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 13 

Abstract 14 

Particle aggregation and breakage phenomena are widely found in various industries such as 15 

chemical, agricultural and pharmaceutical processes. In this study, a physics-informed neural 16 

network is developed for solving both the forward and inverse problems of particle aggregation 17 

and breakage processes. In this method, the population balance equation is directly embedded 18 

in the loss function of a neural network so that the network can be trained efficiently and fulfil 19 

physical constraints. For the forward problems, solutions of population balance equations are 20 

obtained through the optimization of the neural network where the predictions well match the 21 

analytical solutions. In the inverse modelling, the data-driven discovery of model parameters 22 

of population balance equations is investigated. The sensitivity regarding the selection of 23 

different neural network structures is also investigated. The developed population balance 24 

equations embedded with neural network approach is promising for solving inverse problems 25 

of particle aggregation and breakage processes with noisy observation data. 26 
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1. Introduction 3 

Population balance model (PBM) is widely used for modelling particulate systems in a variety 4 

of applications such as crystallizations, millings, polymerization and granulations [1-6]. PBM 5 

can quantify how a distribution of particle descriptors changes over the studied time based on 6 

kernel functions representing the relevant mechanisms that affect the particle evolutions. It can 7 

also be coupled to computational fluid dynamics where the spatial evolution of particle 8 

descriptors can be tracked [7-10]. However, the model consists of highly nonlinear integral-9 

partial different equations, which usually needs to be solved numerically. Until now, various 10 

numerical techniques are therefore developed to solve it,  including the method of class [11], 11 

moment methods [12, 13], Monte Carlo methods [14] and meshless radial basis method [15]. 12 

Hounslow et al. (1988) and Litster et al. (1995) developed a discretization procedure for the 13 

aggregation problems using the method of class. This method was extended to solve breakage 14 

problem by Vanni (2000). Kumar and Ramkrishna (1996) developed a method of 15 

discretization with a pivot technique that involves a selective refinement of a relatively coarse 16 

grid. The number of sections is kept to a minimum and they have shown that the method can 17 

be successfully applied to agglomeration/breakage problems. A recent review of the solutions 18 

of population balance equations for simulating disperse multiphase flows is given by Shiea, 19 

Buffo, Vanni and Marchisio [16]. However, the existing numerical schemes are designed to 20 

solve the forward problems of population balance equation but are difficult to deal with the 21 

inverse problems. Many real-world applications of PBM need to be formulated as inverse 22 

modelling problems, which are to identify a set of parameters or functions to make the outputs 23 

of forward analysis match the desired results or measurements. The calibration or search of the 24 

https://www.sciencedirect.com/science/article/pii/S0009250905004483#bib16
https://www.sciencedirect.com/science/article/pii/S0009250905004483#bib19
https://www.sciencedirect.com/science/article/pii/S0009250905004483#bib29
https://www.sciencedirect.com/science/article/pii/S0009250905004483#bib18
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optimal kernel parameters of the population balance model using the existing schemes still 1 

needs massive additional efforts. 2 

Over the past few years, there has been a revolution in the successful application of deep 3 

learning in various fields such as computer vision, natural language processing, image 4 

classification and recognition. Despite its great success in these fields, applying deep learning 5 

in the field of physics-based particulate systems is relatively scarce. Physical processes can 6 

usually be described by conservation laws with dynamic and kinematic constraints represented 7 

through a set of ordinary or partial differential equations. Machine learning has the capabilities 8 

in learning complex representations of data and approximating physical processes, which 9 

provides the potential to solve the challenging open problems of physical systems. For example, 10 

in the wet granulation process, the underlying physics are not completely available (e.g. the 11 

breakage and agglomeration mechanisms). However,some extra information from the 12 

experimental data could be available for machine learning methods to explore. By integrating 13 

the information from both physics and data exploitation through machine learning methods, it 14 

will be well positioned to recover and identify the particle kinetic in a complex process such 15 

as granulation, milling and crystallisation. In recent years, the scientific machine learning 16 

method [17] is being actively explored to solve these problems. The method can be trained 17 

with both experimental and numerical data, which shows a great potential to optimize the 18 

complicated industrial processes. Particularly, the physics informed neural network (PINN) 19 

method has attracted much attention [18-20]. PINN endows a neural network model with 20 

known equations that govern the physics of a system [19, 21]. In addition to training data, the 21 

governing equations, as well as initial and boundary conditions of a mechanistic model can be 22 

embedded in the cost function of PINN. The method has been proven to be very successful in 23 

solving systems of ordinary differential equations and partial differential equations, such as 24 

Schrodinger, Allen-Cahn and Navier-Stokes equations [22]. Moreover, the method is also 25 
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shown to be applicable in solvingboth forward and inverse problems of differential equations 1 

sytems, which can overcome the limitations of existing numerical methods and is promising to 2 

be applied in a wide range of  physical systems [19].  3 

In this study, we develop a physics-informed deep learning framework to solve both forward 4 

and inverse problems of the population balance model that describes and predicts the particle 5 

distribution undergoing aggregation and breakage. The governing equations of the population 6 

balance model is directly integrated into the loss function of a neural network to penalise the 7 

unphysical predictions so that the framework can be trained efficiently and fulfils physical 8 

constraints. The key advantage of such model structure is its interpretability and generalization 9 

for various particulate processes. To demonstrate the feasibility of physics-informed deep 10 

learning framework, cases with simple kernels are studied in the forward problems since 11 

analytical solutions are available for training.  A laboratory ball mill with sparse experimental 12 

data will be used to test the performance of the framework for solving inverse problems. The 13 

paper is structured as follows. The mathematical theory is described in section 2. Exemplar 14 

forward solutions and model parameter discovery of population balance equations with 15 

simulation results are given in section 3. Finally, conclusions and future work are given in 16 

section 4. 17 

 18 

2.  Mathematical model 19 

2.1 Population balance equations 20 

Considering a well-mixed system of particles that undergo aggregation and breakage, the 21 

population balance equation can be written as below 22 
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 𝑑𝑁(𝑣,𝑡)𝑑𝑡 = 12  ∫ 𝑁(𝑣 − 𝑣′, 𝑡)𝑁(𝑣′, 𝑡)𝑣0 𝛽(𝑣 − 𝑣′, 𝑣′)𝑑𝑣′ −             ∫ 𝑁(𝑣, 𝑡)𝑁(𝑣′, 𝑡)∞0 𝛽(𝑣, 𝑣′)𝑑𝑣′ −  𝛾(𝑣)𝑁(𝑣, 𝑡) +            ∫ 𝛼(𝑣, 𝑣′)𝛾(𝑣′)𝑁(𝑣′, 𝑡)∞𝑣 𝑑𝑣′ ,  
(1) 

where 𝑁(𝑣, 𝑡) is the number density distribution function representing the number of particles 1 

per system volume with particle volume 𝑣  at time t.  𝛽(𝑣, 𝑣′) is the aggregation kernel. 𝛾(𝑣) 2 

is the breakage rate kernel, 𝛼(𝑣, 𝑣′) is the breakage daughter size distribution function which 3 

represents the probability of making a daughter volume 𝑣 from a parent volume 𝑣′. The first 4 

term on the right-hand side of the Eq. 1 calculates the birth rate of particle volume v due to 5 

aggregation of particles smaller than particle volume v. The second term calculates the death 6 

rate of particle volume 𝑣 due to aggregation with other particles. The third term calculates the 7 

death rate of particle volume 𝑣 due to fragmentation. The final term calculates the birth rate of 8 

particle volume 𝑣 due to fragmentation of particles larger than particle volume 𝑣. A linear grid 9 

(𝑣𝑖 = 𝑖𝑣0) can be used to discretize the Eq.1, which leads to the following formula  [23-25],   10 

 𝑑𝑁𝑖𝑑𝑡 = 12 ∑ 𝑁𝑗𝑁𝑖−𝑗  𝛽𝑗,𝑖−𝑗 − 𝑁𝑖𝑖−1
𝑗=1  ∑ 𝑁𝑗  𝛽𝑖,𝑗 − 𝛾𝑖𝑁𝑖 +  ∑ 𝛼𝑖𝑗𝛾𝑗𝑁𝑗𝑛

𝑗=𝑖+1
𝑛

𝑗=1  

(2) 

where the subscript i  and j represent ith and jth discretized grid, respectively. 11 

2.2 Deep neural network 12 

Deep neural networks have been proven to be a powerful metamodeling tool and complex 13 

function approximator [26]. Recent studies have shown that deep neural networks are a 14 

promising and effective method to establish metamodel for approximating temporal response 15 

of dynamical systems and approximating material constitute laws, which outperforms 16 

traditional metamodeling techniques in terms of both the capability of capturing nonlinear 17 

input-output relationships and prediction accuracy [27, 28]. In this work, a fully connected 18 
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deep feedforward neural network was used. In this network, the information passes forwardly 1 

from the input layer through several hidden layers to the output layer. Despite many other types 2 

of neural networks have been developed in the past decades, the feedforward neural network 3 

is simple yet effective. It has been shown to be sufficient for dealing with most of the partial 4 

differential equation problems [29, 30]. A L-layer neural network 𝑓𝐿(𝒙) can be written as 5 

follow, 6 

 𝐼𝑛𝑝𝑢𝑡 𝑙𝑎𝑦𝑒𝑟: 𝑓0(𝒙) =  𝒙 ∈  𝑹𝑑𝑖𝑛 , (3) 

 𝐻𝑖𝑑𝑑𝑒𝑛 𝑙𝑎𝑦𝑒𝑟: 𝑓𝑙(𝒙) =  𝜎(𝑾𝑙𝑓𝑙−1(𝒙) + 𝒃𝑙)  ∈  𝑹𝑓𝑙 , (4) 

 𝑂𝑢𝑡𝑝𝑢𝑡 𝑙𝑎𝑦𝑒𝑟: 𝑓𝐿(𝒙) =  𝑾𝐿𝑓𝐿−1(𝒙) + 𝒃𝐿  ∈  𝑹𝑑𝑜𝑢𝑡 , (5) 

where 𝒙 is the input of the neural network, 𝑾𝑙 and 𝒃𝑙 are the weight matrix and bias vector in 7 

the l-th layer, respectively. 𝜎 is a non-linear activation function applied element-wisely. The 8 

feed forward neural network here consists of one input layer, l -1 hidden layers and one output 9 

layer.  10 

2.3 Physics-informed Neural network 11 

The schematic of the population balance embedded neural networks (PBNN) used in this work 12 

is shown in Figure 1. In this framework, a neural network  𝑁̂(𝒙; 𝜽) is firstly constructed to be 13 

a surrogate of the solution 𝑁(𝒙). Here 𝜽 is the hyperparameters containing the set of all weight 14 

matrices 𝑾 and bias vectors 𝒃 in the neural network 𝑁̂. An important feature of PBNN is that 15 

it respects the physical laws described by the population balance equations. This is achieved 16 

through modifying the loss function of the neural network. The governing equations are 17 

included as an additional term to punish the physical inconsistency of the output results of the 18 

neural network. One advantage of using a neural network as a surrogate model is that the 19 

derivative can be obtained through the chain rule for differentiating compositions of functions 20 
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in the optimization processes. The derivatives can be evaluated using backpropagation in a 1 

deep neural network [31]. Herein, we use an automatic differentiation routine to compute the 2 

derivatives of the network’s outputs with respect to the network’s inputs. It firstly applies a 3 

forward pass to compute the values of all variables and then applies a backward pass to compute 4 

the derivatives.  Automatic differentiation provides an accurate and efficient way to calculate 5 

derivatives, which has been implemented as a standard modular in most of the modern deep 6 

learning frameworks [32]. On the one hand, the automatic differentiation algorithm provides a 7 

robust way to update the hyperparameters in the neural network for optimization the trainings. 8 

On the other hand, it also offers an opportunity to construct a physical constraint loss function 9 

by directly incorporating the governing ordinary differential equations. Therefore, it has gained 10 

significant attention in both the machine learning and physical modelling community. 11 

In this work, the loss function of the neural network is constructed as follows, 12 

 𝐿(𝜽) = 𝜆1 ( 1𝑀𝑢 ∑|𝑁̂𝑖( 𝜽) − 𝑁(𝑥𝑖 , 𝑡𝑖)|2𝑀𝑢
𝑖=1 ) + 𝜆2 ( 1𝑀𝑓 ∑|𝐹(𝑁𝑓)|2𝑀𝑓

𝑖=1 ) 

(6) 

 𝐹(𝑁𝑖) = 𝑑𝑁𝑖𝑑𝑡 − 12 ∑ 𝑁𝑗𝑁𝑖−𝑗  𝛽𝑗,𝑖−𝑗 + 𝑁𝑖𝑖−1
𝑗=1  ∑ 𝑁𝑗  𝛽𝑖,𝑗 + 𝛾𝑖𝑁𝑖 −  ∑ 𝛼𝑖𝑗𝛾𝑗𝑁𝑗𝑛

𝑗=𝑖+1
𝑛

𝑗=1  

(7) 

Here, 𝑀𝑢 is the number of obversation points that are used to train the neural network; 𝑀𝑓 is 13 

the number of discretized grids that are used to approximate the particle size distribution. The 14 

first term in the right-hand side of Eq. 6 represents the mean squared error of training data on 15 

initial and observation training data. The second term is to punish the physics inconsistency 16 

enforced by the population balance equation in Eq. 2. 𝜆1 and 𝜆2 are the regulation coefficients 17 

to balance the weight of the two mean squared errors, respectively. They are chosen to be one 18 

in this work. Note that the initial particle size distribution is imposed by hard constraint, i.e. 19 
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the output of the neural network is modified to the given initial particle size distribution during 1 

each optimization step. It is found that hard constraints of initial and boundary conditions 2 

significantly accelerate the optimization process and are very important for ensuring the 3 

uniqueness of the learned solutions [33]. The optimization is first done through the widely used 4 

stochastic gradient descent ADAM algorithm [34] to minimize the loss function. Later, a 5 

second-order method L-BFGS is chosen in further optimization steps [35]. The L-BFGS 6 

optimization is found to greatly improve training efficiency, particularly in solving inverse 7 

problems. 8 

3. Simulation results  9 

In this section, two distinct problems will be studied. The first problem is to solve the 10 

population balance equation in forward problem, which is to estimate the unknown hidden state 11 

of the system given fixed model parameters. The second problem is data-driven discovery of 12 

the population balance equation, which is to predict the model parameters that can best describe 13 

the observation data. Analytical solutions of the studied cases are used to train the PBNN. The 14 

effects of the neural network in PBNN will also be investigated.  In general, a good combination 15 

of the architecture of neural networks is important for achieving a robust prediction. After some 16 

preliminary trials, a neural network architecture with 8 hidden layers (each layer has 20 neurons) 17 

has been chosen for most of the studied cases. Hyperbolic tangent (tanh) is used as the 18 

activation function of the neurons and Xavier normal initializer is used to set the initial random 19 

weights of layers where initial weights are drawn from a truncated normal distribution [36]. 20 

The effects of the network on the performance will also be briefly discussed in the following 21 

section.  22 
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3.1 Solving forward problem of the aggregation and breakage processes 1 

Scott [37] presented an analytical solution for aggregation processes with a constant kernel and 2 

various initial conditions. Here, the aggregation case with a Gaussian-like distribution as an 3 

initial condition is solved. The initial condition is given as follows, 4 

 𝑛(𝑣, 0) = 𝑁0𝑣0 ( 𝑣𝑣0) 𝑒−𝑣/𝑣0 
(8) 

The value 𝑁0 and 𝑣0 are the initial number of particles per unit volume and the initial mean 5 

volume of the particles. The analytical solution for the number density function is given by Eq 6 

9 7 

 𝑛(𝑣, 𝑡) = 𝑁0𝑣0 4𝑒−2𝜉𝜉(𝑇 + 2)2 ∑ (2𝜉)2(𝑘+1)Γ(2(𝑘 + 1))∞
𝑘=1 ( 𝑇𝑇 + 2)𝑘

 
(9) 

where 𝜉 = 𝑣/𝑣0. 𝑇 is the non-dimensional time given by Eq 10 8 

 𝑇 = 𝛽0𝑁0𝑡 (10) 

Here, 𝛽0 is the aggregation rate constant. The analytical solution of the total number of particles 9 

is provided as below. 10 

 𝑁(𝑡) = 2𝑁0/(𝑇 + 2) (11) 

Since the analytical formulation is general, a benchmark case with 𝑁0 = 1, 𝛽0 = 1 and 𝑣0 =11 1 is investigated here. The volume of the smallest particle is considered to be 0.25 and a grid 12 

with 40 particle size bins is used. The simulation time step is set to 0.01 and the aggregation 13 

time between 0 and 1 second is modelled.  14 

Figure 2 shows the loss of PBNN during the optimization process. It can be seen that the loss 15 

continues to decrease as expected. A two-stage optimization process is adopted here. The first 16 
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2000 epoch optimization steps are achieved through the stochastic gradient descent ADAM 1 

algorithm with learning rate of 0.1. It is found that there is a substantial decrease of the loss at 2 

the beginning of the optimization while the decreasing rate becomes quite slow after 1000 3 

epochs. To further speed up the optimization process, the optimization algorithm is switched 4 

to a second-order L-BFGS method after 2000 epochs where thereis a small jump of the loss 5 

right after switching. Nevertheless, the loss drops sharply during the first 100 epochs of the L-6 

BFGS. After that, the decreasing rate of the loss becomes very slow due to the convergence of 7 

the solutions, which is further confirmed throughcomparisons between the analytical solution 8 

and the predicted number density function of the final time step as shown in Figure 3. It can be 9 

seen that the predictions are getting closer to the analytical solution along with the optimization 10 

process. The final prediction at 3000 epochs has excellent agreement with the analytical 11 

solution. 12 

The impacts of the depth of the neural network architecture on the loss and prediction are shown 13 

in Figure 4. The neural networks have 20 neurons in each layer and three depths (i.e. 4 layers, 14 

8 layers and 12 layers) are compared. In general, all three networks generate satisfactory 15 

predictive performance, which indicates the robustness of the proposed approach. It is observed 16 

that the 4 layers network results in a high oscillation during the first phase ADAM optimization 17 

and produces a relatively less accurate prediction on the final particle size number density. In 18 

comparison, a 12 layers network seems to produce the best prediction results. However, it 19 

contains more parameters and thus needs more computational resources for training. As a rule 20 

of thumb, it is usually preferable to choose the simplest network structure that can still achieve 21 

a desired prediction performance. It is found that the 8 layers network produces almost the 22 

same results as the 12 layers network. Table 1 lists a series of tests with different combinations 23 

of numbers of hidden layers and neurons. The relative L2 error is calculated as 𝜖 =24 
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√∑ ‖𝑛𝑝𝑟𝑒𝑑𝑖 −𝑛𝑎𝑛𝑎𝑖 ‖2𝑀𝑖=1√∑ ‖𝑛𝑎𝑛𝑎𝑖 ‖2𝑀𝑖=1 . In general, the error deceases when the network becomes wider (more 1 

neurons per layer) and deeper (more hidden layers). However, the accuracy does not change 2 

too much when the number of hidden layers is increasing from 8 to 12. Furthermore, there is 3 

no significant improvement when using more than 20 hidden neurons per layer. Therefore, a 4 

network of 8 hidden layers  with 20 hidden neurons architecture is preferred in this work.  5 

Figure 5 illustrates the final convergence of the number density function solution in terms of a 6 

three-dimensional surface and a contour plot. Note that the solution from the traditional 7 

Artificial Neural Network (ANN) method is also plotted. The ANN has the same neural 8 

network setting as PBNN except that population balance equations are not encoded in the loss 9 

function. The loss function of ANN only contains the root mean square error between the neural 10 

network output and the analytical solution of the particle size distribution. The training is 11 

performed by minimizing the loss function over multiple time steps. It can be seen that both 12 

ANN and PBNN can successfully approximate a similar shape as the analytical solution.The 13 

number of small particles decreases, and the number of larger particles increases with the 14 

aggregation time. As shown in the contour plot, the aggregation process looks like the diffusion 15 

of concentration field in a temporal evolution.  However, it is obvious that there are some 16 

discrepancies between the ANN and the analytical solution whereas the solution from PBNN 17 

is closer to the analytical solution. To validate the prediction, Figure 6 compares the time 18 

evolution of the total number of particles predicted by PBNN, ANN, method of class with 10 19 

discretized bins and the analytical solution. It can be seen that the PBNN predicts that the 20 

number of particles decreases with the aggregation time, which is in a very good agreement 21 

with the analytical solution. In comparision, the solution with the method of class slightly 22 

overestimates the total number of particles through the aggregation process. In addition, the 23 

prediction of ANN deviates significantly from the analytical solution, whichindicates that the 24 
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conservation law is difficult to maintain using ANN although it can approximate the shape of 1 

the solution.  By training with more numerical results obtained from different sets of parameters 2 

may help improve the predictions of ANN. However, this requires more computational 3 

resources and it still could not guarantee that the physical constraints of the distribution are 4 

met. Figure 7 further shows that the predictions of the particle size distribution at different 5 

aggregation time agree with the analytical solution, highlighting that the dynamic evolution of 6 

the aggregation process is correctly captured. 7 

Ziff and McGrady [38] derived an analytical solution for a uniform binary breakup case. The 8 

breakage kernel and the daughter particle distribution function are given as below. 9 

 𝛾 = 𝑣2 (12) 

 𝛼(𝑣, 𝑣′) = 2/𝑣′ (13) 

In this particular case, the initial particle number distribution function is set to be 10 

monodispersed, i.e. 𝑛(𝑣, 0) = 𝛿(𝑣 − 𝑣0). The analytical solution of particle number density 11 

distribution is given by 12 

 𝑛(𝑣, 𝑡) = 𝑒−𝑡𝑣2[𝛿(𝑣 − 𝑣0) + 2𝑡𝑣0Θ(𝑣0 − 𝑣)] (14) 

where Θ is the step function. The total number of particles can be obtained by integrating the 13 

number density distribution. The initial particle size 𝑣0 is set to 1 in this case. The volume of 14 

the smallest particle is considered to be 0.25 and a grid of 40 particle size bins is used. 15 

Figure 8 presents a comparison of the numerical and analytical solutions for the variation of 16 

the total number of particles. It is comfirmed that the total number of particles is increasing 17 

during a breakage process and the predictions of PBNN almost overlap with the analytical 18 

solutions. The predictions from the method of class with 10 discretized bins slightly 19 
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overestimate the total number of particles throughout the breakage process and there is a 1 

distinct deviation between the predictions from ANN and analytical solution. Furthermore, 2 

Figure 9 shows that the predictions of the trajectories of particle number density function by 3 

PBNN are in a good agreement with the analytical results. These results indicate that the time 4 

evolution of particle number density function during the breakage process is well predicted by 5 

the present PBNN method. 6 

3.2 Data-driven discovery of model parameters 7 

As mentioned in the introduction, inverse problems of particle aggregation and breakage 8 

process are challenging to handle using exsiting methods. Therefore, it is worth exploring the 9 

applicability of using PBNN to solve inverse problems. The problem studied here can also be 10 

stated as the identifications of the parameters that best describe the provided observation data. 11 

To estimate the parameters, the unknow parameters in the equation are treated as network 12 

parameters that change during the optimization phase. This is achieved by defining them as 13 

trainable variable objects in TensorFlow [39].  14 

To demonstrate the applicability of the constructed framework, the analytical solutions of the 15 

cases in section 3.1 are used as training data. Meanwhile, the aggregation and breakage rate 16 

constants are not given in advance but are defined as variables for the program to estimate. 17 

Figure 10 shows the evolution of the convergence in the model parameter identification process. 18 

Notably, the estimated parameters converge to the true values of kernel parameters in both 19 

aggregation and breakage cases. Meanwhile, it can be seen that the optimization is quite 20 

efficient, i.e. the true kernel parameters are estimated with around 1000 epochs.  21 

In a realistic process, there are inherently noises in the experimental observation data due to 22 

the uncertainties in the measurement equipment, intrinsic variety of the particulate properties, 23 

and complexity of the processes. To further consider this effect and test the power of the 24 
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proposed PBNN framework, we deliberately add some Gaussian white noise G (0, 𝜎) to the 1 

training data of the aggregation case for increasing the estimation difficulty of the kernel 2 

parameters. Here, G is a normal distribution with a standard deviation 𝜎. Table 2 presents the 3 

comparisons between the true value and the final estimated values with different levels of 4 

Gaussian noises. It is found that the accuracy of the prediction decreases with the increase of 5 

the magnitude of the noises. Nevertheless, the aggregation rate constant can still be estimated 6 

reasonably well even with large noisy data. Theoretically, the framework can also be used to 7 

denoise the experimental measurements and estimate the uncertainties. However, this is beyond 8 

the scope of the present study but will be investigated in our future work. 9 

To further demonstrate the model’s applicability, the proposed PBNN approach is used to 10 

determine the milling parameters of a platinum group minerals ore material in a laboratory test. 11 

The material was milled in a Wits pilot under a rotating speed of 60 rpm [40]. The mono size 12 

feed samples were prepared by sieving 2 kg from the 15 kg platinum ore batches. The size of 13 

the feed material is in the range of 600-850 micron. To investigate the milling particle size 14 

evolution, some kernel function closures in PBNN need to be defined. An empirical selection 15 

function proposed by Austin, Klimpel and Luckie [41] is used to calculate the breakage rate. 16 

The formula is given as follows, 17 

 𝛾 = 𝑎 ∙ 𝑣𝜀 ∙ 11 + (𝑣𝜇)Λ 
(15) 

where 𝑎 and 𝜇 are two parameters that depend on the mill operational conditions,  𝜀 and Λ are 18 

two parameters that depend on the properties of milling materials. The breakage daughter size 19 

distribution is calculated as follows [41], 20 
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 𝐵(𝑣, 𝑣′) = ∅ ( 𝑣𝑣′)𝜑 + (1 − ∅) ( 𝑣𝑣′)𝜔
 

(16) 

 𝛼(𝑣, 𝑣′) = 𝜕𝐵(𝑣, 𝑣′)𝜕𝑣  
(17) 

where 𝐵(𝑣, 𝑣′) is the cumulative breakage distribution function, 𝜑 and 𝜔 are two power index 1 

related to material characteristics,  ∅ is also a material-dependent parameter representing the 2 

fraction of fines that will be produced in a single fracture step. In total, there are seven 3 

parameters to be estimated, which includes four breakage rate parameters (𝑎, 𝜇 , 𝜀 and Λ) and 4 

three breakage daughter size distribution parameters (∅, 𝜑 and 𝜔 ). All the seven parameters 5 

are set to be trainable variables in PBNN. The value ∅ is limited to vary from 0 to 1 while the 6 

other parameters are constrained to able to change from 0 to 10. The milling particle size 7 

distributions from 0 to 30 minutes are used to estimate the parameters.  8 

Th final estimated parameters from PBNN are listed in Table 3.  Figure 11 shows the 9 

comparison between measured and predicted particle size distribution evolution. It is found 10 

that there are some quantitative discrepancies of the particle size distribution in the early 11 

milling time, which may be due to the uncertainties in the function form of breakage kernel or 12 

the variability in the experiments. In general, a good match between the predicted and the 13 

experimentally measured particle size distribution evolution is observed. Generally, the 14 

physics-informed neural-network approach is deemed as a data-efficient machine learning 15 

method since the underlying laws of physics are explicitly encoded [19, 42, 43]. In practice, 16 

with the increase of the complexity of the kernel functions, PBNN may need more data to 17 

improve the model capability. 18 

4. Conclusion 19 

In this work, a physics-informed deep learning approach is developed for solving and 20 

discovering particle aggregation and breakage processes. The governing equations of the 21 
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population balance model are incorporated into the loss function of a neural network by taking 1 

advantage of the recently proposed advanced automatic differentiation algorithm. The 2 

embedding of physical constraints makes it more efficient to train the neural network and 3 

achieve reliable predictions. Compared with classical methods for modeling particle 4 

aggregation and breakage processes, the proposed population balance neural network approach 5 

can be used to solve both forward and inverse problems. The impact of the depth of the network 6 

on the final predictions is also analysed. A shallow network is found to produce an oscillation 7 

of loss during the optimization process and a deeper network can help increase the accuracy of 8 

the predictions. It is demonstrated that the proposed approach can match well the analytical 9 

solutions available in the literature. It is also shown that the kernel parameters in the reverse 10 

problem can be successfully identified even with noisy observation data. Furthermore, the 11 

method is used to determine the preliminary parameters from a pilot-scale milling experiment. 12 

A good match between the predicted and the experimentally measured particle size distribution 13 

evolution is observed.  14 

Although training data is not a prerequisite in the forward problem of a physics-informed neural 15 

network based approach, most of the current applications still use labeled data to help the 16 

network converge [19, 29, 42, 43].  In practice, we also found that the network converges faster 17 

with the aid of analytical solutions as labeled data in the forward problem. Noteworthy, some 18 

very recent works have been able to use physics-informed neural network based approach 19 

without labeled data [33, 44, 45]. Therefore, such methods will be explored for dealing with 20 

more complexed kernels in our future work. Another limitation of the current PBNN is that it 21 

can only be used to predict the undetermined parameters of several candidate kernel equations. 22 

As for future work, it would be beneficial to use the method to discover closure formulation 23 

for kernel functions, which could be achieved with the aid of recently propposed advanced 24 

symbolic regression [46] or sparse identification of nonlinear dynamics framework [47]. 25 
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Furthermore, the physics-informed neural network approach has shown to be successful in 1 

solving fluid flow problems like a meshless CFD solver [19, 33, 43, 44]. Therefore, we will 2 

investigate the possibility to extend the current work to implement a physics-informed neural 3 

network based CFD-PBM solver to deal with more complicate particulate processes. 4 
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Nomenclature 11 

𝑎  Fitting parameter, - 

𝑏 Bias vector of neural network, - 

𝐵 Cumulative breakage distribution function, - 

𝑓 Neural network, - 

𝐹 Physics inconsistency of the surrogate solution, - 

𝐿 Loss function, - 

𝑀𝑢 Number of obversation points, - 

𝑀𝑓 Number of discretized grids, - 
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𝑁  Number density distribution function, m-6  

𝑁̂ Surrogate solution, m-6 

𝑡 Time, s 

𝑇 Non-dimensional time, - 

𝑣 Particle volume, m3 

𝑊 weight matrix of neural network, - 

𝑥 Input of neural network, m-6 

 1 

Greek letters 2 

𝛼  Breakage daughter size distribution 

𝛽  Aggregation kernel 

𝛾 Breakage rate kernel 

𝜆 Regulation coefficient 

𝜇 Fitting parameter 

𝜀 Material fiting parameter 

𝜖 Relative error 

𝜑 Material fiting parameter 
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𝜔 Material fiting parameter 

𝜃 Hyperparameters 

𝜉 Non-dimemsional particle volume 

𝛿 Delta function 

Λ Material fitting parameter 

∅ Material fitting parameter 

Γ Gamma function 

Θ Step function 
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Figure Captions 1 

Figure 1. Diagram of a population balance neural network (PBNN) model for solving the 2 

forward and inverse problems of particle aggregation and breakage systems. 3 

Figure 2 The optimization process of PBNN for solving the aggregation case 4 

Figure 3 The prediction of the particle number density during the optimization process. (a) 200 5 

epochs (b) 1000 epochs (c) 2000 epochs (d) 3000 epochs 6 

Figure 4 Effect of the depth of the neural network architecture on the loss and prediction results 7 

in the aggregation case. (a) Loss function during optimization (b) Comparisons between the 8 

predictions and the analytical solution of final size number density. 9 

Figure 5. Solution of the number density function in the aggregation case 10 

Figure 6 Comparison between the prediction of total number of particles evolution and the 11 

analytical solution in aggregation case. 12 

Figure 7. Comparison of the predictions and the analytical solutions of the time evolution of 13 

particle number density in aggregation case 14 

Figure 8 Comparison between the prediction of total number of particles evolution and the 15 

analytical solution in the breakage case. 16 

Figure 9 Comparison of the predictions and the analytical solutions of the time evolution of 17 

particle number density in the breakage case 18 

Figure 10 Kernel parameter estimations by PBNN (a) aggregation rate constant estimation (b) 19 

breakage rate constant estimation 20 

Figure 11 Measured and predicted particle size distributions in a ball milling laboratory test 21 
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Figure 1. Diagram of a population balance neural network (PBNN) model for solving the 2 

forward and inverse problems of particle aggregation and breakage systems.  3 
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Figure 2 The optimization process of PBNN for solving the aggregation case 2 
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 1 

Figure 3 The prediction of the particle number density during the optimization process. (a) 2 

200 epochs (b) 1000 epochs (c) 2000 epochs (d) 3000 epochs 3 
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 1 

Figure 4 Effect of the depth of the neural network architecture on the loss and prediction 2 

results in the aggregation case. (a) Loss function during optimization (b) Comparisons 3 

between the predictions and the analytical solution of final size number density. 4 
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Figure 5. Solution of the number density function in the aggregation case  3 

(a) surface plot from Analytical solution, PBNN and ANN (b) contour plot from PBNN 4 
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 2 

Figure 6 Comparison between the prediction of total number of particles evolution and the 3 

analytical solution in aggregation case. 4 
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 1 

Figure 7. Comparison of the predictions and the analytical solutions of the time evolution of 2 

particle number density in aggregation case 3 
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 2 

Figure 8 Comparison between the prediction of total number of particles evolution and the 3 

analytical solution in the breakage case. 4 
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 1 

Figure 9 Comparison of the predictions and the analytical solutions of the time evolution of 2 

particle number density in the breakage case 3 
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 1 

Figure 10 Kernel parameter estimations by PBNN (a) aggregation rate constant estimation (b) 2 

breakage rate constant estimation 3 
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 1 

Figure 11 Measured and predicted particle size distributions in a ball milling laboratory test 2 
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Table captions 1 

Table 1 Relative L2 errors of the predictions with varying layer widths and depths of the neural 2 

network 3 

Table 2 Kernel parameter estimation with noise training data (true value =1) 4 

Table 3 Kernel parameter estimation in the ball milling laboratory test 5 

 6 
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Table 1 Relative L2 errors of the predictions with varying layer widths and depths of the neural 1 

network 2 

                             Depth 

Width   
4 8 12 

10 4.92×10-2 2.34×10-2 2.45×10-2 

20 1.96×10-2 1.26×10-2 1.24×10-2 

40 1.67×10-2 1.21×10-2 1.22×10-2 

  3 
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Table 2 Kernel parameter estimation with noise training data (true value =1) 1 

Noise 𝜎 = 0 𝜎 = 0.01 𝜎 = 0.05 𝜎 = 0.07 𝜎 = 0.1 

PBNN 

Estimation 

1.000 0.998 0.992 0.972 0.94 

 2 
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 1 

Table 3 Kernel parameter estimation in the ball milling laboratory test 2 

variable 𝑎 𝜀 Λ 𝜇 ∅ 𝜑 𝜔 

PBNN 

Estimation 

0.27 1.14 7.95 7.26 0.57 4.88 0.95 

 3 


