Accumulator and Threshold frameworks 

would predict constant response times 

across orientation and starting position 

levels with immediate steering responses 

produced upon presentation of the road-

line. 

 

 

 

 

 

 

 

 



  
 

 

Figure 5: Accumulator (A) and Threshold (B) framework predictions of the reaction time 

patterns. C) Mean reaction times across orientation and starting position conditions. Note that 

the y-axis units have been magnified relative to panel A to display the relative pattern of 

responses across each condition. Error bars represent 95% confidence intervals. 

H1.2 Lateral position error 

The Threshold framework predicts that the 

driver will respond at the same lateral 

position error regardless of the orientation. 

However, with additional motor latency, we 

might also expect slight increases in lateral 

position error for increased orientations 

(depending on the motor latency). The 

average motor latency is around 150 ms 

(Brenner & Smeets, 1997), during which 

time the vehicle continues to travel through 

the environment and thus lateral position 

error continues to increase. This means 

that lateral position error at the moment the 

steering response is actually generated is 

delayed with respect to the triggering 

signal. The Accumulator framework 

predicts that drivers respond at increased 

lateral position error for increased 

orientation. Regarding the manipulation of 

starting position which alters the initial 𝐸,  

as described in the previous section the 

Accumulator framework predicts that 

lateral position error at response will be 

larger for larger initial 𝐸 (Figure 4). 

Furthermore, the Accumulator framework 

predicts that between-level differences in 

lateral position error will increase as 

starting position increases (Figure 6A). We 

should also expect an interaction between 

orientation and starting position under the 

Accumulator framework, where between-

level differences in lateral position error 

become larger as orientation increases. 

The combination of larger orientation and 

larger initial 𝐸  results in larger 𝐸  at the 

point in time when the integral surpasses 

the decision boundary. Conversely, the 

Threshold framework predicts that drivers 

will respond at the same lateral position 

irrespective of starting position because 

responses will be dictated by a fixed 



  
 

 

threshold (Figure 6B). The addition of 

motor latency should only cause a slight 

increase in lateral position error for 

increased orientation offsets (as can be 

seen in Figure 6B, using 150 ms motor 

latency).  

Immediate steering responding to an initial 𝐸 that was already above the fixed 

threshold/decision boundary should result 

in increased lateral position error for larger 

starting positions and orientations. 

 

 

 

 

 

 

 

 

 

Figure 6: Accumulator (A) and Threshold (B) framework predictions of the lateral position error 

patterns. C) Mean lateral position errors across orientation and starting position conditions. 

Error bars represent 95% confidence intervals. 

H1.3 Steering magnitude 

Steering magnitude is expected to be 

related to the quantity of error that drivers 

respond to and thus similar patterns are 

predicted as for lateral position error. For 

the Accumulator framework (based on the 

assumption that steering magnitude scales 

with perceived control error (Markkula et 

al., 2018; Yilmaz & Warren, 1995), steering 

magnitude should increase as orientation 

and starting position become larger. 

Conversely, the Threshold framework 

predicts similar steering magnitudes 

across all orientations and starting 

positions: although the motor latency 

influences the measured lateral position 

error, the lateral position error signal used 

to initiate the driver’s response should be 

fixed (hence the magnitude of their steering 



  
 

 

response should be constant in this case). 

Figure 7A and 7B visualises these 

framework prediction patterns. 

 

Figure 7: Accumulator (A) and Threshold (B) framework predictions of the steering wheel 

angle patterns. These patterns were derived from theory rather than direct simulations so the 

unit values are arbitrary. Patterns of increased/decreased steering wheel angle are presented 

with a focus on the relative steering patterns rather than exact steering magnitude values C) 

Mean steering wheel angles across orientation and starting position conditions. Error bars 

represent 95% confidence intervals. 

Participants 

The powerSim() function from the SIMR 

package (Green & Macleod, 2016) was 

used to conduct a power analysis using the 

pilot dataset presented in the supplemental 

materials. Retrospective “observed power” 

calculations where the effect size is derived 

from the data are known to give misleading 

results (Green & Macleod, 2016; Hoenig & 

Heisey, 2001). Therefore, slope parameter 

estimates from each model presented in 

the supplemental materials were halved 

and these values were used to calculate 

power. As smaller effects are typically 

harder to find, sufficient power from this 

pilot analysis would justify the same 

sample size being used for the experiment 

presented in the main manuscript. 

Reaction time (88%, [CI: 75.69%, 

95.47%]), lateral position error (96%, [CI: 

86.29%, 99.51%]), and steering magnitude 

(99%, [CI: 92.89%, 99.99%]) all had 

statistical power over 80%. This 

demonstrates that a sample of 20 

participants for the current experiment 

provides sufficient power for the analysis. 

The 20 participants (12 females, 8 males, 

mean age = 26.74, range = 20–50 years) 

who took part in the experiment all had 

normal or corrected to normal vision 

alongside a valid UK driving license. The 

number of months holding a driving license 



  
 

 

ranged from 1-360 (mean = 88.69, SD = 

78.06). 

Apparatus 

The simulated environment was created in 

WorldViz Vizard 5 and ran on a Stone i7 

Intel computer. The simulation was back-

projected onto a screen with the 

dimensions: 1.98 metres x 1.43 metres 

using a Sanyo Liquid Crystal Projector 

(PLC-XU58). Participants were seated 1 

metre from the screen, so the total visual 

angle of display was 89.4° × 71.3°. The 

true horizon of the projection was 1.2 

metres from the ground. Steering data 

were acquired using a Logitech G27 force-

feedback steering wheel. Data acquisition 

was synchronised to the refresh rate of the 

display at 60 Hz.  

Design 

Orientations were chosen from a pool of 5 

linearly separated angles (-2°, -1° , 0°, 1°, 

2°), where the sign indicates offset 

direction (left or right of the road-line 

respectively). The 0° condition created a 

response context where participants did 

not always need to make a steering 

response, and these trials were included to 

guard against participants adopting an 

“always steer as soon as possible” 

strategy. The data from the 0° condition 

were not included in formal analysis since 

no responses were expected for these 

trials. A range of 3 equally separated 

starting positions were chosen (0 m, 4 m, 

and 8 m) to create an initial perceived 

control error upon the presentation of the 

road-line. This created a 2 (orientation) x 3 

(starting position) repeated measure 

factorial design. There were three 

dependent variables in this experiment 

(see the Analysis: pre-processing section 

for more details on how these were 

calculated): reaction time measured in 

seconds (the time between the road-line 

becoming visible and the first turn of the 

wheel), lateral position error from the 

closest point on the road-line at steering 

onset measured in metres, and steering 

magnitude of the first steering adjustment 

measured via the steering wheel angle in 

degrees. 

Procedure 

Informed consent was obtained and 

standardised procedural instructions 

were delivered. All procedures were 

approved by the University of Leeds 

School of Psychology Research 

Ethics Committee (Reference code: 

PSC-791).  

After participants were placed into a 

standardised viewing position within the 

driving simulator, they completed 10 

practice trials to familiarize themselves with 

the simulator dynamics. The task involved 

maintaining a vehicle on a straight road-

line. Participants did not operate 

accelerator/brake pedals or gears, and the 

speed remained constant at 8 m/s. At the 

beginning of each trial, there was a brief 

blank screen for 0.1 s to mask changes in 

rotation of the camera view. Participants 



  
 

 

then travelled for 1 second across the 

textured ground plane before the road-line 

was made visible for 2.5 seconds. The 

orientation and starting position of the 

driver was offset relative to the road-line 

(see manipulation of orientation and 

starting position section for details). 

Participant task instructions were to “make 

a steering adjustment, as fast and as 

smoothly as possible, that would bring you 

back onto the road-line if you feel yourself 

deviate away from it”. After 2.5 seconds the 

road-line disappeared and the participant 

travelled for a further 1 second before the 

next trial began seamlessly. The width of 

the road-line was 0.05 metres. Each trial 

lasted approximately 4.5 seconds between 

each mask signifying the beginning of a 

trial. Each orientation-starting position 

condition contained 30 trials resulting in a 

total run time of 45 minutes per participant. 

Conditions were randomised to control for 

practice and order effects and split into 5 

experimental blocks, each separated by a 

short break to guard against fatigue. A 

single block consisted of continuous 

motion of the vehicle through the virtual 

environment. 

Analysis 

Pre-processing 

Data for the 2.5 seconds of each trial where 

the road-line was visible were analysed. To 

identify each steering correction, the 

steering rate was smoothed using a 

Savitzky-Golay finite impulse filter 

(Savitzky & Golay, 1964; Schafer, 2011). 

Following smoothing, valid steering 

responses (characterised by bell-shaped 

curve profiles; (Benderius & Markkula, 

2014) see Figure 8A) were identified. Two 

thresholds within the steering rate signal 

were selected: the lower bound close to 

zero identified the beginning of potential 

corrections (0.02°/s); and the upper bound 

ensured the ensuing correction was of 

sufficient magnitude (0.05°/s). Trials where 

the steering rate signal did not reach the 

upper threshold were excluded. Figure 8A 

displays the steering rate signal for a 

genuine response. Reaction times were 

calculated from steering response initiation 

when the steering rate surpassed the lower 

threshold. To avoid including steering that 

was generated independent of the stimulus 

but which nevertheless occurred after the 

line had appeared, responses that 

occurred too quickly to be physiologically 

plausible were also excluded. A lower 

reaction time bound of 150 ms (Brenner & 

Smeets, 1997) was used as the threshold 

to exclude these responses. Table 1 

reports the total number of trials that were 

excluded from the dataset due to steering 

responses not being of sufficient 

magnitude or because they were too quick. 

From the valid responses, the lateral 

position error was identified by calculating 

the position relative to the road-line at 

steering onset. Finally, a steering 

magnitude metric was calculated by 

identifying the peak steering wheel angle 

during the first steering adjustment (see 

Figure 8B).



  
 

 

 

Table 1: Data exclusion across orientation and starting position conditions for all participants 

Orientation 

(°) 

Starting position 

(m) 

Total trials Excluded trials 

1 0 1200 127 

1 4 1200 148 

1 8 1200 136 

2 0 1200 222 

2 4 1200 194 

2 8 1200 185 

Figure 8: A) Example trial showing steering rate against Time. The red line indicates the spikes 

present in the raw steering rate signal, and the overlapping black line indicates the steering 

rate signal after being smoothed. The vertical black line identifies the reaction time relative to 

stimulus onset at 0 s. Horizontal black bars indicate the lower and upper bounds of steering 

rate used for identifying valid steering responses. B) Steering wheel angle against time for the 

same example trial. The point indicates the peak steering wheel angle used as a key 

performance metric in our analyses.       

Statistical analysis 

Analysis of variance (ANOVA) confirmed 

that differences between left and right 

steering responses for each response 

metric were either not statistically 

significant (reaction time) or significant but 

with very small effect sizes (lateral position 

error and steering magnitude). Therefore, 

negative (leftward) trajectories were 

mirrored and collapsed onto positive 



  
 

 

(rightward) trajectories. The 0° condition 

was removed since it was only included as 

a control. This left two orientation 

conditions (1°, 2°) and three starting 

position conditions (0 m, 4 m, 8 m).  Data 

were analysed with a Generalised Linear 

Multilevel Model (GLMM). A GLMM was 

fitted for each response metric - reaction 

time, lateral position error and steering 

magnitude using the glmer() function from 

the lme4 (Bates, Mächler, Bolker, & 

Walker, 2015) and lmerTest packages 

(Luke, 2017) in the R programme for 

statistical computing, with participants 

included as random effects. Coefficients 

associated with orientation and starting 

position were allowed to vary across 

participants creating a random 

slope/intercept model. In order to maintain 

model convergence, the nAGQ argument 

within the glmer() function was set to 0 

(Bates, Maechler, Bolker, Version, & 2018, 

2019; Dorokhova & Imperio, 2020).  

Random effect parameters were drawn 

from a multivariate normal distribution in 

order to model the random variability 

between each participant and their 

sensitivity to the orientation and starting 

position manipulation. The GLMM 

framework allows for the specification of 

distributional properties of response data 

(Lo & Andrews, 2015) in order to better 

model the dependent variable. The 

repeated measures data structure also lent 

itself to a multilevel modelling approach 

because multiple observations for each 

participant allowed for good estimates to be 

made for each participant’s intercept and 

coefficient. A benefit of analysing the 

steering metrics using multilevel models is 

that they are able to capture within and 

between participant variability. The best 

fitting model was chosen for interpretation 

via the AIC value (Bozdogan, 1987). For 

reaction times the model specifying the 

Gamma distribution (AIC = -11741.52) was 

the best fitting model. For lateral position 

error, the model specifying the Gaussian 

distribution (AIC = -30027.56) was the best 

fitting model. Finally, the model specifying 

the Gamma distribution provided the best 

fit for steering magnitude (AIC = 32534.03). 

Data and analysis are available on 

https://github.com/courtneygoodridge/TvA

_analysis and the study was not 

preregistered.  

 Results 

Figure 9 presents a birds-eye view of the 

average trajectories for each condition. 

The points denote the average position at 

steering onset. The birds-eye trajectories 

highlight that participants responded at 

larger lateral position errors as starting 

position and orientation increased. To 

further assess the steering behaviours, we 

investigate the fitted models to each of the 

individual metrics.  

https://github.com/courtneygoodridge/TvA_analysis
https://github.com/courtneygoodridge/TvA_analysis


  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9: Birds-eye view of average trajectories for each orientation and starting position 

condition. Filled circles indicate the average position at steering onset. The black vertical line 

represents the visible road-line. Trajectory lines for 0 m and 4 m starting positions have been 

faded to improve legibility of each trajectory origin. 

Reaction times 

Figures 5A and 5B highlights framework 

prediction patterns, whilst Figure 5C 

highlights results from participant steering 

data. From the experimental data, reaction 

times significantly decrease as both 

orientation (β = -0.066, 95% CIs [-0.076, -

0.057], t = -13.98, p < 0.001) and starting 

position (β = -0.007, 95% CIs [-0.008, -

0.006], t = -12.38, p < 0.001) increase. 

There is also a significant interaction 

between orientation and starting position (β 

= 0.003, 95% CIs [0.002, 0.005], t = 4.77, p 

< 0.001), whereby the effect of starting 

position becomes smaller (in absolute 

numbers) for the larger orientation. The 

significant interaction between orientation 

and starting position confirms that 

between-level differences in starting 

position became smaller as orientation 

increased. Such behavioural patterns are 

predicted by the Accumulator framework, 

and not by the Threshold framework. 

Figure 5C also suggests that between-level 

differences in reaction time between 

starting position conditions were not 

constant, and a paired samples t-test 

confirmed that differences between 0 m 

and 4 m (m = 0.040, sd = 0.015) were 

significantly larger than differences 

between 4 m and 8 m (m = 0.010, sd = 

0.014), t(19) = 6.33, p < 0.001 with a large 

effect size (Cohen’s D = 2.01). Smaller 

between-level differences in reaction time 

as starting positions increased provides 

strong evidence of a non-linear relationship 

between reaction time and starting position 

(as predicted by the Accumulator 

framework but not the Threshold 

framework).  



  
 

 

Lateral position error 

Framework prediction patterns as well as 

results from participant steering data are 

shown in Figure 6. Drivers responded at 

greater lateral position error when there 

were increases in starting position (β = 

0.0162, 95% CIs [0.0159, 0.0165], t = 

115.25, p < 0.001) and orientation (β = 

0.0453, 95% CIs [0.0419, 0.0487], t = 

26.34, p < 0.001). There was also evidence 

of a significant orientation-starting position 

interaction (β = 0.0175, 95% CIs [0.0171, 

0.0178], t = 107.45, p < 0.001) confirming 

that between-level differences in starting 

position became larger as orientation 

increased (Figure 6C).  

Similar to reaction times, the effect of 

starting position as well as the orientation-

starting position interaction are behavioural 

patterns that fit the predictions of a 

Accumulator framework rather than a 

Threshold framework. Under a Threshold 

framework, drivers should respond at a 

fixed lateral position error, regardless of the 

initial 𝐸, hence there would be no predicted 

differences between the starting position 

levels. The addition of 150ms motor latency 

would mean that the Threshold framework 

could predict slight increases in lateral 

position error at response when orientation 

increases, but these predicted increases 

are small compared to the observed effects 

of orientation. Conversely, an Accumulator 

framework provides a good qualitative 

description of the data as it predicts larger 

effects of orientation, and also larger 

between-level differences between 4 and 8 

metre starting positions, that should be 

more pronounced for larger orientations.  

Between-level differences in starting 

position were further investigated using a 

paired samples t-test. The t-test revealed 

smaller differences in lateral position error 

between 0 and 4 metres (m = -0.096, sd = 

0.005) versus 4 and 8 metres (m = -0.101, 

sd = 0.004), t(19) = 2.84, p = 0.01 with a 

large Cohen’s D effect size of 0.99. This 

confirms that the relationship between 

lateral position error and starting position is 

non-linear. Once again, this non-linear 

trend is predicted by the Accumulator 

framework.  

Steering magnitude 

Figure 7C highlights the mean steering 

wheel angles for each orientation-starting 

position condition. Analysis revealed 

significant increases in steering wheel 

angle magnitude for larger orientations (β = 

4.655, 95% CIs [4.228, 5.083], t = 21.34, p 

< 0.001) and starting positions (β = 0.494, 

t = 18.52, 95% CIs [0.442, 0.547], p < 

0.001). A significant orientation-starting 

position interaction was also found (β = 

0.160, 95% CIs [0.104, 0.215], t = 5.66, p < 

0.001). Under the assumption that drivers 

scale their steering magnitude by 

perceived error at response, these results 

appear to be more in line with the 

Accumulator framework; the steering 

magnitude observations align qualitatively 

with the theoretical Accumulator-predicted 



  
 

 

steering magnitude responses seen in 

Figure 6A. 

T-tests conducted on the overall between-

level differences of starting position found 

no reliable differences in steering 

magnitude between 0 and 4 metres versus 

4 and 8 metres. Further investigation of the 

condition means revealed that between-

level differences in steering magnitude 

were larger between 0 and 4 metres (m = -

2.10) than between 4 and 8 metres (m = -

1.80) for the 1° orientation. However, if 

anything the opposite was true for 2° 

orientation – between-level differences 

were slightly larger between 4 and 8 metres 

(m = -2.63) than between 0 metres and 4 

metres (m = -2.61), which appears to drive 

the interaction. Although the main finding 

appeared qualitatively similar to the 

Accumulator framework predictions, they 

do not precisely mirror the lateral position 

error findings. One explanation for this 

could be the increased noise inherent 

within the steering magnitude measure 

(see the Discussion section for further 

comments on this).  

Variance in steering metrics 

The random effects structures were 

investigated in the models for each of 

metrics (Reaction times, Lateral position 

error and Steering magnitude). The 

standard deviations of the random effects 

are shown in Table 2. For all steering 

metrics, variability in the random 

orientation slopes (𝜎𝛽1𝑗𝑂𝑖) was greater in 

comparison to the random starting position 

slopes (𝜎𝛽2𝑗𝑃𝑖). This demonstrates 

increased between-participant variability in 

the sensitivity towards the orientation 

manipulation versus the starting position 

manipulation. Variability in the reaction 

time and lateral position error models was 

largely found within-participants (𝜎𝑒) rather 

than between-participants (𝜎𝛽0𝑗), 
suggesting that the spread of reaction time 

and lateral position error responses was 

caused by trial-by-trial variation within 

individuals. In contrast, the steering 

magnitude model highlights much higher 

between-participant variability indicated via 

the random intercepts (𝜎𝛽0𝑗) and random 

orientation slopes (𝜎𝛽1𝑗𝑂𝑖).  
 

 

 

 

 

 

 

 

 

 

 



  
 

 

Table 2: Summary of random effect 

standard deviations  

Random effects 

 Model: 

 
Reaction 

time  

Lateral 

position 

error  

Steering 

wheel 

angle  

 (1) (2) (3) 𝜎𝛽0𝑗 0.030 0.011 0.907 𝜎𝛽1𝑗𝑂𝑖 0.011 0.007 0.784 𝜎𝛽2𝑗𝑃𝑖 0.001 0.0004 0.097 𝜎𝑒 0.230 0.021 0.333 

 
Participants: 20, Observations: 

6163 

 

General discussion 

This experiment investigated whether the 

initiation of steering responses can be best 

explained via a Threshold or Accumulator 

framework. The orientation of a trajectory 

relative to a visible road-line was varied to 

induce an error that developed at varying 

rates (�̇�) and starting position was altered 

to manipulate the initial error (𝐸) signal. An 

Accumulator framework using visual angle 𝛼  or lateral position error as the perceived 

control error signal could adequately 

capture steering responses. Between-level 

differences in starting positions and a 

starting position-orientation interaction for 

reaction times provided a strong indication 

that initial 𝐸  was influencing participant 

steering responses – something that could 

only feasibly come about via participants 

accumulating 𝐸. These findings also 

suggest that participants were not 

responding immediately to 𝐸,  but were 

instead waiting for the signal to 

accumulate. The lateral position error and 

steering magnitude metrics also revealed 

patterns of behaviour consistent with 

accumulation: responses varied with 

changes in orientation and starting 

positions. 

A multilevel modelling approach allowed 

for the investigation of within- and between-

participant variability within the sample. 

Human variability is a fundamental 

component of human steering (Mole et al., 

2020) and thus should be described when 

investigating human behaviours. There 

were sizeable differences in variability 

between lateral position error at response 

and steering magnitude. Specifically, 

steering magnitude exhibited much higher 

levels of variability than lateral position 

error. There are a number of explanations 

for such a phenomenon. Firstly, variability 

in lateral position error at response is 

largely driven by visual sensory noise and 

motor delays, whereas variability in 

steering magnitude is driven by the same 

sources which are then amplified by 

additional motor noise producing the 

steering response itself. Increased 

variability in steering magnitude could also 

be caused by differing steering strategies 

leading to between-participants variance. 



  
 

 

Participants with smooth and sustained 

steering manoeuvres have lower average 

steering wheel angle peaks (Salvucci & Liu, 

2002) whereas drivers who implement 

sharp and quick steering manoeuvres 

generate higher steering angle peaks. 

Previous analyses of steering strategies 

have found high between-participant 

variability (Salvucci & Liu, 2002) and also 

that steering wheel angle profiles differ 

dependent on the bend geometry 

(Gabrielli, Paganelli, Schiro, Pudlo, & 

Djemai, 2012). In the current experiment 

only a single road-line was visible, and 

without the full road context (i.e. both road 

edges) drivers may have been more likely 

to vary in their steering strategy. 

Conversely, lateral position error was 

measured as the position of the driver, 

relative to the road-line, at the initiation of 

the first steering adjustment. The steering 

strategy used by the driver had little to no 

effect on this metric. Whether the ensuing 

steering response is smooth and sustained 

or sharp and quick, variability in the 

position at steering initiation remains low. It 

should be noted that there was no optimal 

performance strategy for the steering task 

presented in the current experiment. 

Despite the increased variability in steering 

magnitude, a variety of steering solutions 

could have been used to reduce the 

perceived control error and thus were all 

viable strategies that allowed the driver to 

successfully complete the task. 

Differing strategies affecting sensorimotor 

responses go beyond steering magnitude. 

It is not inconceivable that accumulation is 

one of many strategies that a driver could 

use to process perceptual information. 

Although an Accumulator framework best 

described the findings within the current 

data, a different parameterisation of the 

task could, in theory, generate responses 

that are more akin to a Threshold 

framework. For example, in the current 

experiment there was effectively no penalty 

for large excursions from the road-line. 

However, in a context where such 

responses would be more costly (i.e. 

steering down a narrow lane, or landing an 

aircraft on a runway) a Threshold approach 

could be a more optimal strategy. In the 

example of driving down a narrow lane, a 

driver may incorporate a fixed lateral 

position threshold that should not be 

exceeded to avoid hitting road edges or 

oncoming traffic. To test this hypothesis, 

future research could generate an 

experimental context with various 

constraints and explicit costs to see 

whether this changes behaviour, or 

whether harder constraints still produce 

Accumulator-like behaviours (as 

suggested in work on driver braking behind 

slower lead vehicles; (Xue, Markkula, Yan, 

& Merat, 2018)). 

Regarding the candidate frameworks 

compared in this experiment, a key finding 

was that initial 𝐸 influenced steering 

behaviours. This supports previous 



  
 

 

research by  Markkula & Zgonnikov (2019) 

who also highlighted the importance of 

initial error under an Accumulator 

framework. They investigated whether 

participants integrated control error during 

a virtual stick balancing task. By randomly 

selecting initial starting errors rather than 

assuming they were fixed, their model 

better replicated human sensorimotor 

action. Markkula & Zgonnikov (2019) did 

not discuss why accounting for initial error 

improved the replication of human 

responses, however findings from the 

current study could provide an explanation. 

If humans integrate perceptual information, 

then the starting position of the virtual stick 

in  Markkula & Zgonnikov's (2019) task will 

influence the ensuing integration of error 

and the consequent initiation of control (just 

as the starting position of drivers influenced 

steering responses). By randomly selecting 

initial starting errors,  Markkula & 

Zgonnikov (2019) accounted for random 

initial errors that would have affected the 

initiation of responses in human data.  

Although the current experiment 

investigates whether behavioural 

responses best fit an Accumulator 

framework, research has established 

potential brain regions and neural 

signatures that provide an avenue for a 

neuronal implementation of accumulation. 

For example de Lafuente, Jazayeri, & 

Shadlen (2015) trained monkeys to 

indicate the direction of random dot motion 

with hand movements. Mean firing rates in 

the medial intraparietal area (MIP) neurons 

reflected the strength and direction of the 

dot motion, suggesting that neuronal 

activity in these areas tracked evidence 

being accumulated in order to reach the 

decision to produce hand movements. 

Similar evidence has been found in middle 

temporal areas (MT+) (Huk & Shadlen, 

2005; Shadlen & Newsome, 1996, 2001) 

and is consistent with neuronal firing rates 

representing evidence accumulation when 

making a choice indicated by a hand 

movement. MT+ and parietal lobe brain 

regions have also been found to be 

involved in the visual guidance of 

locomotion. Billington, Field, Wilkie, & 

Wann (2010) measured brain activation 

using fMRI whilst participants viewed a 

simulated environment recreating self-

motion along a curved road trajectory. In 

keeping with the near and far point control 

mechanisms of steering (Land & Horwood, 

1995), participants were presented 

conditions containing either near or far path 

information. Activations of MT+ regions 

were associated with making heading 

judgements when viewing near road 

features whilst activation of MIP regions 

were associated with heading judgements 

when viewing far road features. Billington 

et al (2010) proposed a complementary 

role for MT+ and parietal lobe brain areas 

for maintaining online lane positioning and 

the detection of future path information 

respectively. Finally, a computer based 

replication of the Lamble, Laakso, & 

Summala (1999) braking task found strong 



  
 

 

evidence for humans accumulating visual 

looming signals in order to detect rear-end 

collision scenarios. Human 

electroencephalography (EEG) data from 

Markkula et al (2021) revealed pre-

response centroparietal positivity (CPP). 

The CPP neural signature has previously 

been proposed as an indication of evidence 

accumulation; CPP builds during the 

decision making process before peaking at 

response initiation (Kelly & O’Connell, 

2013; O’Connell, Dockree, & Kelly, 2012; 

Twomey, Murphy, Kelly, & O’Connell, 

2015). Markkula et al (2021) acknowledge 

that their observed CPP signature onset 

was later in comparison to previous 

studies. One explanation for this is that 

visual looming is known to be processed by 

subcortical brain areas (Cisek, 2019) and 

thus later CPP onset may represent 

second stage evidence accumulation. 

Regardless, this provides further support 

for parietal lobe involvement in the 

accumulation of information in order to 

produce sensorimotor actions.    

An avenue to consider for future research 

would be whether Accumulator-driven 

steering behaviours generalise from 

straight-line trajectories as used in the 

current study to steering curved 

trajectories. Whilst the current study clearly 

relates to real-world lane-keeping 

scenarios, the more general case of 

steering is responding to changes in curved 

trajectories. Whilst specific studies 

examining evidence accumulation on 

curved trajectories do not seem to have 

been published, within the vehicle 

automation domain there is some 

supporting research when looking at 

automation failures. Mole et al (2020) 

examined when drivers deactivated 

automation and initiated manual control of 

steering during different automation 

failures of different severity. Crucially, 

these failures occurred whilst travelling 

around bending roads. The patterns of 

responses are consistent with an 

Accumulator framework whereby the 

integration of small errors over a long time 

period will be equivalent to the integration 

of large errors over a short time period, 

resulting in responses to larger perceptual 

errors during more urgent failure situations 

(Markkula et al., 2018; Mole et al., 2020). 

This preliminary evidence suggests that 

Accumulator-predicted steering patterns 

can be replicated for curving trajectories, 

however further studies will be required to 

test formally this hypothesis. 

A potential limitation of the current research 

is the lack of explicit examination or 

measurement of noise. Noise is a basic 

feature of neuronal activity and thus without 

evaluating this component, the approach 

used to test the Accumulator framework 

could be considered overly simplistic and 

neurally implausible (Brown & Heathcote, 

2008). We would contend, however, that at 

some level every framework/model of 

sensorimotor action initiation is an 

abstraction that approximates many 



  
 

 

aspects of neural reality. Thus not 

incorporating noise is simply one more 

layer of approximation whilst still 

maintaining a good description of human 

behaviours (Brown & Heathcote, 2008). It 

should be noted that our aim was not to find 

the definitive neurobiologically plausible 

framework for sensorimotor action, per se. 

Rather, the investigations were of two 

general framework concepts – perceived 

control error information surpassing a fixed 

threshold or perceived control error 

information being integrated to surpass a 

decision boundary - to determine which 

best describes the initiation of steering 

behaviours. Hence, we acknowledge that 

the “Accumulator framework” as 

investigated in the current manuscript is 

somewhat reductive, as there are many 

different possible types of Accumulator 

framework that have successfully 

described aspects of sensorimotor action. 

Some approaches incorporate noise 

directly into the integration of the 

perceptual signal, such as the Leaky 

Competing Accumulator (Usher & 

McClelland, 2001) and Drift Diffusion 

Models (Ratcliff, 1978), whilst others 

incorporate noise in a probabilistic sense, 

where they model variability in the 

accumulation rate such as Ballistic and 

Linear Ballistic Accumulators (Brown & 

Heathcote, 2005; Brown & Heathcote, 

2008). However, all involve the integration 

of perceptual information over time, which 

is the primary concept of interest (in 

contrast to the concept of a Threshold 

framework). In the current paper, our focus 

was on modelling the central tendency of 

our metrics. As we have demonstrated, this 

is a valuable approach since these metrics 

were sufficient to differentiate Threshold 

and Accumulator accounts. However we 

would encourage future research to 

expand upon our findings by assessing 

different types of Accumulator frameworks, 

with noise, and how well they capture the 

variability inherent within the initiation of 

steering responses. Now that we have 

established that integration can describe 

human steering action at a basic level, 

future research can investigate neurally 

plausible variants for inclusion into general 

and specific sensorimotor models. 

This manuscript details evidence that 

drivers integrate perceptual information 

rather than waiting for the perceptual 

information to surpass a fixed threshold. 

This provides novel insight into human 

sensorimotor control and supports 

previous investigations into a variety of 

sensorimotor tasks (Markkula et al., 2018; 

Markkula & Zgonnikov, 2019; Xue et al., 

2018). The findings also allow for 

improvement in the modelling and 

replication of sensorimotor action using 

computational models. The nature of these 

intermittent control models creates the 

necessity for a control initiation 

mechanism. From our findings, we 

advocate for the use of Accumulator 

frameworks to provide the best modelling 

of human sensorimotor responses. Now 



  
 

 

that the groundwork has been laid, future 

research should endeavour to understand 

which examples of an Accumulator 

framework best describe sensorimotor 

action initiation. Doing this will take us one 

step closer to developing a 

neurobiologically plausible model of 

sensorimotor control initiation. 
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