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Abstract

The knowledge graph, which utilizes graph structure to represent multi-relational data, has been widely used in the reasoning

and prediction tasks, attracting considerable research efforts recently. However, most existing works still concentrate on learning

knowledge graph embeddings straightforwardly and intuitively without subtly considering the context of knowledge. Specifically,

recent models deal with each single triple independently or consider contexts indiscriminately, which is one-sided as each knowl-

edge unit (i.e., triple) can be derived from its partial surrounding triples. In this paper, we propose a graph-attention-based model

to encode entities, which formulates a knowledge graph as an irregular graph and explores a number of concrete and interpretable

knowledge compositions by integrating the graph-structured information via multiple independent channels. To measure the cor-

relation between entities from different angles (i.e., entity pair, relation, and structure), we respectively develop three attention

metrics. By making use of our enhanced entity embeddings, we further introduce several improved factorization functions for

updating relation embeddings and evaluating candidate triples. We conduct extensive experiments on downstream tasks including

entity classification, entity typing, and link prediction to validate our methods. Empirical results validate the importance of our

introduced attention metrics and demonstrate that our proposed method can improve the performance of factorization models on

large-scale knowledge graphs.

Keywords: Knowledge Graph Embedding, Graph Attention Mechanism, Entity Typing, Link Prediction

1. Introduction

The knowledge graph can provide graph-structured repre-

sentation for real-world knowledge, such as Freebase [4], DB-

Pedia [1], and YAGO [52]. The multi-relational data stored

in knowledge graph has been applied to numerous downstream

machine learning tasks where optimization is subject to pre-

defined rules and constraints, e.g., Information Retrieval [11],

Question Answering [15, 69], and Emotion Classification [17,

37]. To facilitate the processing of these applications, some

works attempt to model and standardize knowledge data in a

more computable fashion. Among them, the knowledge graph

embedding technique becomes a heated research topic which

has witnessed rapid growth. Knowledge graph embedding aims

to map entities to a low-dimensional continuous space while en-

codes their relations, thus inference on a knowledge graph can

be simply solved with vector arithmetic.

Typically, a knowledge unit is stored as a standard triple,

i.e., in the form of (head entity, relation, tail entity). While

entities generally have several disparate types (which can be

intuitively understood as multiple channels/aspects of an ob-

ject), relations connected to those entities can also be assigned

to the corresponding types [45, 34]. The relations with the

same type are generally based on identical essential facts (e.g.,

all orange relations in Figure 1 are in the type of US presi-

dent). Hence, they can be regarded as the basis for inferring

the missing relations, while the relations with other types be-

come useless. Besides, as illustrated in Figure 1, only partial

knowledge in the context actually contributes to one specific

inference process. For example, when modeling one of the or-

ange relations in Figure 1, other orange relations and their con-

nected entities are more valuable than the blue ones. However,

most of the existing methods for embedding multi-relational

data are either built upon an assumption with excessive inde-

pendence (i.e., only considering the relation between the given

entity pair) or integrating all context information indiscrimi-

nately, severely reducing the capacity of exploiting environ-

mental information [14, 50].

Among these existing works, the translation models which

are represented by TransE [5] and its variations [63, 30, 19, 13,

53, 72], treat each triple as a training sample and obtain cor-

responding knowledge representation by projecting entities and

relations with an additional principle (h+r ≈ t, where h, r, t are

the head, relation, and tail embeddings of a triple) under a va-

riety of constraints. On the contrary, other lines of knowledge

graph embedding studies [14, 48, 50] focus on constructing a

graph whose vertices are entities and edges are relations, then

combining the information of both graph structure and vertex

to encode knowledge. One obvious limitation of these strate-
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Figure 1: The entity Barack Hussein Obama has two types (US Pres-

ident (orange) and Obama Family (blue)). All of the orange entities

have the same type: US President, and they also have the same rela-

tions with each gray entity (which is closely related to type: US Presi-

dent). This correlation can be understood as the intrinsic manifestation

of such relations and corresponding type, while this phenomenon also

appears in the entities with type: Obama Family. Obviously, such

correlation (similar to collaborative filtering) will help screen corre-

sponding information (i.e., different channels) for modeling specific

relation.

gies is that they are not appropriate to process complex multi-

relational data, because they either directly make inferential cal-

culation without considering neighbor triples of training sam-

ples [5, 63, 30] or combining all environmental factors with-

out any distinction [48, 14]. In particular, the performance of

existing methods will see negative gains when there are abun-

dant types of candidate entities or multiple relations between

the single given entity pair (e.g., the relations between Obama

and United State in Figure 1) [63, 30].

In this work, we introduce the graph attention mechanism

to capture richer and more fine-grained information for knowl-

edge graph embeddings. The backbone of our model is to ac-

quire the hidden representation of the entities in various chan-

nels by selectively merging the information from their neigh-

bor entities and utilizing a factorization function to determine

the probability of candidate triples. This novel graph-based

multi-head attention mechanism brings about several advan-

tages: (1) by handling input information in multi-channels, the

interpretablity of existing knowledge graph embeddings is sub-

stantially improved; (2) through iterating or stacking graph at-

tention layers, multi-hop information acquisition can be easily

achieved; (3) thanks to the parallelism and mobility of our algo-

rithm, even generalization on arbitrary large-scale knowledge

graph datasets is guaranteed. Moreover, we also propose three

metrics to compute the attention coefficients based on diverse

sources (i.e., entity pair, relation, and structure) and implemen-

tations to acquire high-quality entity embeddings. By utilizing

specific entity embeddings injection strategies, we improve the

factorization functions to train relation embeddings and score

candidate triples. We conduct experiments to assess the perfor-

mance of different attention in a wide range of tasks, including

entity classification, entity typing, and link prediction. We also

explain the working state of the graph attention in visual form.

Comprehensive experimental results verify that our method is

on par with or outperforms baseline methods and can be ap-

plied to large-scale knowledge graph with complex and agnos-

tic structures.

The contribution of this paper is three-fold:

• We develop a novel graph attention mechanism to update

entity embedding by adequately considering the structure

and entity information.

• We propose three attention-based methods by consider-

ing different sources and calculative strategies, and con-

duct comparative studies on their ability to capture multi-

channel information.

• We achieve new state-of-the-art performance on entity

classification and entity typing, as well as improve the

factorization model’s effectiveness in link prediction.

The rest of this paper is organized as follows: Section 2 re-

views traditional knowledge graph embedding methods and the

graph attention mechanism. Section 3 details the composition

of the whole framework, depicts each of the graph attention

metrics, and conducts theoretical analysis. Section 4 describes

the experiment designs and analyzes comprehensive results on

typical downstream tasks. At length, Section 5 concludes this

paper.

2. Related Work

We review works in the two fields that the subject matter of

the current paper falls in, namely, knowledge graph embedding

and graph attention mechanism.

2.1. Knowledge Graph Embedding

The knowledge graph embedding has attracted wide atten-

tion, leading to numerous related studies been proposed. Ac-

cording to the methods used to model triples, they can be di-

vided into the following categories.

2.1.1. Translation

Bordes et al. [5] proposes TransE to learn the representation

of multi-relational graph data based on their previous work [6],

which treats the triple as a translation process in the semantic

vector space. Later, to solve the problem of encoding com-

plex relations, some works improve TransE by introducing as-

sistant projection plane [63], independent relational space [30],

or interpretation vectors [19] (which has achieved state-of-the-

art performance in link prediction), respectively. Besides, by

utilizing extra information (e.g., multi-hop paths [29], entity de-

scriptions [64], and entity images [65]) as training constraints,

some methods are no longer limited to regard the given triples

as the only information source. Recent studies further consider

circular correlation [38], torus [13] or complex space [56] to

achieve more explainable knowledge graph embedding learning

by exploiting more interpretable structural information. Simi-

larly, Sun et al. [53] treats the relation as a rotation operation
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and defines the triple with a new spatial relationship. How-

ever, the Trans-family methods only consider the single rela-

tions or multi-hop paths between given entity pair as training

samples, while they do not effectively integrate the information

from other triples surrounding the sample triple, which leads to

the neglect of rich auxiliary information.

2.1.2. Multiplication

Tensor decomposition is a traditional solution to link pre-

diction. To learn knowledge graph embedding, the so-called

multiplication models are also applied on modeling triples in

a knowledge graph. DistMult [67] defines the relation as a

special matrix that associates the probability of a triple with

the corresponding multiplication. ANALOGY [31] combines

several traditional models by constructing an objective func-

tion in a differentiable fashion. SimplE [21] enhances the inter-

pretablity of embeddings by weighting the background knowl-

edge. TuckER [2] proposes a linear model based on Tucker

decomposition of binary tensor representations of knowledge

graph triples. ProcrustEs [42] utilises the closed-form solution

to the Orthogonal Procrustes Problem and embeds knowledge

graphs in an efficient fashion.

2.1.3. Neural Networks

Currently, a plethora of works have begun to focus on ex-

ploiting neural networks to learn knowledge graph embeddings.

R-GCN [48] accumulates evidence in multiple inference steps

through the message propagation network, which improves the

performance of factorization models. To learn more contextual

information, TranAt [43] introduces a specific graph attention

mechanism for modeling triples. SACN [49] is composed of

a weighted graph convolutional network encoder and a con-

volutional network (Conv-TransE) decoder to achieve end-to-

end structure perception. KBGAT [35] proposes a complete set

of inference models by using triples as the object of graph at-

tention. ActiveLink [36] uses the underlying structure of the

knowledge graph to expand uncertainty sampling and connect

entities for improved sampling efficiency. COMPGCN [58]

uses various entity relational combination operations in knowl-

edge graph embedding technology and scales according to the

number of relations. DPMPN [66] relies on the input sub-graph

and self-expands through the streaming attention mechanism to

explicitly model a sequence inference process.

2.1.4. Extra Information

In addition to the distinctions between architectures, a va-

riety of extra information is introduced to constrain the learn-

ing of knowledge graph embeddings and enhance the model’s

ability to capture the hidden information. Among them, the

multi-hop path between the entities is used to assist modeling

triples, and consequently, a large number of additional positive

samples are obtained [29, 28, 25]. Meanwhile, textual infor-

mation [16], temporal information [23], and neighborhood in-

formation [61] are used to strengthen the semantic signals of

triples, which makes the knowledge graph embeddings more

robust. In addition, several strategies based on manual con-

struction are also adopted to optimize the learning process, e.g.,

regularization [47], soft rules [44], and negative sampling [8].

2.2. Graph Neural Network

In the course of the growth of graph based methods for ma-

chine learning tasks, by combining the graph-structure with the

vertex information, a large amount of related works learn to

obtain the representations of each vertex as well as the entire

graph [55].

2.2.1. Graph Convolutional Network

The first successful attempt in this direction is the Graph

Convolutional Network (GCN) [26], which achieves represen-

tation learning based on a recurrent framework. Later, by uti-

lizing spectral methods [7] or spatial-based methods [39], GCN

introduces the convolution concept to irregular graphs. How-

ever, spectral-based methods are limited by scalability and uni-

versality, and cannot be flexibly applied to incremental graphs

or directed graphs. The spatial-based model, on the other hand,

is able to more reasonably aggregate the graph signals by defin-

ing different neighborhood information capture strategies.

2.2.2. Graph Autoencoder

Graph autoencoder has also be utilized for learning graph

embeddings, whose purpose is to use the neural network struc-

ture to represent nodes as low-dimensional vectors. One pop-

ular implementation is to use a multilayer perceptron as an en-

coder for node embedding, while designs a decoder to recon-

struct the node’s statistical neighborhood information, such as

Positive Pointwise Mutual Information (PPMI) or first-order

and second-order approximations [40]. Among them, DNGR [10]

and SDNE [62] learn the node embedding from topological

structure, while ARGA [41], NetRA [70], and DRNE [57] are

proposed to learn node embedding when both the topology in-

formation and the node feature are available. One challenge of

the graph autoencoder is the sparseness of the adjacency ma-

trix, which makes the number of positive entries of the decoder

much smaller than that of negative entries. In order to mitigate

this problem, DNGR reconstructs a denser matrix, namely the

PPMI matrix, SDNE penalizes the zero entries of the adjacency

matrix, GAE reweights the entries in the adjacency matrix, and

NetRA linearizes the graph as a sequence.

2.2.3. Graph Generative Network

The goal of graph generation networks is to generate new

graphs given a set of observed graphs. Many of these meth-

ods are applied to specific fields, and a number of generative

methods have been proposed very recently. For instance, Mol-

GAN [9] combines GCN and reinforcement learning goals to

generate a graph with required attributes. Its generator tries

to pose a pseudo graph and its feature matrix, while the goal

of its discriminator is to distinguish between pseudo samples

and empirical data. Meanwhile, MolGAN also introduces a

reward network in parallel with the discriminator to encour-

age the generated graph to have certain attributes in line with
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an external evaluator. DGMG [27] incorporates spatial-based

GCN to obtain hidden representations of existing graphs. Spe-

cially, the decision-making process of generating nodes and

edges is based on the representation of the entire graph. Apart

from MolGAN and DGMG, there also exist methods which

achieve graph generation by introducing different structures,

e.g., GraphRNN [68] and NetGAN [3].

2.2.4. Graph Attention Network

As a particular instance of MoNet [33], Graph ATtention

network (GAT) [60] presents a masked self-attention layer, which

selectively adjusts the weights of neighbor vertex information

and achieves state-of-the-art results in transductive and induc-

tive learning. Specifically, by setting multiple attention heads,

GAT learns multi-channel features which can satisfy varying

requirements. This research strand is mainly inspired by the

neural translation [59]: its efficient attention design allows the

translation model to reach better effect without relying on any

recurrent or convolution operations. Currently, ADSF utilizes

the attention mechanism to structural information and obtains

graph weights by calculating the degree of neighborhood over-

lap [71]. Beyond that, ELCO refines the graph topology based

on the overlapping clustering to learn more interpretable graph

embeddings [24]. As illustrated in Figure 1, relations in knowl-

edge graph are clustered by entity type. Therefore, the extrac-

tion of entity features needs to be performed on multi-channels,

which makes the multi-head attention mechanism a natural choice

for modeling knowledge graph.

Prior to us, some authors have attempted to introduce graph

attention into knowledge graph embedding learning. Neverthe-

less, their methods are limited because each triple is treated as

a co-occurrence relationship while structural information is ab-

sent. Furthermore, their studies lack detailed analysis on the

effects of attention modules. To the best of our knowledge, we

are the first to analyze the graph attention of various sources in

knowledge graph embedding learning.

3. Methodology

In this section, we first introduce various attention mecha-

nisms to refine the learning of entity embeddings for the knowl-

edge graph, then perform probabilistic analysis through learn-

ing relation embeddings. We detail the modules used to capture

information in arbitrary graph structures and dive deeply to an-

alyze its theoretical and practical benefits and limitations.

3.1. Problem Definition and Notations

A knowledge base is defined as a collection of triples T =

{(eh, rel, et) | eh, et ∈ E, rel ∈ REL}, where eh, et respectively

denote the head and tail entities, rel is the single relation type,

E is the entity set and REL is the relation type set1. To inte-

grate richer reference information, we collect triples to form a

knowledge graph G = {e, r | e ∈ E, r ∈ R}, where e, r are the

1REL contains relations both in canonical direction (e.g. president o f ) and

in inverse direction (e.g. president o f −1)

vertex and the edge in G. Given an entity e, its context cont(e)

is a set of other entities relevant to e : {ei|(e, r, ei) ∈ T }. The

task of knowledge graph embedding aims to represent each en-

tity/vertex and each relation/edge by a vector ~h′ ∈ Rd′ with real

numbers, where d′ is the dimension of ~h′.

3.2. Graph Attention in Knowledge Graph

In general, an attention function [59] can be described as a

query on a set of key-value pairs, where the query, keys, values,

and output are all vectors. The output of attention function is

computed as the weighted sum of all matched values, where

the weights are determined through considering the matching

degrees of query and corresponding keys.

In the graph attention model, based on the assumption com-

monly used to representation learning [32, 18, 60], i.e., the ver-

tices with similar features have similar neighbors, the attention

function is analogically defined and applied to learn the entity

embedding in G. Specifically, the input of the graph attention

layer is a set of entity features: h = {~h1,~h2, ...,~hne
},~hi ∈ R

d,

where ne = |E|, and d is the dimension of features of each

entity. The graph attention layer produces a new set of entity

embeddings as its outputs, h′ = {~h′
1
,~h′

2
, ...,~h′ne

},~h′
i
∈ Rd′ , where

d′ is the dimension of ~h′ and does not necessarily equal to the

original d depending on the task requirements.

Because either the neighbor entities or the relations between

entity pairs can be used as the measure of information acquisi-

tion, we divide the implementation of graph attention into two

categories: entity attention and relation attention. In particular,

to remove the constraints of triples on the relationship between

entities, we also introduce structural attention to evaluate the

correlation of neighbor distribution between vertices.

3.2.1. Entity Attention

As a vertex in graph G, obtaining the entity embedding ~h′
i

is the initial step for modeling multi-relational data. Based on

the aforementioned assumption, ~h′
i

can be learned by receiving
partial information from its neighbor entities and itself. The
learning scale of each information source is determined by the
attention coefficient ci j between entity pair (ei, e j). In order to
obtain sufficient expressive power to transform the input entity
features into high-level embeddings, we perform the calculation
of ci j by using additive attention as

ci j = a(W~hi,W~h j), (1)

where W ∈ Rd′×d is a learnable weight matrix. Additive atten-
tion is a self-attention mechanism a : Rd′ × R

d′ → R between
entities, which indicates the degree of importance of ei to e j,

a(W~hi,W~h j) = ReLU(~a⊤[W~hi||W~h j]), (2)

where ~a ∈ R
2d′ is the weight vector, ·⊤ denotes the transposi-

tion operation, ReLU(·) is a rectified linear function and || is the

concatenation operation. When calculating additive attention,

the shared linear transformation W has been used to pre-process

the input features of the entities, which is the key to ensure that

entity features can be utilized to measure entity correlation [60].
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Figure 2: The calculation methods of attention from different sources (entity pair or relation).

Among them, ~a and W are the parameters included in the addi-

tive attention, and the multi-head attention contains a matching

number of different initialization parameter groups.
We only select the first-order neighbors and itself as the in-

formation sources (multi-hop features can be obtained by stack-
ing such graph attention layers). As shown in Figure 2, by us-
ing the softmax function, we normalized ci j to make it easier
to compare the entity attention coefficients αe among different
entity pairs

αe
i j = softmax(ci j) =

exp(ci j)∑ni

l=0
exp(cil)

, (3)

where ni is the number of first-order neighbors of ei, and exp(·)

is the exponential function based on the natural constant e.

3.2.2. Relation Attention

As another important cohesive component, the relation type

reflects the real-world connections between entities in the knowl-

edge graph more clearly and directly. Even if the entity em-

beddings linked by the relation are updated or the same rela-

tion appears in different triples, the relation does not change

semantically and always describes the semantics between en-

tities stably (without ambiguity). Hence, it is possible to de-

termine the weights of information captured from the neighbor

entities by purely relying on the relation (not considering the

entities). Meanwhile, since the relations in knowledge graph

have their own types, the entity connected by similar relation

types should be considered uniformly. For example, the orange

and blue relations in Figure 2, with similar types (i.e., US pres-

ident and Obama family in Figure 1), can be viewed as two

different channels of information and should be dealt with sep-

arately.
Specifically, to collect the entity features provided by the

neighbor entities connected to the relations with the same type,
we put aside the information of entity pairs and calculate the
attention coefficient using the relations only (as illustrated in
Figure 2). In this way, the effects of entity feature initializa-
tion on the model performance and the convergence rate are
substantially reduced. The relation information provided by the
knowledge graph is also fully utilized. We additionally adopt

a multi-head attention framework to achieve multi-channel fea-
ture learning similar to the entity attention, and the attention
objects head ∈ R

d can be determined by the correlation of the
relations in the knowledge graph, the task requirements, or the
random initialization. The attention coefficient can be directly
obtained by the dot-product attention:

ci j = ReLU(ri j · head), (4)

where ri j is the relation representation of the entity pair (ei, e j),

head ∈ R
d is the trainable attention parameter of various at-

tention heads. In particular, since we intorduce the multi-head
attention mechanism, there will be K different initialized atten-
tion heads learned to update entity representation in parallel.
The weights of different neighbor entities can be obtained by
normalizing the relation attention coefficients αr

i j
as follows:

αr
i j = softmax(ci j) =

exp(ci j)∑ni

l=0
exp(cil)

. (5)

Among the relations connected with ei, we add a self-loop re-

lation that retains its own entity features, with the weight set

by default. Similar to the final output embeddings of the entity

attention, the output ~h′
i

of relation attention also takes the form

as shown in the right part of Figure 2, and head is trained by

using entity classification.

3.2.3. Structure Attention

Triple is the smallest knowledge unit in the knowledge graph,

and the aforesaid entity attention and relational attention are

both measures of correlation within the triple. In fact, the neigh-

bors of an entity can also be regarded as an implicit represen-

tation of its own information. Thus the correlation metric be-

tween two entities should consider the impact of their neigh-

bors. Therefore, we propose to compute the correlation be-

tween two entity neighbors based on the structural fingerprint.

First, we generate a structural fingerprint of each target entity,

i.e., to determine the importance based on the structural rela-

tionship between the entity in the neighborhood and the target

entity, and to adaptively divide its neighborhood according to

the target entity. Then, when evaluating the correlation between
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two entities, we calculate the results by analyzing the relation-

ship between the structural fingerprints of the two entities.

Intuitively, the importance of entities in the neighborhood

will decay as the distance from the target entity increases, but

this attenuation will change slightly due to the connectivity/density

of the internal structure of the neighborhood. The common

Gaussian attenuation and non-parametric attenuation only rely

on the distance between entities to achieve weight distribution,

essentially ignoring the structural difference. To adjust the weights

of neighbor entities according to the local graph structure (con-

nected shape or density), we use the strategy of Random Walk

with Restart (RWR) [54] to calculate the weights and to com-

plete the corresponding adaptive neighborhood division. RWR

explores the global topology of the network by simulating the

iterative movement of particles between adjacent nodes. It quan-

tifies the proximity between nodes in the network and is widely

used in information retrieval and other fields.
To obtain the structural fingerprint of entity ei, we consider

its neighbor entity set Ei and the corresponding adjacency ma-
trix Ai. The particle starts from the target entity ei and randomly
walks to its neighbor entity in Ei with a probability proportional
to the relation weight. In each step, it also has a certain proba-
bility to return to the target entity. The iterative process can be
written as

w
(t+1)

i
= c · Ãiw

t
i + (1 − c) · vi, (6)

where Ãi is the transition probability matrix by normalizing
columns of Ai, c ∈ [0, 1] is a trade-off parameter between ran-
dom walk and restart, and vi is a vector of all zeros except the
entry corresponding to the target entity ei. The converged solu-
tion can be written in a closed form as

wi = (I − c · Ãi)
−1vi, (7)

where wi quantifies the proximity of the target entity to all enti-

ties in its neighbors. Meanwhile, the entire structural fingerprint

intuitively reflects the local structural details of the knowledge

graph, effectively distinguishing the importance of entities. c

controls the attenuation rate of weights in the neighborhood.

When c = 0, except for the target entity, wi is 0; when c = 1, wi

is a stable distribution of standard random walks on this graph.

In practice, c will be optimized by downstream tasks, and the

structural nature of sub-graphs will be mined in light of task

requirements.
When analyzing the structural correlation between two en-

tities, we can calculate the correlation between two entity struc-
ture fingerprints using the Jaccard similarity,

ci j =

∑
p∈(Ei∪E j)

min(wip,w jp)
∑

p∈(Ei∪E j)
max(wip,w jp)

, (8)

where wip and w jp are the weights of an entity p in different
entity neighbor set Ei and E j. The structural weights αs

i j
of

neighbor entities can be obtained by normalizing the following
function:

αs
i j = softmax(ci j) =

exp(ci j)∑ni

l=0
exp(cil)

. (9)
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Figure 3: Updating the entity embeddings based on multi-head graph

attention..

3.2.4. Learning Entity Embedding

Once the attention coefficients are calculated, the final out-

put feature ~h′
i

of the entity ei can be obtained through a non-
linear combination of the neighbor entities as follows,

~h′i = σ(

ni∑

j=0

αi jW~h j), (10)

where σ(x) = 1
1+exp(−x)

. In particular, to balance the three dif-

ferent sources of attention, we combine them into a final atten-
tion as

αi j =

λ(αe
i j

)αe
i j
+ µ(αr

i j
)αr

i j
+ η(αs

i j
)αs

i j

λ(αe
i j

) + µ(αr
i j

) + η(αs
i j

)
, (11)

where λ, µ, and η are manually configured weights. In fact, ex-
periments show that the adjustment of hyper-parameters does
not lead to a significant performance boost, so we use the aver-
age pooling to obtain the final weight instead:

αi j = (normalize(αe
i j) + normalize(αr

i j) + normalize(αs
i j))/3 (12)

where normalize(·) =
αi j−min(α)

max(α)−min(α)
is the global normalized

function.
To achieve multi-channel feature learning, we extend the

graph attention mechanism by using a multi-head attention frame-
work. Specifically, as illustrated in the right part of Figure 3,
corresponding to K feature learning channels, K independent
attention mechanisms are executed to complete feature learn-
ing of ei, and are concatenated together to form the following
output embedding

~h′i =‖
K
k=1 σ(

ni∑

j=0

αk
i jW

k~h j), (13)

where αk
i j

is the normalized attention coefficient via the k-

th head attention mechanism ak, and Wk is the corresponding

transformation weight matrix.
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The multi-head attention framework can be pre-set accord-
ing to the requirements of downstream tasks, i.e., pre-training
the transformation weight matrix W and the weight vector ~a
using domain features, or random initialization. Then, we can
feed partial features in some specific attention head according
to the task requirements, or a nonlinear comprehensive feature
representation as

~h′i = σ(
1

K

k∑

k=1

ni∑

j=0

αk
i jW

k~h j). (14)

In order to obtain entity embedding that fully considers the

structure and node information, we use the cross-entropy loss

provided by the entity classification task to train the attention

parameters [48, 56].

3.3. Modeling Multi-Relational Data

In the knowledge graph, multi-relational data is the struc-

tured representation of real-world knowledge, and its basic unit

is a triple (~h′
h
,~r,~h′t), where ~h′

h
and ~h′t are the vectorial represen-

tation of head entity and tail entity. The relation is an important

element that connects two given entities, and a reasonable rep-

resentation of relation can greatly help the downstream tasks.

In this paper, the choice of relation representations reflects in

the form of the scoring function for the candidate triples. Based

on the updated entity embedding ~h′, we need to select a com-

monly used function in the literature, which accumulates nu-

merical evidence of knowledge reasoning by training in a real

triple set. Then, we can utilize it to evaluate the probability of

the candidate knowledge.

Since this task can also be described as predicting a miss-

ing element (either an entity or a relation) based on two given

elements to form a new triple, we choose DistMult [67], Com-

plEx [56], and ConvE [12] to implement our method, which are

known to perform well on standard link prediction benchmarks.
In DistMult [67], Yang et al. consider the basic bi-linear

scoring function, which treats relation as a diagonal matrix R~r ∈

R
d′×d′ , and then the candidate triple (~h′

h
,~r,~h′t) is scored as

f (~h′h,~r,
~h′t ) = σ(~h′⊤h R~r~h

′
t ). (15)

In ComplEx [56], Trouillon et al. propose a method based
on the representation of complex valued embeddings to better
model the asymmetric relations, the specific score function is
as following:

φ(r, hh, ht;Θ) = Re(

P∑

p=1

wekhhkhtk), (16)

where Θ denotes the parameters of ComplEx, Re(·) is the real

vector component, w ∈ C
P is a complex vector, and P is the

dimension of the vector.
In ConvE [12], Minervini et al. reshape the input embed-

dings of the entity pair into a matrix, and extract features for it
using the convolution kernel. The score function of ConvE is as
following:

ψ(hh, ht) = f (vec( f ([h̄h; r̄] ∗ ω))W)ht, (17)

where f (·) a non-linear function, ∗ denotes the convolution op-

erator, h̄h, r̄ denote a 2D reshaping of hh and r, W denotes the

trainable parameter matrix, and vec(·) is the vectorization func-

tion.
Similar to the previous tasks, we train the model with neg-

ative sampling. For each triple corresponding to the positive
knowledge, we randomly select ns entities or relations to re-
place the corresponding elements in a real triple tr ∈ T to gen-
erate the corresponding negative sample set Tns. We optimize
the cross entropy loss to encourage our models to score higher
for the real triples than the negative samples:

L = −
1

ns + 1

ns+1∑

i=0,ti∈Tns
⋃

tr

(ŷilogyi + (1 − ŷi)log(1 − yi)), (18)

where ŷi ∈ {0, 1}, yi = f (ti) is the output probability of the

candidate triple.

In particular, since we set attention heads in the relation at-

tention based on the clustering phenomenon of these relations,

we feed a entity embedding in a specific single attention heads

to Eq. 15, Eq. 16, and Eq. 17 according to the cluster of the re-

lation in the candidate triple. We will compare the performance

of different entity embedding input strategies in the following

experiments.

4. Experiments

In order to test the performance of our models, we verify

them on three standard tasks: entity classification, entity typing,

and link prediction.

4.1. Entity Classification

Here, since we learn the entity embedding of each vertex in

the graph, we consider the task of classifying entities in a given

knowledge graph [48, 67]. In fact, a mature model for learning

knowledge graph embeddings needs to discriminate the cate-

gories for a given entity.

For the entity classification task, we design a two layer GAT.

The first layer consists of K1 = 8 attention heads computes

d′ = d features, followed by an exponential linear unit nonlin-

earity. The second layer is utilized to classify the entities: a

single attention head that computes c features (where c is the

number of classes), followed by a softmax activation. The at-

tention heads of relation attention are initialized based on un-

supervised clustering results of relations (the number of cat-

egories corresponds to the number of attention heads). Our

model is trained to minimize the cross-entropy loss on training

entities with Adam [22] for 200 epochs using an initial learn-

ing rate of 0.01. Furthermore, we use L2 regularization with

ρ = 0.001 in our models to avoid over-fitting in small datasets.

All of the hyper-parameters are tuned on a validation set, which

is set aside 20% of the training set.

4.1.1. Datasets

In order to verify the effectiveness of our methods, we per-

form entity classification separately on the datasets from dif-

ferent fields. First, we choose two semantic web datasets in
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Table 1: Statistics of three datasets for entity classification.

AIFB MUTAG FB13

(Research) (Molecular) (Freebase)

#Entities 8285 23644 75043

#Relations 45 23 13

#Edges 29043 74227 0.31M

#Labeled 176 340 620

#Classes 4 2 6

Table 2: Entity classification results in accuracy (averaged 10 runs). ±

is the standard deviation of the 10 runs.

Model AIFB MUTAG FB13

RDF2Vec* 88.88 76.20 -

R-GCN* 95.83 73.23 -

TransE 84.82±0.39 63.37±0.47 79.44±0.45

GAKE 85.98±0.37 65.03±0.39 81.36±0.32

Ours(EA) 93.63±0.28 71.57±0.30 90.03±0.25

Ours(RA) 95.75±0.34 73.11±0.35 93.84±0.34

Ours(SA) 94.21±0.33 71.90±0.33 91.83±0.35

Ours(Mixed) 96.14±0.31 74.71±0.33 94.27±0.29

Resource Description Framework (RDF) format: AIFB, MU-

TAG [48, 46]. Second, we acquire a labeled dataset2 based on

the characteristics of the FB13 [51]. The exact statistics of the

datasets can be found in Table 1.

4.1.2. Baselines

We select several targeted baseline methods for comparison.

RDF2Vec [46] extracts the walking path in the labeled graph

and models it to generate the entity embedding using the skip-

gram. R-GCN [48] uses a GCN with a differentiable message-

passing framework to learn the feature representation of entities

in knowledge graph3. TransE [5] is a typical triple translation

model whose source of entity representation is the positional

relation in the semantic space. GAKE [14] is a method for ob-

taining vertex features based on multiple contexts and attention

mechanisms in the graph structure.

In this work, we report the results of independent Entity

Attention (EA), Relational Attention (RA), Structural Attention

(SA), and their mixture (Mixed) according to Eq. 12.

4.1.3. Result Analysis

All the experimental results in accuracy are shown in Ta-

ble 2. Our Mixed attention model achieves the state-of-the-art

results on AIFB and FB13, however, there is a certain gap in the

effect on MUTAG. To further understand the divergences of dif-

ferent datasets, we find out the reasons for two aspects: dataset

composition and hyper-parameter selection. First, AIFB and

2We label the entities in knowledge graph dataset according to their

related relations, e.g., we classify the head entities in (mother teresa,

place of birth, skopje) into person and the tail entity into location.
3Experimental results with ∗ are reused from the work of [48], and the other

results with ∗∗ are reused from work of [56].
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Figure 4: The relationship between the classification performance and

the number of attention heads (i.e., K) in EA and RA.

MUTAG are not knowledge graphs. They are the RDF format-

ted semantic graph of AIFB staff composition and molecular

composition. As a research organization, the relations in AIFB

have the same correlation phenomena as described in Figure 1

(e.g., employs and affiliation), so it also adapt to our

model. However, MUTAG is a molecular graph, and its edges

are mainly atomic bonds, which leads to stronger independence

of its context composition. Second, as illustrated in Figure 4,

the number of channels (i.e. attention heads) we choose to

learn features is smaller4 than the number of clusters of rela-

tion types, which causes some features to be lost or overlapped.

Besides, compared with the results of models based on EA,

RA, SA, and Mixed attention in Table 2, the EA based model

is more stable, while the RA and SA based ones are more fluc-

tuating, which is related to the choice of the relation clustering

method and RWR. In addition, because the Mixed model inte-

grates the above three attention mechanisms, its model stability

is in the middle of the three. In general, Table 2 indicates that

compositing neighbor features in multi-channels and equipping

appropriate attention calculation methods provide a good sup-

plement for learning entity embeddings.

4.2. Entity Typing

Entity typing is an important task in entity discovery and

differs according to the granularity [20]. In heterogeneous graphs

such as knowledge graphs, entity typing can be regarded as a

multi-classification task. Specifically, it can be viewed as a kind

of completion operation on entity attributes.

For entity typing tasks, we also designed a two-layer GAT.

We set the number of neurons in the two hidden layers to be

consistent with the input settings, and then implemented multi-

classification through using binary classifiers corresponding to

the number of categories. When training, the remaining param-

eters follow the settings in Section 4.1.

4To be fair, we select the same number of attention heads in three datasets.

Obviously, the more relation clusters, the more number of attention heads re-

quired. Hence, if we want to achieve a better effect, we need to adjust the

number of attention heads according to the number of relations.
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Table 3: Statistics of two datasets for entity typing.

FB15k-237 4000 WN18RR 4000

#Entities 4457 3846

#Relations 110 10

#Triples 27232 6439

#Features 100 100

#Classes 25 4

#Training 3565 3076

#Verification 446 385

#Testing 446 385
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Figure 5: The distribution of different types in the FB15k-237 4000

and WN18RR 4000.

4.2.1. Datasets

To test the performance of the entity embeddings learned

by the different graph attention mechanisms in the entity typ-

ing, we screened in standard FB15k-237 and WN18RR to form

new independent datasets. Specifically, we first select the dense

sub-graphs in the original datasets and ensure their connectivity.

Next, by searching the attributes of the corresponding entities in

the complete FB and WN datasets, each entity in the knowledge

graph is given several attribute tags. (FB is the high-frequency

words in the entity description text, and WN is the part-of-

speech output of the related interface (NLTK.corpus.wordnet)).

The training set, validation set, and testing set of the data set are

divided into 8:1:1, where the training set ensures that each cat-

egory has samples and is roughly balanced. The exact statistics

of the datasets can be found in Table 3 and Figure 5.

4.2.2. Baselines

We still choose RDF2Vec [46] and R-GCN [48] as the base-

line methods, and their multi-classifier setting is consistent with

Table 4: Entity typing results in accuracy.

Model FB15k-237 4000 WN18RR 4000

RDF2VEC(NB) 1.21±0.45 77.79±0.54

RDF2VEC(SVM) 17.11±0.44 75.48±0.49

R-GCN 43.08±0.63 91.05±0.60

Ours(EA) 46.32±0.42 89.92±0.52

Ours(RA) 51.35±0.34 90.04±0.44

Ours(SA) 52.72±0.38 91.83±0.60

Ours(Mixed) 52.57±0.42 92.04±0.31

our method in this paper. In order to compare the different per-

formances of different graph attention settings, we also set up

four attention configurations, i.e., EA, RA, SA, and Mixed.

4.2.3. Result Analysis

The experimental results are shown in Table 4, which in-

dicates that neural-network-based models are significantly bet-

ter than the traditional methods in terms of multi-class classi-

fication accuracy. Since the graph-attention-based method can

better achieve multi-channel information capturing, it can more

reasonably combine neighbor information than R-GCN, the clas-

sification performance is further improved.

Comparing different graph attention methods, we also find

differences in the performance of various attention mechanisms.

Specifically, for relation attention, the performance in FB15k-

237 4000 far exceeds the entity attention, but it does not per-

form well on the WN18RR 4000: the result is slightly behind

that of entity attention. We argue that this is due to the charac-

teristics of the datasets, i.e., the FB15k-237 4000 has more re-

lations, and the number and type of edges between entities are

much more than the WN18RR 4000. Therefore, for entity at-

tention, the weight between entities in relation attention can be

more diversified, and it will not lack class separability like that

in the WN18RR 4000. For structure attention, it has a signifi-

cant improvement on the FB15k-237 4000 compared to the en-

tity attention, and the other dataset basically maintains the same

accuracy rate. The main reason is that WN18RR 4000 is more

sparsely connected than FB15k-237 4000, thus the connection

within the subgraph is not as tight as the latter, which may cause

the noise between the remote entity and the central entity in the

subgraph to be greater than The similarity of the two. In addi-

tion, since the entity of the sub dataset should be kept around

4000, when dividing the sub dataset, WN18RR 4000 selects the

entity within 4 hops from the central entity. However, FB15k-

237 4000 is 3 hops, for the edge part of the dataset not only did

some of the neighboring entities be lost due to the segmentation

of the dataset, but also the entity embeddings in the range of the

4-hop subgraph were collected, so the performance was not as

good as expected.

4.3. Link Prediction

Link prediction is a standard task for verifying knowledge

embedding5. We now validate our models using two sub-tasks

5In particular, because of the similarity between the triple classification task

and the link prediction task, we did not show the results of the triple classifica-
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Table 5: Statistics of three datasets for link prediction.

FB15K WN18RR FB15k-237

(Freebase) (WordNet) (Freebase)

#Entities 14951 40943 14541

#Relations 1345 11 237

#Triples 0.48M 0.09M 0.27M

#Valid 50000 3034 17535

#Test 59071 3134 20466

of link prediction: entity prediction and relation prediction. Since

the prediction methods of two sub-tasks are both ranking candi-

date triples in descending order using Eq. 15 Eq. 16 and Eq. 17,

we describe the training details uniformly. We train our mod-

els by using the entity embedding obtained from entity atten-

tion, relation attention, structure attention, and mixed attention

respectively. Besides, we further feed specific entity embed-

ding to the downstream component, which is obtained from

Average Nonlinearity (Eq. 14) (RA&AN) or Single Attention

Head (RA&SAH) (corresponding to the relation in the candi-

date triple).

We utilize two layers of network structure with the num-

ber of attention heads and output feature dimensions as K1 =

K2 = 8, d′ = d, and the other hyperparameters in the model

are obtained from the validation set. We feed ns negative triples

(constituted by replacing specific element in triples) and corre-

sponding positive sample to Eq. 15, Eq. 16, and Eq. 17 to obtain

the final scores. To minimize the cross-entropy loss described in

Eq. 18, we update the model parameters using Adam optimizer

with a learning rate of 0.01. Despite the training set is large

enough, we still regularize our model through edge dropout

with p = 0.3 and L2 regularization with ρ = 0.01.

4.3.1. Datasets

We evaluate our methods on the typical large-scale knowl-

edge graphs: FreeBase and WordNet. FB15K [5] is a real dense

subgraph captured from Freebase, which contains the triples

consisting of two entities and a relation. FB15K-237 is a sub-

set of FB15K, which removes the inverse triples for filtering.

WN18RR [5] is a set of linguistic triples obtained from Word-

Net without inverse triples, which is a lexical English dictionary

consists of linguistic relation between words, e.g. hypernym,

hyponym, and meronym. Based on the mentioned datasets,

we build a fair and dense labeled KB graph for our method and

comparative approaches. Table 5 details the statistics informa-

tion of the three datasets.

4.3.2. Baselines

In this work, because of the need of comparing and dis-

cussing the performance of entity embedding based on the graph

attention mechanism, we selected the three basic factorization

models as baselines, i.e., DistMult [67], ComplEx [56], and

ConvE [12]. Correspondingly, we list the three independent

tion task due to the space limitation.

graph attention mechanisms (i.e., EA, RA, and SA) and mixed

attention (Mixed) as comparison items.

4.3.3. Entity Prediction

In the sub-task of entity prediction, we utilize two common

measures as our evaluation metrics: the Mean of Reciprocal

Rank (MRR) and Hits at n (Hits@n). As [5] mentioned, some

triples in the test set have more than one correct missing entity

prediction results after hiding the entity to be predicted, so the

evaluation metrics will result in underestimation of some meth-

ods. Hence, we filter out all these triples before ranking candi-

date triples, and report both raw and filtered MRR, and filtered

Hits. In order to show the performance more completely, we

also make statistics on the Hits at n = 1, 3, and 10 respectively.

The evaluation results of entity prediction are shown in Ta-

ble 6. For our models, we still use four attention implementa-

tion methods to obtain KB embedding: entity attention, rela-

tion attention, structure attention, and mixed attention. By ob-

serving the data in Table 6, our proposed graph attention based

approaches outperform the original factorization methods. It

shows that the entity embeddings learned based on the graph

attention mechanism can steadily improve the ability of the fac-

torization models to model triples. The main reason for these

improvements is the graph attention mechanism can better cap-

ture the features more effectively for the downstream tasks from

the neighbors. However, because it is difficult to reasonably la-

bel the categories of the entities (i.e., words) in WordNet, the

improvement in WN18RR is not so obvious. We believe that

this is due to the selection of the score function and the use of

attention, and we will explore other combinations for achieving

a better effect.

By observing the different sources and calculation methods

of attention mechanism and their performances in Table 6, we

find that the method based on relational attention performs bet-

ter than the other independent graph attention methods in more

cases. On the one hand, the relation type is a normalized rep-

resentation of correlation, which is a more specific and stable

expression than the entity pair. On the other hand, because we

have a clearer and more reasonable definition and initialization

of attention heads using clustering operation, and the dot prod-

uct is easier to operate for computing similarity/correlation, the

relational attention based method achieves better result in the

subsequent feature multi-channel learning. In addition, we found

that the model based on SAH performed better than the one

based on AN, which verifies our assumption that relation clus-

tering contributes to knowledge modeling. In addition, in most

cases, the mixed attention model achieves the best results, which

shows that different graph attention sources have the possibil-

ity of complementary information, and can steadily improve the

performance of the model.

4.3.4. Relation Prediction

The sub-task of relation prediction is akin to the entity pre-

diction, so we continue using the evaluation metrics of the pre-

vious sub-task. Since this task focuses on handling relations,

we exploit FB15K-237, which has enough relations, to evalu-

ate our methods and baselines. The experimental results are
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Table 6: Results of entity prediction on the FB15K-237 and WN18RR datasets.

FB15K-237 WN18RR

MRR Hits@ MRR Hits@

Raw Filtered 1 3 10 Raw Filtered 1 3 10

DistMult** 0.159 0.281 0.199 0.301 0.446 0.248 0.444 0.412 0.470 0.504

DistMult(EA) 0.161 0.293 0.206 0.315 0.453 0.251 0.452 0.417 0.478 0.521

DistMult(RA&AN) 0.171 0.301 0.227 0.321 0.461 0.257 0.454 0.421 0.486 0.527

DistMult(RA&SAH) 0.178 0.307 0.234 0.327 0.465 0.266 0.465 0.442 0.502 0.539

DistMult(SA) 0.167 0.298 0.228 0.311 0.450 0.259 0.456 0.429 0.480 0.529

DistMult(Mixed) 0.174 0.312 0.230 0.326 0.471 0.261 0.464 0.436 0.493 0.543

ConvE** 0.183 0.312 0.225 0.341 0.497 0.263 0.456 0.419 0.470 0.531

ConvE(EA) 0.198 0.334 0.237 0.354 0.509 0.268 0.465 0.425 0.478 0.540

ConvE(RA&AN) 0.207 0.339 0.243 0.360 0.515 0.272 0.471 0.432 0.489 0.548

ConvE(RA&SAH) 0.214 0.346 0.251 0.367 0.521 0.280 0.480 0.441 0.498 0.558

ConvE(SA) 0.203 0.333 0.240 0.356 0.511 0.277 0.476 0.436 0.492 0.552

ConvE(Mixed) 0.220 0.342 0.249 0.364 0.517 0.279 0.480 0.439 0.498 0.563

ComplEx** 0.142 0.278 0.194 0.297 0.449 0.264 0.449 0.409 0.469 0.530

ComplEx(EA) 0.146 0.281 0.198 0.303 0.456 0.267 0.451 0.413 0.472 0.534

ComplEx(RA&AN) 0.148 0.284 0.202 0.307 0.459 0.269 0.454 0.415 0.476 0.537

ComplEx(RA&SAH) 0.153 0.291 0.207 0.314 0.465 0.273 0.459 0.418 0.481 0.544

ComplEx(SA) 0.149 0.286 0.205 0.310 0.458 0.268 0.453 0.414 0.471 0.536

ComplEx(Mixed) 0.150 0.288 0.206 0.312 0.466 0.274 0.461 0.418 0.483 0.546

Table 7: Results of relation prediction on the FB15K-237 dataset.

MRR Hits@

Raw Filtered 1 3 10

DistMult 0.302 0.516 0.361 0.584 0.845

DistMult(EA) 0.328 0.541 0.389 0.617 0.853

DistMult(RA&AN) 0.331 0.550 0.393 0.624 0.858

DistMult(RA&SAH) 0.335 0.556 0.396 0.626 0.862

DistMult(SA) 0.336 0.558 0.397 0.624 0.861

DistMult(Mixed) 0.338 0.556 0.396 0.627 0.864

ConvE 0.611 0.827 0.735 0.887 0.965

ConvE(EA) 0.614 0.831 0.740 0.891 0.966

ConvE(RA&AN) 0.619 0.837 0.744 0.892 0.967

ConvE(RA&SAH) 0.623 0.844 0.745 0.897 0.971

ConvE(SA) 0.618 0.836 0.741 0.893 0.967

ConvE(Mixed) 0.624 0.847 0.746 0.896 0.973

ComplEx 0.527 0.702 0.504 0.711 0.896

ComplEx(EA) 0.533 0.708 0.509 0.718 0.899

ComplEx(RA&AN) 0.536 0.710 0.521 0.725 0.903

ComplEx(RA&SAH) 0.544 0.717 0.529 0.728 0.909

ComplEx(SA) 0.545 0.715 0.531 0.732 0.907

ComplEx(Mixed) 0.547 0.721 0.534 0.737 0.913

shown in Table 7. Our proposed graph attention based methods

can improve the original factorization models, which indicates

that our methods are equally applicable to the task of relational

element prediction in triples.

Comparing the various graph attention methods we pro-

posed, we found that the entity embeddings obtained by rela-

tion attention and corresponding relation embeddings perform

better. Besides, we found that using mixed attention can also

achieve better performance in the relational prediction. We also

found that when using the same number of attention heads, the

fewer the relation types be in the dataset, the better the model’s

effect is, which is consistent with the conclusions obtained in

the experiment for entity classification.

4.4. Parameter Sensitivity Analysis

In order to analyze the possible influence of the three hyper-

parameter settings in Eq. 11 on the performance of the Mixed

attention model, we conduct parameter sensitivity analysis for

the three experiments mentioned above. Specifically, we try to

observe the changing trend of experimental results by setting

different combinations of hyper-parameters in the experiments

of entity classification, entity annotation, and link prediction.

The experimental results are shown in Figure 6. We can find

that the performance of the Mixed attention model will not be

significantly affected by adjusting the remaining parameter on

the premise of fixing two parameters in three groups of exper-

iments. In particular, in the entity classification task, reduc-

ing the corresponding weight of RA (i.e., µ) will bring rela-

tively large performance fluctuation, which is consistent with

the phenomenon that RA performance is higher than the re-

maining model in the original experiment. Similar phenomena

also appear in the task of entity link prediction.

4.5. Visualization of Relation Embedding

Since we experiment with entity embedding, i.e. entity clas-

sification, we only report the visualization results of the relation

embedding here. We select some of the high-frequency rela-

tions in FB15k-237, and use Principal Component Analysis to

reduce the dimension of relation embeddings to 2 based on RA.

We observe that the relation embedding nicely reflects the clus-

tering structures among these relations either in the same atten-

tion head or the same prefixion (e.g. /people/person/languages

and /people/person/nationality).
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Figure 6: Experimental results of different hyper-parameter combinations in three experiments. The rows represent three experiments from top

to bottom: entity classification, entity typing, and entity link prediction. The columns from left to right represent experiments with different

hyper-parameter settings in Eq. 11: λ, µ, and η. Among them, the settings in each column are to adjust a certain hyper-parameter and fix the

remaining two hyper-parameters. For example, in the first column, µ = 1.0, η = 1.0, and λ ∈ [0.0, 2.0].
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Figure 7: Visualization of relation embeddings. The colors denote

different attention heads and the shapes represent different prefixes in

each attention head.

5. Conclusion

In this paper, we introduce the graph multi-head attention

mechanism into relational data modeling and demonstrate its

effectiveness in knowledge embedding through extensive ex-

periments. In particular, we use three different sources of atten-

tion (entity pair, relation, and structure) to achieve the learning

of vertex features in the graph. Experimental results validate

our assumptions about entity types and relations. In the future,

we will explore the essential similarities between graph atten-

tion and graph convolution in feature learning.

Acknowledgements

The corresponding author is Jianxin Li. This work was sup-

ported by the NSFC program (No. U20B2053, 62002007 and

61772151), S&T Program of Hebei through grant 20310101D,

and SKLSDE-2020ZX-12.

References
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