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Abstract: The operational optimization of energy systems is of great significance for improving 

the overall efficiency of industrial processes. Facing new challenges brought by widespread 

uncertainties, a data-driven adaptive robust industrial multi-type energy systems optimization 

framework was proposed by bridging robust optimization and machine learning methods in this 

paper. The industrial data were used to capture the demand uncertainty of the actual process. Hybrid 

models of units were first developed considering the operational characteristics, and the energy 

system optimization model was then formed as a mixed-integer nonlinear programming problem. 

The uncertain parameter set of process power demands was formed by the process models using 

historical data of a whole operating period. Afterward, the uncertainty set was constructed by 

applying the robust kernel density estimation method, which can reduce conservatism by 

considering the distributional information. By integrating the derived data-driven uncertainty set, a 

two-stage adaptive robust optimization model aiming at minimizing the weighted total energy 

consumption was developed. The multi-level robust optimization model was reformulated as a 

tractable single-level model by employing the affine decision rule. A case study on a plant-wide 

industrial energy system in the ethylene plant was performed, and the minimum optimal energy 

consumption was 25,350 kg/h, whose price of robustness was only 2.18%. The robust optimization 

results can guide the operational optimization of energy systems under uncertainty for the operators 

of the ethylene plant. 

Key words: energy systems, industrial big data, machine learning, uncertainty, adaptive robust 

optimization 

 

1. Introduction 

Energy systems, which are used to transport and transfer multiple types of energy, are 
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fundamental parts of large-scale chemical industries. The modeling and optimization of an 

industrial energy system can help reduce energy consumption and carbon dioxide emissions [1], [2]. 

One typical energy system in ethylene manufacturing mainly includes boilers for 

super-high-pressure steam (SS) production, a waste heat recycle system providing SS, steam 

turbines to satisfy process mechanical power demands, cooling towers for water circulation, and 

some heat exchangers [3]. Given that the energy system accounts for a large proportion of the 

operational cost of ethylene plants, the modeling and optimization of the industrial energy system 

are vital for improving the whole plant efficiency.  

The steam turbine network involving SS, high-pressure steam (HS), medium-pressure steam 

(MS), and low-pressure steam (LS) is a crucial part of the energy systems, and much work has been 

performed on its modelling and optimization [4],[5]. Li et al. [6] developed an industrial data based 

turbine model and a mixed-integer nonlinear programming (MINLP) model for real steam turbine 

network optimization. However, the effect of the operational conditions of steam condensers was 

ignored in these studies. Reducing the cooling water temperature decreases the pressure in the 

steam condenser, which then increases the efficiency of the corresponding steam turbine and the 

energy cost in the cooling water system [7],[8]. Considering this issue, a multi-type energy system 

model was developed to balance the energy consumption in the sub-systems, and a seasonal energy 

system optimization was performed [3].  

Although the modeling and optimization of energy systems have made considerable progress, 

their applicability to actual industrial energy systems is limited. In the deterministic energy system 

optimization, only specific operational conditions have been examined. The derived optimal 

operating conditions may not always adapt an industrial plant because of the presence of many 

uncertainties, such as varying unit efficiencies and fluctuating process demands. Recent studies 

have focused on optimization under various uncertainties. Specific methods, such as stochastic 

programming [9], [10], chance constrained programming [11], [12], and robust optimization [13], 

[14] have been widely used to handle with the uncertainties in decision making. Robust 

optimization has gotten the popularity in recent research due to its computational efficiency [15]. In 

robust optimization, each point in the uncertainty set is a possible realization of the uncertainties, 

and the goal is to optimize the worst case, which is often too conservative [15]. To reduce the 

conservatism, lots of machine learning methods for adjusting the uncertainty set size were 

integrated into the robust optimization framework, such as kernel learning [16], principal 

component analysis [17], and Dirichlet process mixture model [18]. With the application of 

machine learning methods, many advanced data-driven optimization frameworks under uncertainty 

have also been proposed [19].  

In robust optimization, all decisions are made before the uncertain data are known and 



 

represented as “here and now” decisions. In real-world applications, some auxiliary variables can be 

determined when part of the uncertainty is revealed, viewed as “wait and see” decisions. These 

variables can adjust themselves to the corresponding uncertain data. Although this mechanism can 

reduce conservatism, the multilevel robust optimization problem is sometimes computationally 

intractable. To deal with this difficulty, affine functions were introduced to reformulate a 

computationally tractable two-stage robust counterpart, and a less conservative solution was 

obtained [20]. Based on that, lots of adaptive robust optimization (ARO) methods have been 

proposed [18]. The ARO method has been widely used in process and energy system optimization, 

including the security constrained unit commitment problem [21], multi-period economic dispatch 

of power systems [22], planning and scheduling under uncertainty [23], and scheduling of batch 

manufacturing processes [24]. Zhao et al. [25] presented a two-stage ARO approach for the 

operational optimization of a steam system with uncertain steam turbine model parameters. These 

studies show that applying two-stage ARO in real optimization problems can reduce the 

conservatism and achieve better solutions. 

With the application of machine learning methods, data-driven robust optimization and ARO 

have been integrated into process and energy system optimization under uncertainty [26],[27]. 

However, due to the complex units mechanism and connections in the industrial energy systems, the 

industrial multi-type energy system optimization under uncertainty is still lack. On account of the 

specific structure and characteristics of the industrial energy system, the methods developed on power 

systems can not be directly transferred to them. In addition, the distribution of industrial data can not 

been treated as a normal one, which requires appropriate uncertain parameters derivation and 

uncertainty set construction methods based on multi-field specialized knowledge.  

In the energy system of an industrial ethylene plant, the three most important steam turbines are 

designed to drive the cracked gas compressor, propylene refrigeration compressor, and ethylene 

refrigeration compressor, respectively. The power demands of these compressors are significantly 

affected by the operational conditions of the cracked gas compression system and chilling train 

system. However, the solution of deterministic optimization may be infeasible, especially when the 

real demands are higher than the nominal ones. In this study, typical operational conditions during 

more than two years were collected from the industrial process historical database (PHD), and the 

corresponding process mechanical power demands of the three main compressors were calculated 

by using Aspen Plus® [28]. Given that uncertain parameters cannot be predefined, a two-stage ARO 

framework for the operational optimization of the industrial multi-type energy system under 

demand uncertainty was proposed. The deterministic energy system optimization model was 

formulated based on the process mechanism and industrial characteristics. RKDE [29] was then 

applied to construct the uncertainty set. A data-driven two-stage adaptive robust MINLP model was 



 

developed afterward for the operating optimization of the energy system under demand uncertainty. 

By using the affine decision rule (ADR), the robust counterpart of the ARO model was formulated 

as a computationally tractable single-level MINLP model. A case study of a practical energy system 

in ethylene manufacturing was also performed to demonstrate the efficiency of the proposed 

method. 

The main novelties are as follows: 

(1) A two-stage ARO framework combining robust optimization and machine learning methods 

was presented to address the uncertainty in the industrial multi-type energy system.  

(2) Deterministic and data-driven ARO models were developed by combining the process 

mechanism and operation characteristics.  

(3) The industrial data were obtained from an actual ethylene plant, and RKDE was used to 

construct the uncertainty set. 

(4) A case study was performed on an actual multi-type energy system of an ethylene plant. 

 

2. Problem statement 

As shown in Fig.1, the multi-type energy system of an industrial ethylene plant comprises a 

steam generation system, a steam turbine network, an electric power system, and a cooling water 

system. There are four types of energy (fuel, steam, electricity, and water) transformed and 

transported in this system. The waste heat recovery system (WHRS) is a simplification of the 

cracking and SS generation system. Although most of the SS demand can be satisfied by the WHRS, 

there are some boilers (BO) for additional SS supply. Fuel and water are consumed in both the 

WHRS and boilers. Several types of turbines such as extraction-condensing turbines, back-pressure 

turbines, and fully condensing turbines constitute the steam turbine network. Low process 

mechanical power demands are met by either steam turbine (ST) or standby electric motors. ST1, 

ST2, and ST3 are designed to drive the cracked gas compressor, propylene refrigeration compressor, 

and ethylene refrigeration compressor, respectively. However, letdown valves (LV) are employed 

for the steam network balance, which is a waste of energy. The performance of the 

extraction-condensing turbines and fully condensing turbines can be greatly affected by the 

operational conditions of the cold end. Although reducing the cooling water temperature can 

improve the work produced by steam turbines, the electricity consumption in the cooling water 

system will increase. The cross-flow cooling towers (CT) with electric motors (MT) are used for 

cooling the returned water. Cooling water collected in the water sink are transported by electric 

pumps (PU) to the users. 
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Fig. 1. Basic structure of the industrial multi-type energy system 

The energy system optimization problem studied in this paper is stated as: given the following 

information (1) regressed parameters of unit efficiency functions; (2) mass flowrates of fuel, SS, 

and water in the WHRS; (3) multilevel steam demands; (4) rated powers of the cooling tower 

motors and water pump; (5) local meteorological conditions (environmental temperature and 

humidity); (6) energy weighting coefficients; and (7) process historical data of the cracked gas 

compression and chilling train systems, including key flowrates, temperatures, and pressures, the 

objective is minimizing the weighted total energy consumption under uncertain mechanical power 

demands. The decision variables were selected according to practical operability and sensitivity 

analysis, which include mass flowrate of the SS produced in steam boilers, mass flowrate of 

extraction steam of turbines, mass flowrate of inlet steam of the letdown valves, and binary 

variables indicating whether the units are applied. The decision variables were optimized to satisfy 

the process demands more efficiently, which will have little effect on the ethylene yield. The 

uncertain requirements in the power demand constraints were derived based on the PHD of an 



 

actual ethylene plant. 

3. Deterministic model of the energy system 

An accurate model is essential for energy system optimization. By combining the process unit 

mechanism and industrial historical data, a novel deterministic energy system optimization model is 

formulated [3]. In this system, boilers efficiencies were regressed as Eq. (1) [4] by using industrial 

historical data.  
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where 
bo  and 

bo  are the parameters in the regress function, ,
in

bo waterM  and max
,bo waterM  represent 

the mass flowrate of inlet water and maximum load of boiler bo. 

In general, the work produced by a multiple extraction steam turbine can be calculated as 

   ,  tur ext out in ext ext out out

st st st st st st st stG M M H M H M H st ST        (2) 

where tur

stG  is the power produced by the steam turbine st, ext

stM  and out

stM  are the mass flowrate 

of the extraction and outlet steam, and in

stH , ext

stH , and out

stH  are the enthalpies of corresponding 

streams.  

Steam condensers are key components of the cold-end system of the extraction-condensing 

turbines, and the performance of steam condensers is affected by the cooling water temperature. 

The steam condensers were modeled based on the revised logarithm mean temperature difference as 

defined in Eqs. (3) to (7).  
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where 
stcQ  is the heat transferred in the steam condenser, 

stcKA  is the heat transfer coefficient and 

heat transfer area, ,m stct  is the revised logarithm mean temperature difference, ,stc waterM  is the 

mass flowrate of water, out

steamT ,
cwT , and 

rwT  are the temperatures of the outlet steam of turbine, 

inlet cooling water, and outlet returned water, respectively, 
stct  is the water temperature 

difference, 
stct  is the terminal temperature difference of steam condensers,  out

st

sat

stcH
f P  is a 



 

regression function of out

stH  vs sat

stcP , and sat

stcP  is the saturated vapor pressure under ,rw stcT  

calculated by the empirical formula [30]. 

Although letdown valves are indispensable parts for steam network balance, reducing the 

opening can avoid unnecessary energy waste. By combining the mass and energy balance, the mass 

flowrate of the outlet steam of the LVs can be represented as 

    , , , , , ,= ,  out in out in

lv steam lv steam lv water lv steam lv water lv steamM H H H H M lv LV       (8) 

where ,
in

lv steamM  and ,
out

lv steamM  are the mass flowrate of inlet and outlet steam, ,
in

lv steamH  and 

,
out

lv steamH  are the enthalpies of inlet and outlet steam and ,lv waterH  is the enthalpy of water in the 

letdown valves. 

The cooling water system comprises cross-flow cooling towers equipped with rated power 

motors, water pumps, and a water collecting sink. The heat balance of the cooling tower was 

formulated as Eqs. (9) to (11).  

  , , , , , , , , ,  out out in in
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Q z Q Q    (11) 

where ,ct airQ  and ,ct vaporQ are the heat exchanged with air and taken by water evaporation, ,ct airM  

and ,ct vaporM  are the mass flowrate of air and vapor, ,
in

ct aircp  and ,
out

ct aircp  are the specific heat 

capacity of the inlet and out air, ,
in

ct airT  and ,
out

ct airT  are the temperature of the inlet and out air, 
waterr  

is the latent heat of water, 
waterQ  is the heat taken from the inlet water and 

ct  is the cooling tower 

efficiency.  

The cooling tower efficiency regression function was proposed in our previous work [3] as Eq. 

(12), which considered the effect of cooling water temperature, inlet air temperature and cooling 

tower load 
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where 
ct , 

ct , 
ct , and 

ct  are the parameters. The cooling water temperature can be calculated 

by using Eq. (13). Fresh water is used to make up for the vapor loss in the cooling towers and the 

blowdown of sink 
blwM . The mass flowrate of required fresh water cfwM  was calculated using Eq. 

(14). 
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The process mechanical power demands constraint is shown in Eq. (15), where the demands were 

met by the matching steam turbines or the standby electric motors. 
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where user

stG  is the power demand, and mt

stG  is the power provided by the standby electric motors. 

The multilevel steam balance in the steam pipe network is expressed in Eqs. (16) to (19).  
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where pro

hsM , pro

msM , and pro

lsM  are the process steam demands, ,hs imM  and ,ms imM  are the mass 

flowrate of imported HS and MS.  

The decision variables ranges were set according to the normal operational conditions:  

 min max
y y y    (20) 

The fuel is mainly consumed in the boilers and WHRS. Steam consumption includes HS and MS 

consumption, which can be imported from or sold to other plants. Electricity is consumed in the 

mechanical power user standby motors and cooling tower equipped motors. Water is used in the 

steam boilers and the WHRS for producing SS, in the water network as a supplement, and in 

letdown valves for downgrading steam. 
boz , 

stz , 
mtz , and puz  are binary variables that indicate 

whether the candidate boilers, steam turbines, cooling tower motors, pumps are applied, 

respectively. The objective is to minimize the weighted total energy consumption. 

 min  =total fuel fuel HS HS MS MS electricity electricity water waterC C C C C C          (21) 

where fuel , 
HS , 

MS , electricity , and 
water  are the corresponding weighting coefficients. 

The accuracy of the energy system model has been proved in [3]. Based on the device models 

and system constraints, the deterministic energy system optimization model was formulated as an 

MINLP problem: 
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4. Data-driven two-stage ARO model of the energy system 

In industrial plants, the process mechanical power demands are uncertain and significantly 

affected by the operational conditions of the process. The uncertain parameters in the energy system 

are the deviation ( 1 , 2  and 3 ) of the real process mechanical power demands from their 

nominal values, which can be represented as the vector  1 2 3

T  ε . The procedure for 

deriving uncertain parameters is illustrated in Fig.2. The key operational parameters of the cracked 

gas compression system and chilling train system over more than two years were collected from 

process historical database, which covers most typical operational conditions. The data with gross 

error was removed, and the rest data was reconciled before use. The processed data were imported 

into the cracked gas compression system and chilling train system models. By running the Aspen 

Plus® models, the process mechanical power demands were derived, and the uncertain deviation 

was calculated. 

Process historical database
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Fig. 2. Procedure of deriving uncertain parameters of the energy system 

As demonstrated in Fig.2, the uncertain parameters are correlated and non-evenly distributed. 



 

Therefore, a linear or nonlinear function can hardly capture the characteristics of the data. RKDE 

[31] was applied to construct the uncertainty set using the derived uncertain parameters, which can 

efficiently extract distributional information of the uncertain parameters. RKDE can enhance the 

performance of KDE by introducing a robust loss function [32] and has been widely used in process 

and energy system optimization problems.  

The KDE of the density function f  of uncertain parameters can be represent as Eq. (23), where 

   1 ,..., d

N
Rv v  is N realizations of the uncertainties [33]. 
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bK  is a kernel function with bandwidth b .  Here a popular Gaussian kernel function [32] was 

adopted 
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There is a mapping   from d
R  to H such that        , ,b i i

K   v v v v  as the Gaussian 

kernel is a positive semi-definite kernel [32]. H  is an infinite dimensional Hilbert space of functions. 

Therefore, the KDE can be obtained by solving the least squares problem 
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N

i
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h
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
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where h  is a function in H . Noting that the loss function in the KDE is quadratic, which is sensitive 

to the outliers. To deal with this issue, the RKDE method was employed and it can be regarded as the 

solution of the minimization problem Eq. (26) using a kernelized iteratively reweighted least squares 

algorithm [32]. 
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where     is the robust loss function. A widely used Hampel loss function [34] was then adopted. 

For ith component in the uncertainty set 
i ,  ˆ i

RKDE iF   is the cumulative density function, while 

the quantile function was derived by using Eq. (27). The quantile function returned a minimum 
i  

according to the predefined parameter  , and the confidence level was  1-2 . 
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The data-driven uncertainty set constructed using the quantile function was formulated as Eq. 

(28), where   is the uncertainty budget to control the level of conservatism, and 0
i  and 

i  are 



 

the center of the uncertainty set and the relative deviation, respectively, which can be calculated by 

using Eqs. (29) and (30). 
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  The box-based and RKDE-based uncertainty sets are presented in Fig.3. The RKDE-based 

method can provide a compact set, while the box-based uncertainty set covers plenty of unnecessary 

space. The RKDE-based approach can capture the region with real high values of the probability 

density function, thereby significantly reducing conservatism. 

   
Fig. 3. The constructed uncertainty set: (A) box-based uncertainty set; and (B) RKDE-based uncertainty set 

A data-driven adaptive robust energy system optimization model was then developed based on 

the derived uncertainty set. Generally, a two-stage robust optimization problem can be formulated 

as Eq. (31), where x  is the first-stage decision variables, which may contain integer and 

continuous variables. In the two-stage robust optimization framework, the second-stage decision 

variables were determined after part of the uncertainty is revealed. 
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Considering a linear programming second-stage sub-problem (Eq. (32)), where y  denotes the 

continuous variables to be determined after the uncertainty ε  is revealed. The ADR [20] was 

applied to derive a robust counterpart of the two-stage ARO problem. 

  
   

min   
,

. .  

T

l
s t

 
 

y
d y

x ε
T ε x Wy h ε

  (32) 

In the constraint of Eq. (32), T , h , and y  are affinely influenced by uncertainties. By applying 

(A) (B) 



 

ADR, these parameters can be represented by Eqs. (33) to (35), respectively. The matrix form of Eq. 

(35) can be arranged as Eq. (36). 

   0
j j i ji

i

 T ε T T   (33) 

   0
i i

i

 h ε h h   (34) 

   0
k k i ki

i

y y y     (35) 

   0  y ε y Y ε   (36) 

By integrating Eqs. (33) to (36), a conservative approximation to the two-stage ARO problem in 

Eq. (32) can be derived as Eq. (37). 

 

 

     

,
min  max  

. .    

        

T T

U

s t






 

x y ε
c x d y ε

Ax b

T ε x Wy ε h ε
  (37) 

An epigraph reformulation of Eq. (37) was developed as Eq. (38), to deal with the uncertain 

parameters in the objective function. 

  
     

,
min   

. .    ,   

        ,   

        

T T

q

s t q U

U

   

   



x y

c x d y ε ε
T ε x Wy ε h ε ε
Ax b

  (38) 

To solve the resulting two-stage MINLP problem, the robust counterpart was derived. By 

defining  1 minˆ =i

RKDE iF   ,  1 maxˆ 1 =i

RKDE iF    ,  0 min,1 sum

i i

i

    , and  0 max,1 sum

i i

i

    , 

the uncertainty set U  can be converted into Eqs. (39) to (42). 

 max
i i    (39) 

 min
i i      (40) 

 ,maxsum

i

i

    (41) 

 ,minsum

i

i

      (42) 

By applying ADR   0  y ε y Y ε , the first constraint in Eq. (38) was reformulated as 

 0max   T T T

U
q




  

ε
d Y ε c x d y   (43) 

Given that the left-hand side of Eq. (43) is a linear programming, by introducing dual variables i , 

i ,  , and   , Eq. (43) was reformulated as Eqs. (44) to (46). 



 

 max min ,max ,min 0sum sum T T

i i i i

i i

q              c x d y   (44) 

 ,   T

i i i       d Y   (45) 

 ,  ,  ,  0,   i i i        (46) 

Similarly, the second constraint in Eq. (38) was reformulated as Eq. (47) based on ADR. 

   0 0 0      T x WY h ε h T x Wy   (47) 

The left-hand side of Eq. (47) is a linear programming. By introducing dual variables i , 
i ,  , 

and  , Eq. (47) was reformulated as 

 max min ,max ,min 0 0 0sum sum

i i i i

i i

              h T x Wy   (48) 

 ,   i i i           T x WY h   (49) 

 ,  ,  ,  0,   i i i        (50) 

The objective to minimize total energy consumption in Eq. (21) can be reformulated as Eq. (51), 

where the second-stage cost  ,2totalC  Py ε  is determined after part of the uncertainty is revealed. 

 

   

   

,1 ,2
,

min   max ,

. .    

        

total total
U

C C

s t






 

x y ε
x y ε

Ax b

T ε x Wy h ε
  (51) 

According to the epigraph reformulation in Eq. (38), the two-stage adaptive robust energy system 

optimization model in Eq. (51) was rewritten as Eq. (52). The constraint in Eq. (52) can be 

reformulated as Eq. (53) based on ADR. 

 
   

,

,1

min   

. .    ,   
total

q

s t C q U   
x y

x Py ε ε
  (52) 

   0
,1max   total

U
q C x




  

ε
PY ε Py   (53) 

By introducing dual variables 
i

obj , 
i

obj , obj , and obj , Eq. (53) was reformulated as 

  max min ,max ,min 0
,1

obj obj sum obj sum obj

i i i i total

i i

q C x              Py   (54) 

 ,   obj obj obj obj

i i i       PY   (55) 

 ,  ,  ,  0,   obj obj obj obj

i i i        (56) 

The demand constraint Eq. (15) involving uncertain parameters can be compactly represented as 

followers where   0=user

stG
ε y Y ε , 

   
   

 

1 1 1

2 2 2

3 3

ext out

SS HS st SS sc st

ext out

HS MS st HS sc st

out

HS sc st

H H M H H M

H H M H H M

H H M

   
     
  

H . 



 

 0  y Y ε H   (57) 

By introducing dual variables ,
dem

i t , ,
dem

i t , dem

t , and dem

t , Eq. (57) was reformulated as 

constraints Eqs. (58) to (60), where t is the index of the power demand constraints. 

 max min ,max ,min 0
, , ,   dem dem sum dem sum dem

i i t i i t t t t

i i

H t              y   (58) 

 , , ,   ,dem dem dem dem

i t i t t t t i t
       Y   (59) 

 , ,,  ,  ,  0,   ,dem dem dem dem

i t i t t t i t        (60) 

Based on the derived uncertain power demand constraint, the data-driven adaptive robust energy 

system optimization model can also be formulated as an MINLP problem: 

 

   
       s.t.      Epigraph reformulation of objective function Eqs. (54)-(56)   

                 Mass and energy constraints in Eqs. 1 - 14

                 Power requirement cons

min max  

traint 

  

in Eq

U
q



   
   

 

s. 58

                 Steam network balance constraint in Eqs. 

                 Variables range constraint in

60

16 - 19

20 Eq. 

   (61) 

 

5. Case study 

5.1. Case description 

A case study on a multi-type energy system of ethylene manufacturing was executed to prove the 

effectiveness of the proposed approach. The original structure and operational conditions of the 

studied energy system are presented in Fig. 4. One boiler, two HS-LS back-pressure turbines, two 

MS-LS back-pressure turbines, four water pumps, and six cooling towers were applied. The 

back-pressure turbines corresponding power users can also be driven by standby electric motors. 

The three most important steam turbines were designed to drive the cracked gas compressor, 

propylene refrigeration compressor, and ethylene refrigeration compressor, whose demands were 

calculated by the cracked gas compression system and chilling train system models. Other key 

process parameters are presented in Table 1, and the weighted coefficients of different types of 

energy were 1.05 kg oil/kg fuel, 0.08 kg oil/kg HS, 0.066 kg oil/kg MS, 2.3×10-4 kg oil/kW 

electricity, and 0.17 kg oil/ton water according to the industrial experience. 
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Fig. 4. Original structure and operational conditions of the energy system 



 

Table 1. Process parameters in the energy system model 

Parameters Value Parameters Value 

a
bo

 for bo1- bo2 0.0851 Power demand of 4
user

stG  (kW) 297.45 

b
bo

 for bo1- bo2 0.0079 Power demand of 5
user

stG  (kW) 731.43 

ct  for ct1- ct8 in spring-autumn 0.03289 Power demand of 6
user

stG  (kW) 347.85 

ct  for ct1- ct8 in spring-autumn 0.475 Power demand of 7
user

stG  (kW) 88.83 

ct  for ct1- ct8 in spring-autumn 0.6915 Process demand of HS (kg/h) 21,727 

ct  for ct1- ct8 in spring-autumn 0.5807 Process demand of MS (kg/h) 55,176 

Cooling towers motors efficiency 
mt  0.8 Process demand of LS (kg/h) 1466 

There are 20,956 sets of historical process data collected from the ethylene plant to calculate the 

uncertain parameters based on the process models. Key input variables of the cracked gas 

compression system model are presented in Fig.5, where 
in

F  is the inlet mass flowrate of the 

system, inP , 1
out

stageP , 2
out

stageP , 3
out

stageP , and 5
out

stageP  are the inlet pressure of the system, outlet pressure 

of stage1, stage2, stage3, and stage5, respectively. Key input variables of the chilling train system 

model are presented in Fig.6, where 1
inF  is the mass flowrate of cracked gas from upstream, 2

inF  

is the mass flowrate of liquid from high pressure depropanizer condenser, and 3
inF  is the mass 

flowrate of recycled ethane from ethylene splitter and S
F  is the mass flowrate separated to Tail 

gas expander B; 1
ovhd

CT , 1
btm

CT , and 1
sen

CT  are the temperatures of the overhead stream, bottom stream, 

and sensitive stage of demethanizer prefractionator, respectively; 2
ovhd

CT , and 2
btm

CT  are the 

temperatures of the overhead stream and bottom stream of Demethanizer, respectively. 

 
Fig. 5. Historical process data of the cracked gas compression system 



 

 
Fig. 6. Historical process data of the chilling train system 

RKDE was used to construct the uncertainty set, where parameters   and   were set as 0.1 and 

0.2, respectively [25]. Given that  1-2  is the confidence level, a larger   corresponds to a lower 

confidence level. Therefore, improving the value of   can generate a less conservative solution. 

The uncertainty budget   denotes the degree of uncertainty deviation, and a larger   increases the 

conservatism. A sensitivity analysis was performed to study the effect of the two parameters on the 

ARO solution. The nominal values of the process mechanical power demands were 19,094.85 kW, 

8,133.85 kW, 3,606.27 kW. The boundary of the uncertain parameters is presented in Table 2. 

Table 2. Boundary of uncertain parameters 

 1  2  3  

Minimum value -11480.86 -1351.85 -973.48 

Maximum value 7821.54 537.87 357.16 

 

5.2. Results and discussion 

The deterministic and data-driven adaptive robust energy system optimization models (Eq. (22) 

and Eq. (61)) were coded in GAMS 24.7.4 and solved using the sub-solver Baron (16.8.24) [35] 

with the optimality tolerance of 0.01 %, which was implemented on a desktop with the Intel Core 

i9−10900k CPU @ 3.70 GHz and 64 GB memory. In the deterministic energy system optimization, 

the process mechanical power demands were set as their nominal values. In the Two-stage ARO 

with a box-based uncertainty set case, only the uncertainty parameters' boundary was considered. 

The problem sizes and solutions of different optimization methods are presented in Table 3. The 

ARO models had 43 additional continuous variables and 109 more constraints because of the 

introduction of auxiliary variables and application of ADR.  



 

The price of robustness (PoR) [36] defined as   /
nom ro nom

PoR obj obj obj   was adopted as the 

measurement of the optimality level needs to be sacrificed for robustness, where 
nom

obj  is the 

objective value of the deterministic optimization using nominal values and 
ro

obj  is the objective 

value of the robust optimization. According to the definition, a lower value of PoR means less 

sacrifice of optimality for robustness, which is preferable. The deterministic optimal energy 

consumption was 25,509 kg/h given that only the nominal demands were considered. By applying 

RKDE, the proposed data-driven adaptive robust energy system optimization method obtained a 

solution of 26,064 kg/h and the PoR was only 2.18%, which is much less conservative than that 

using a box-based uncertainty set (PoR = 22.52%). 

Table 3. Problem sizes and solutions of different optimization methods 

 
Deterministic 

optimization 

Two-stage ARO with a 

box-based uncertainty set 

Data-driven ARO 

with RKDE 

Binary variables 18 18 18 

Continuous variables 119 162 162 

Constraints 110 219 219 

Optimal energy 
consumption (kg/h) 

25,509 31,253 26,064 

 

The comparison of energy consumption under different optimization methods is shown in Fig. 7. 

Electricity and water always account for a small portion of total energy consumption. Fuel is the 

most important energy consumption, and more steam is imported under uncertain demands. 

Because of a compact uncertainty set in the proposed data-driven adaptive robust energy system 

optimization model, it results in less steam consumption of the system than the classical box-set 

based method. 



 

 
Fig. 7. Comparison of the energy consumption of different optimization methods (DO: Deterministic 

optimization; B-ARO: Two-stage ARO with a box-based uncertainty set; and R-ARO: Data-driven ARO with 

RKDE) 

The optimal energy system structure and operational conditions under the deterministic and 

proposed optimization methods are presented in Figs. 8 and 9. The energy system structures after 

optimization are the same under these two optimization methods. Given that the SS produced in the 

WHRS can satisfy the steam demand, no boiler was used after optimization. Low process 

mechanical power users chose electric motors instead of steam turbines. One cooling tower and one 

water pump were shut down after optimization to reduce the total energy consumption. The steam 

sent to the letdown valves was greatly reduced to avoid unnecessary energy loss. Compared with 

the deterministic optimization, more steam was consumed in ST1, ST2, and ST3 under the 

two-stage adaptive robust optimization method to satisfy the uncertain demands. 
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Fig. 8. Optimal structure and operational conditions under deterministic optimization 
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Fig. 9 Optimal structure and operational conditions under data-driven ARO with RKDE 

 

A sensitivity analysis of different uncertainty set parameters is presented in Fig. 10, where   is 

set to 0.02, 0.05, 0.1, 0.15, and 0.2 and   is set to 0.05, 0.1, 0.2, 0.4, and 0.8. When   is fixed to 0.8, 

the solution under different   ranges from 26,866 kg/h to 29,637 kg/h. The solution increases by 

9.66 % on average when   increases from 0.02 to 0.2. The tendency of   is opposite to that of  . 

When   is reduced from 0.8 to 0.05 under fixed  , the solution is improved by 10.13 % on average. 

Due to the smaller confidence interval corresponding to a larger  , the energy consumption 

obviously increases along with   under a fixed  . While   is the uncertainty budget to control the 

influence of uncertainty deviations from the center, this parameter only has limited effects on the 

solution. 



 

 
Fig. 10. Optimal energy consumption under different uncertainty set parameters 

 

6. Conclusion  

This study addressed the industrial multi-type energy system optimization under demand 

uncertainty by using a data-driven two-stage adaptive robust optimization model coupling with the 

power demands of compressors. The uncertain demand deviations from their nominal values were 

calculated by using accurate Aspen Plus® models based on the collected industrial big data for 

different operation conditions. A machine learning method robust kernel density estimation (RKDE) 

was adopted to construct the data-driven uncertainty set for capturing the uncertain power demands 

of compressors. By incorporating the derived uncertainty set, a data-driven adaptive robust energy 

system optimization model was formulated, where the second-stage decision variables can adjust 

themselves to the uncertain parameters. The adaptive robust optimization model was rewritten as a 

single-level mixed-integer non-linear programming problem by affine decision rule. A case study on 

an industrial ethylene plant multi-type energy system was carried out, and results show that the 

proposed approach can return an effective and robust solution whose PoR was only 2.18%. The 

sensitivity analysis shows that the energy consumption under different parameters ranges from 

25,350 kg/h to 29,637 kg/h, and the deviation between the worst and best solutions is 16.91%. The 

parameters of the RKDE-based uncertainty set can be used to adjust the conservatism of the 

solution. Results of this study can guide the industrial decision-makers in balancing the robustness 

and optimality. 
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Nomenclature 

Acronyms 

ARO Adaptive robust optimization 

HS High-pressure steam 

LS Low-pressure steam 

MILP Mixed-integer linear programming 

MINLP Mixed-integer non-linear programming 

MS Medium-pressure steam 

PHD Process historical database 

RKDE Robust kernel density estimation 

SC Steam condensate 

SS Super-high-pressure steam 

 

Sets 

bo Index of boiler set  

ct Index of cooling tower set  

i Index of uncertainty set 

lv Index of letdown valve set  

mt Index of cooling tower electric motor set  

mu Index of standby motor for mechanical power user set  

pu Index of water pump set  

st Index of steam turbine set  

stc Index of steam condenser set  

 

Parameters 

bo , 
bo  Parameters in the boiler efficiency regress function 

ct , 
ct , 

ct , 
ct  Parameters in the cooling tower efficiency regress function 



 

fuel  Coefficient of fuel to oil equivalent (kg/kg) 

electricity
 Coefficient of electricity to oil equivalent (kg/kW) 

HS  Coefficient of HS to oil equivalent (kg/kg) 

MS
 Coefficient of MS to oil equivalent (kg/kg) 

water
 Coefficient of water to oil equivalent (kg/t) 

,
in

ct aircp  Specific heat capacity of inlet air of cooling tower (kg/℃) 

,
out

ct aircp  Specific heat capacity of outlet air of cooling tower (kg/℃) 

watercp  Specific heat capacity of water (kg/℃) 
user

stG  Demand of mechanical power user (kW) 

bfwH  Enthalpy of fresh water in the boiler (kJ/kg) 

SSH  Enthalpy of SS in the boiler (kJ/kg) 

,
in

lv steamH  Enthalpy of the inlet steam in the letdown valve (kJ/kg) 

,
in

lv waterH  Enthalpy of the inlet water in the letdown valve (kJ/kg) 

in

stH  Enthalpy of the inlet steam in the steam turbine (kJ/kg) 

ext

stH  Enthalpy of the extraction steam in the steam turbine (kJ/kg) 

,
out

lv steamH  Enthalpy of the outlet steam in the letdown valve (kJ/kg) 

stcKA  Heat transfer coefficient (kJ h-1 m-2 ℃-1) and heat transfer area (m2) 

,bo fuelLHV  Lower heat value of fuel (kJ/kg) 

max
,bo waterM  Maximum mass flowrate of water in the boiler (kg/h) 

max
,ct waterM  Maximum mass flowrate of water in the cooling tower (kg/h) 

waterr  Latent heat of vaporization (kJ/kg) 

 

Continuous variables 

bo  Efficiency of boiler 

ct  Cooling tower heat exchange efficiency 

stct  Terminal temperature difference of steam condensers (℃) 

electricityC  Electricity consumption (kW)
 

fuelC  Fuel consumption (kg/h)
 



 

HSC  HS consumption (kg/h) 

MSC  MS consumption (kg/h) 

steamC  Steam consumption (kg/h) 

totalC  Total energy consumption (kg/h) 

waterC
 Water consumption (kg/h) 

mt

stG  Power produced by the standby motor for mechanical power user (kW) 

tur

stG  Power produced by the steam turbine (kW) 

out

stH  Enthalpy of the exhausting steam in the steam turbine (kJ/kg) 

blwM  Mass flowrate of the blowdown (kg/h) 

cfwM  Mass flowrate of fresh water (kg/h) 

,ct vaporM  Mass flowrate of vapor in the cooling tower (kg/h) 

ext

stM  Mass flowrate of extraction steam (kg/h) 

,
in

bo fuelM  Mass flowrate of fuel in the boiler (kg/h) 

,
in

bo waterM  Mass flowrate of water in the boiler (kg/h) 

,
in

lv steamM  Mass flowrate of inlet steam in the letdown valve (kg/h) 

pro

steamM  Mass flowrate of process steam demand (kg/h) 

,
out

lv steamM  Mass flowrate of outlet steam in the letdown valve (kg/h) 

out

stM  Mass flowrate of the exhausting steam (kg/h) 

,stc waterM  Mass flowrate of water in the steam condenser (kg/h) 

sat

stcP  Saturated pressure in the steam condenser (kPa) 

,ct airQ  Heat taken by air in the cooling tower (kJ/h) 

,ct vaporQ  Heat taken by vapor in the cooling tower (kJ/h) 

waterQ  Heat taken from water in the cooling tower (kJ/h) 

stcQ  Heat transferred in the steam condenser (kJ/h) 

,m stct  Revised logarithm mean temperature difference (℃) 

stct  Water temperature difference (℃) 

cwT  Temperature of cooling water (℃) 

rwT  Temperature of returned water (℃) 



 

,
in

ct airT  Temperature of inlet air in the cooling tower (℃) 

,
out

ct airT  Temperature of outlet air in the cooling tower (℃) 

out

steamT  Temperature of outlet steam of turbine (℃) 

 

Binary Variables 

z
 

Binary variable meaning whether the unit is employed
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Highlight 

(1) Data-driven ARO is firstly applied in industrial multi-type energy systems optimization under 

uncertainty.  

(2) The data-driven uncertainty set is formed by RKDE based on the industrial big data. 

(3) Deterministic and data-driven ARO are formulated as MINLP problems. 

(4) The effect of the set parameters on the solution is explored. 

 


