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A B S T R A C T   

As an alternative to delay-and-sum beamforming, a novel beamforming technique called filtered-delay multiply 
and sum (FDMAS) was introduced recently to improve ultrasound B-mode image quality. Although a consid-
erable amount of work has been performed to evaluate FDMAS performance, no study has yet focused on the 
beamforming step size, Δx, in the lateral direction. Accordingly, the performance of FDMAS was evaluated in this 
study by fine-tuning Δx to find its optimal value and improve boundary definition when balloon snake active 
contour (BSAC) segmentation was applied to a B-mode image in ultrafast imaging. To demonstrate the effect of 
altering Δx in the lateral direction on FDMAS, measurements were performed on point targets, a tissue- 
mimicking phantom and in vivo carotid artery, by using the ultrasound array research platform II equipped 
with one 128-element linear array transducer, which was excited by 2-cycle sinusoidal signals. With 9-angle 
compounding, results showed that the lateral resolution (LR) of the point target was improved by 67.9% and 
81.2%, when measured at − 6 dB and − 20 dB respectively, when Δx was reduced from λ to λ/5. Meanwhile the 
image contrast ratio (CR) measured on the CIRS phantom was improved by 10.38 dB at the same Δx reduction 
and the same number of compounding angles. The enhanced FDMAS results with lower side lobes and less clutter 
noise in the anechoic regions provides a means to improve boundary definition on a B-mode image when BSAC 
segmentation is applied.   

1. Introduction 

The computation effective nature of delay-and-sum (DAS) beam-
forming makes it a popular option for medical ultrasound imaging. 
However, DAS fails to eliminate clutter noise [1–3]. This condition leads 
to a low contrast ratio (CR) and poor spatial resolution. Considerable 
work has been conducted to combat poor image quality encountered by 
DAS, such as improving the beamforming algorithm with pre/post- 
signal processing techniques or replacing it with new algorithms 
[4,12,1,5]. 

Lim et al. introduced a novel beamforming technique called delay 
multiply and sum (DMAS) [6]. This technique has been applied to radar 
microwave imaging for detecting breast cancer where the main 

objective is to find the tumour with a CR between 2:1 and 10:1 relative 
to normal breast tissue [7–10]. Thus, this method is unsuitable for ul-
trasound imaging which comprises several signal levels: hyperechoic, 
isoechoic, hypoechoic and anechoic. Matrone et al. [11] modified and 
improved the algorithm by introducing new mathematical blocks and 
named it the filtered DMAS (FDMAS) algorithm. This new beamforming 
technique achieves higher image CR and better lateral resolution (LR) 
with less computation compared with adaptive beamforming techniques 
[12]. 

Matrone et al. applied FDMAS to linear array imaging (LAI), syn-
thetic aperture focusing (SAF), multi-line transmission (MLT) and plane 
wave imaging (PWI) [13–15]. The application of FDMAS to LAI im-
proves image LR and CR. The axial resolution is retained but the 
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contrast-to-noise (CNR) ratio is degraded compared with DAS. The 
spatial lateral resolution and CR can be improved when FDMAS is 
applied to SAF and MLT. Reduction of crosstalk noise is also demon-
strated in latter applications. 

Despite the significant amount of research reported on FDMAS, no 
in-depth investigation has been conducted on the effect of varying the 
beamforming step size, Δx, in the lateral direction, which is one of the 
important criteria for determining B-mode image quality. In a previous 
study [16] on compound PWI (CPWI) with DAS beamforming, the 
evaluation of the final B-mode image quality did not exhibit any sig-
nificant variations, except reduction on the grating lobes when different 
inter-element spacings or pitch sizes, p (λ or λ/2), were used whilst 
maintaining other experimental parameters. The LR measured on the 
point targets at full width at half maximum (− 6 dB) from a depth of 10 
mm to 60 mm obtained using imaging probes with pitch sizes of λ and λ/
2 are nearly the same. Moreover, the CR values measured using probes 
with pitch sizes of λ and λ/2 on a cyst with a depth ranging from 20 mm 
to 60 mm do not exhibit any significant difference. This previous study 
also showed that grating lobes when using a probe with a pitch size of λ, 
can be effectively reduced through compounding. Furthermore, grating 
lobes mainly appear in the near-field regions (≤ 10mm). The final 
outcome of [16] provides a strong hypothesis that the Δx plays an 
important role in determining the final quality of the B-mode image. 
This finding has motivated us to further explore the effect of varying Δx 
with the recently proposed FDMAS beamforming techniques primarily 
because the FDMAS algorithm is similar to the autocorrelation process 
that depends on the lag among radio-frequency (RF) signals in each 
channel in the lateral direction. Thus, the proper selection of Δx for 
FDMAS is a subject for discussion. 

The enhanced FDMAS with lower side lobes and less clutter noise is 
expected to improve the balloon snake active contour (BSAC) segmen-
tation process. Segmentation is a process of partitioning an image in 
which the intended region of interest (ROI) can be distinguished from 
the background [17], BSAC is a popular segmentation method that has 
been used in medical ultrasound imaging [18,19]. Segmenting complex 
topology such as a blood vessel in retinal angiography and cerebral 
cortex structures manually are not feasible and time consuming [20]. 
Segmenting the carotid artery wall is also one of the first procedures 
before any measurements can be performed. This process can either 
involve measuring the diameter of the common carotid artery (CCA) or 
the intima media thickness. Moreover, clutter noise and side lobes in 
anechoic regions are known obstacles to exact boundary definition 
during BSAC segmentation [21]. Attenuating noise and side lobes by 
enhancing FDMAS could promise improved boundary delineation. 

In this study, we investigated the effect of varying the Δx, on CPWI 
for point targets, a tissue-mimicking phantom and an in vivo carotid 
artery. This study is expected to propose the optimized Δx for FDMAS to 
improve B-mode image quality for better boundary definition using 
BSAC segmentation. 

2. Materials and methods 

2.1. Coherent PWI 

To achieve the same quality as a focused image at point located at z 
mm depth, Nsteered plane waves (n) are required [22,23]: 

N =
La

λF
=

L2
a

λz
, (1)  

where La is the length of the aperture, λ is the signal wavelength and F is 
the F-number defined as F = z/La. Each steering angle, θn, is given by 

θn = arcsin(
nλ
La
) ≈ (

nλ
La
), (2)  

where n is defined as 

n =

[

−
N − 1

2
,…,

N − 1
2

]

. (3) 

The main objective of this work is to evaluate the effect of varying Δx 
on imaging results when using any number of compounding angles with 
the DAS and FDMAS beamforming techniques, and not to find the op-
timum number of compounding angles in CPWI. Many studies, including 
[24,25,23,16], have proposed a unique number of compounding angles 
that provide the best image quality according to their experimental 
setup. Thus, a particular compounding angle that will provide the best 
end results for all image quality indices is impossible to propose. The 
general rule of thumb in selecting the number of compounding angles is 
to minimize it, such that the end results are balanced among the opti-
mum temporal, spatial and contrast resolutions. Several studies, such as 
[24,25], have mentioned that beyond a certain number of compounding 
angles, image resolution will no longer improve but will deteriorate 
instead due to reduced noise cancellation near the main lobe. In 
consideration of these constraints, the selected number of compounding 
angles, N, and the steering angle increment, Δθn, are shown in Table 1. 
The sector angles, [θ◦

max, θ◦
min], for all compounding conditions are set to 

±12◦. 

2.2. FDMAS beamforming 

The initial process in FDMAS is the same as that in DAS. Here, the 
signal si(t) is the RF signal received by each element, i. To temporarily 
align the signals received by each element, the following equation is 
used to calculate the required focusing delay, τi [45,44]: 

τi(xg,Z) =
Zcosθn + xgsinθn +

La
2 sinθn

c
+

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

Z2 + (xi − xg)
2

√

c
, (4)  

where xg is the imaging point in the lateral direction for a lateral 
beamforming step of λ/g, where g = 1, 2, 3, 4 and 5. This can be further 
elaborated as x1 = λ, 2λ…La; x2 = λ/2, λ…La and so on and so forth. 
While Z is the vector of imaging points in the axial direction given by 

Z = [

z1
z2
⋮

zdepth

] (5)  

where zdepth is the maximum imaging depth, c is the speed of sound of the 
medium, and xi is the distance between the ith element and the center of 
the transducer. The RF signal with the focusing delay compensated, si(xg,

Z), is known as the aligned RF signal, vi(xg,Z), and can be represented by 
the following equation: 

vi(xg,Z) = si(t − τi(xg,Z)). (6) 

Differs from DAS, the aligned signals in DMAS will undergo a process 
similar to autocorrelation, which can be represented by the following 
equation [11]: 

rDMAS(xg,Z) =
∑E− 1

i=1

∑E

m=i+1
sgn{vi(xg,Z)vm(xg,Z)} ×

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

||vi(xg,Z)vm(xg,Z)||
√

,

(7)  

where E is the total number of elements on the imaging probe, and 
m = i+1 is the aligned RF signal at the m-th element. The multiplication 

Table 1 
Compounding parameters.  

Properties Value 

Number of Compounding Angles, N  1 3 5 7 9 13 25 
Angle Increment, Δθn  0 12 6 4 3 2 1  
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of two RF signals with the same frequency content will eventually pro-
duce the second harmonic and direct current components. Thus, a band- 
pass filter is applied to rDMAS(xg,Z) to extract its second harmonic, and 
finally, rFDMAS(xg,Z) is obtained. For a fixed lateral location xg, a set of 
time delays are calculated for each depth Z, to form a vertical imaging 
line, l. 

2.3. Beamforming step size, Δx 

The effect of varying Δx during beamforming on B-mode image 
quality was studied by first calculating the difference in the imaging line 
angle, Δβg between the first and second imaging line angles and then 
calculating the correlation coefficient, ρg between two adjacent aligned 
RF signals from the first (i = 1) and second (i = 2) elements for the first 
imaging line. Fig. 1 illustrates the concept of imaging line angle and 
imaging line produced with different Δx. Δx is also referred to as the 
lateral beamforming step which is given by 

Δx = xg(k + 1) − xg(k) = λ
/

g (8)  

where xg(k) and xg(k+1) are the kth and k + 1th imaging points in the 
lateral direction. Δβg is given by 

Δβg = βo
(l+1)g

− βo
lg ; (9)  

where βo
(l+1)g 

and βo
lg 

are the lth and l+1th imaging line angles formed 
between a set of aligned RF signals and the surface of the transducer. Δβg 

for the Δx, λ and λ/4, are given by 

Δβ1 = βo
21
− βo

11
, for λ;

Δβ4 = βo
24
− βo

14
, for λ

/
4;

Δβ1 > Δβ4;

(10)  

where βo
11 

and βo
21 

are the imaging line angles for the aligned RF signals 
for the first imaging line and the second imaging line for the Δx of λ. βo

14 

4 

4 

 1       64       128 

De
pt

h,
 sa

m
pl

es
 

(c) 

Number of Element, i 

Aligned RF signals for imaging line 1, Δx=λ/4, x (1)=λ/4 
Aligned RF signals for imaging line 2, Δx=λ/4, x (2)=λ/2 

4 Aligned RF signals for imaging line 3, Δx=λ/4, x (3)=3λ/4 

4 Aligned RF signals for imaging line 4, Δx=λ/4, x (4)=λ 

Δβ1

Δβ 4

Aligned RF signals for imaging line 1, Δx=λ, x 1   (1)=λ 

1Aligned RF signals for imaging line 2, Δx=λ, x  (2)=2λ 

Fig. 1. a) The RF echo originated from a scattering point located at center of the imaging medium at 40 mm depth. b) RF signals for E = 128 elements aligned 
according to Eq. (6) for imaging line 1 with the Δx of λ/4. βo

14 
formed between the face of the imaging probe and the aligned RF signals is highlighted. c) Aligned RF 

signals for imaging lines 1 and 2 for the Δx of λ and aligned RF signals for imaging lines 1, 2, 3 and 4 with the Δx of λ/4 are shown together with differences between 
the imaging line angles, Δβ1 and Δβ4 respectively. 
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and βo
24 

are the imaging line angles for the aligned RF signals for the first 
imaging line and the second imaging line for the Δx of λ/4. To illustrate 
the new concept of Δx and Δβg in this work, a Field II simulation with 
the parameters listed in Table 3 was performed. Echoes from a scattering 
point located at 40 mm depth were obtained by transmitting an 
unsteered plane wave. Both Δβg and βo

lg 
formation are shown in Fig. 1(b) 

and (c). βo
lg 

measured after the received RF echo aligned according to Eq. 
(6). In Fig. 1(b) the RF echo aligned for the first imaging line with the Δx 
of λ/4 is shown. Accordingly, βo

lg 
formed between the face of the imaging 

probe and the aligned RF signals is highlighted as βo
14

. 
The correlation coefficient, ρg, between two aligned RF signals from 

the first and second elements is computed on the first imaging line for 
every Δx according to the following equation [26] 

ρg =
v1(xg,Z)v2(xg,Z)
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

v1(xg,Z)2v2(xg,Z)2
√ , (11)  

where v1(xg,Z) and v2(xg,Z) are the aligned RF signals from the first 
(i=1) and second (i=2) elements as given by Eq. (6). In digital signal 
processing, the autocorrelation between two signals is calculated at a lag 
that is relative to the starting point of one of the signals. The lag refers to 
as the distance or location shift between two points. The multiplication 
of two RF signals and then summing them at a specific lag is known as 
short-time autocorrelation [27]. The lag is commonly represented in the 
form of the samples. However, in this work the lag is assigned to be the 
angle difference, Δβg, between two imaging line angles. The lag between 
adjacent RF signals along the lateral direction depends on Δx. The 
number of times the RF signals of all the elements should be aligned to 
form imaging lines for the same lateral distance increases as Δx is 
reduced. Instead of aligning all the RF signals of all the elements at one 
time with the Δx of λ, all the RF signals will now be aligned twice with 
the Δx of λ/2. Simultaneously, instead of assigning a single grey colour 
intensity on a particular imaging point, two different grey colour in-
tensities will be assigned with the Δx of λ/2 on two different imaging 
points. The length of an imaging point with the Δx of λ is equal to two 
imaging points with the Δx of λ/2. 

Some linear array transducers available in the market are provided in 
Table 2. They are used for research purposes and have a pitch size of p, 
that is equal to or higher than the wavelength λ. The optimization of Δx 
for such probes is expected to improve B-mode image quality. 

2.4. Snake active contour segmentation 

Snake active contour-based segmentation techniques begin with the 
user-defined approximate boundary, known as a contour, around an 
object. Thereafter the initial contour will evolve and determine the 
actual boundary of the object. The objective of snake active contour 
formation is to minimise the combined internal energy (contour shape) 
and external energy (image gradient) by continuously evolving within a 
certain number of iterations. At each iteration, the total snake energy is 
computed such that it will always be the minimum. The total snake 
energy can be minimised through the calculus of the variation by solving 
the following Euler–Lagrangian equation [17]: 

δ
δs
(α(s)Vs(s))+

δ2

δs2(β(s)Vss(s)) − ∇Eext(V(s)) = 0, (12)  

where s ∈ [0, 1] represents points on the contour, V(s). The first deriva-
tive, Vs(s) provides a measure of the elasticity (stretching) strength of 
the contour control via α(s), whereas the second derivative, Vss(s) pro-
vides a measure of the rigidity (bending) strength of the contour control 
via β(s). Eext(V(s)) is the external energy of an image. 

2.5. Experimental setup 

To validate the effect of varying Δx on the FDMAS beamforming 
technique, several measurements were performed on point targets with 
a diameter of 120 μm, a tissue-mimicking phantom (040GSE, CIRS, 
Virginia, USA) and in vivo. The anechoic sections of the tissue-mimicking 
phantom (depth: 10 mm to 50 mm) and the point targets (depth: 10 mm 
to 70 mm) were imaged. In vivo data were collected from the cross 
section of the right common carotid artery of a healthy volunteer. A 128- 
element linear array transducer (L3-8/40EP, Prosonics Co. Ltd., South 
Korea) with a center frequency of 4.79 MHz and a 57% bandwidth at − 6 
dB was used to collect all the data. A two-cycle sinusoidal excitation 
signal at a center frequency of 5 MHz was used with the ultrasound array 
research platform II (University of Leeds, UK) [28–30]. The received 
signals were sampled at 80 MHz. The complete experimental parameters 
are provided in Table 3. 

3. Performance evaluation 

The performance of the final B-mode images produced using the DAS 
and FDMAS beamforming techniques can be described by two main 
matrices: spatial resolution and CR. To determine image LR, the main 
lobes of the point target represented by the nylon wire with a diameter 
of 120 μm at a depth of 40 mm in degassed and deinonised water were 
measured at − 6 dB and − 20 dB using the function developed in [31]. 
The CR was used to express the detectability of a cyst with values be-
tween the ROI inside the cyst and its background. While CNR is used to 
measure the cyst contrast with speckle or noise variation inside and 
outside of the cyst. The image CR and CNR of the anechoic cyst of 3.0 
mm diameter located at a depth of 15 mm were computed by creating 
two regions with the same dimensions. The first region is located inside 
the cyst, whereas the second region is located outside the cyst at the 
same depth. This condition ensures that attenuation with depth does not 
affect the measurements. The CR and CNR equations are given as follows 
[11,1] 

CR(dB) = 20log10(
μcyst

μback
), (13)  

CNR(dB) = 20log10(
|μcyst − μBack|
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(σcyst

2 + σ2
Back)

√ ) (14)  

where μcyst and μBack are the means of image intensities inside and 

Table 2 
Specification of transducers.  

Properties Prosonics Verasonics Verasonics 

Model L3-8/40EP L3-12-D L11-4v 
Centre Frequency, MHz 4.79 6.5 7.55 
Bandwidth (− 6 dB), % 57 85 90.8 
Element Pitch, mm 0.3048 0.2 0.298–0.302 
Element Pitch, λ  1.01 1.18 0.66–0.65  

Table 3 
Simulation and experimental parameters.  

Properties Values 

Speed of Sound, Water/CISR 1482/1540 m/s 
Medium Attenuation, Water/CISR 0.002/0.5 dBcm− 1 MHz− 1  

Number of Elements 128 
Transducer Center Frequency 4.79 MHz 
Transducer Bandwidth (-6 dB) 57 % 
Transducer Element Pitch, p  0.3048 mm 
Sampling Frequency, fs for Tx/Rx  160/80 MHz 
Excitation Signal Two-cycle Sinusoid 
Excitation Signal Center Frequency 5 MHz  
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outside of the cyst respectively, while σcyst and σBack are their variances. 
All results for simulations and experiments were presented in the form of 
mean value ± one standard deviation, calculated based on 10 repeats of 
measurements. The transducer was not moved along the elevation di-
rection during the repeated measurements. 

4. Results and discussion 

4.1. Simulation results 

Δβg between the first and second imaging lines and ρg between RF 
signals on the first and second elements for the first imaging line 
calculated for the Δx, from λ to λ/5 for the pitch size, p, of λ and λ/2 are 
illustrated in Fig. 2. Δβg, begins to decrease by reducing the Δx from λ to 
λ/5. For the pitch size of λ and the Δx of λ, Δβ1, between the first and 
second imaging lines is 0.8o. The Δx is reduced to λ/5, and thus Δβ5 
becomes 0.21o. When Δβg starts to decrease, the correlation, ρg, between 
two adjacent RF signals will also decrease [27]. This situation shows that 
the two RF signals on adjacent elements are moving further apart. In 
accordance with Eq. (7), this condition will produce precise grey colour 
intensities at particular imaging points. FDMAS uses a nearly similar 
process to autocorrelation to compute the beamformed signals from the 
aligned RF signals. The reduction of Δx will enable FDMAS to beamform 
the received RF signals accurately. Thus, instead of assigning approxi-
mate grey colour intensity values on imaging points with fewer imaging 
lines, assigning more imaging lines with smaller imaging points will help 
define the exact or accurate intensity values at the smaller imaging 
points. 

The results of the Field II simulation with the parameters listed in 
Table 3 are presented in Fig. 3 [32]. All the B-mode images are displayed 
within a 50 dB dynamic range. Fig. 3 shows the B-mode images of the 
point target located at 40 mm depth beamformed with a) DAS, p = λ, E =
128; b) FDMAS, p = λ, E = 128; c) DAS, p = λ/2, E = 256 and d) FDMAS, 
p = λ/2, E = 256. The beam profiles in Fig. 3 are shown in the lateral 
direction in Fig. 4. Regardless of the probe pitch size, p, the B-mode 
images exhibit the same outcomes when the Δx is set to λ/2. This 
important finding shows that the step size of imaging points plays an 
extremely important role in determining final image quality. Even with 
a larger pitch size, p, of λ, good-quality B-mode images can be produced 
with fewer number of elements, E, and shorter computational time 
compared with probes with the pitch size, p, of λ/2. 

The number of pixels in the lateral direction produced with the Δx of 
λ/2 is twice that with the Δx of λ for a single B-mode image frame. As a 
drawback, however, reducing the Δx will increase the computational 
time of the beamforming process to form a B-mode image. 

The advantages or gains of reducing the Δx lies in the transducer 
with a larger pitch size starting from λ and above. Such transducer will 
optimize B-mode image quality simply by selecting the appropriate Δx. 
However, this approach is inapplicable to a smaller pitch size (not larger 
than λ/2). The low correlation among the adjacent aligned RF lines with 
the pitch size of λ/2 starting from the Δx λ/2 onwards as shown in Fig. 2, 
indicating that beamforming can be performed using the same Δx as the 
pitch size. No significant difference is observed if the RF signals obtained 
from the transducer with the pitch size of λ/2 is beamformed with a 
smaller Δx, such as λ/3, λ/4 or λ/5, because the correlation between 
adjacent RF lines is already low. The low correlation is an indication that 
the aligned RF signals for the second imaging line, become further apart 
from one another. This is a good indication such that when the process 
similar to autocorrelation takes place on the RF signals with a lower 
correlation value, noise cancellation will be higher on that particular 
imaging line. 

4.2. Experimental results 

The B-mode images of the point target and cyst phantom beam-
formed by using DAS and FDMAS (nine steering angles and a Δx of λ/3) 
are shown in Figs. 5 and 6. All the images are presented within a dy-
namic range of 50 dB. The point targets from depths of 20 mm to 60 mm 
beamformed with FDMAS achieve better results than those beamformed 
with DAS due to suppressed side lobes. The cysts located at depths of 15 
mm and 45 mm obtain higher CR with FDMAS than DAS, because the 
high amount of clutter noise in the anechoic regions has been 
attenuated. 

The LR results of the point target are presented in Figs. 7(a–d). The 
Δx is reduced from λ to λ/5, and thus the LR for FDMAS achieves 67.9% 
and 81.2% improvements at − 6 dB and − 20 dB, respectively for CPWI, 
N = 9. With the same Δx reduction, DAS achieves 54.8% and 67.4% 
improvements at − 6 dB and − 20 dB, respectively. However, most of the 
changes in LR for DAS only occur from λ to λ/2, whereas those for 
FDMAS occur from λ to λ/3. Beyond these values, improvements plateau 
at − 6 dB and − 20 dB. Side lobes are known to interfere with LR [33]. 
Thus, the LR of the main lobe is improved by attenuating the side lobes 
along the lateral direction. The concept behind this approach is clearly 
illustrated in the B-mode image and beam profiles as shown from 
Figs. 8–11. The B-mode image of point targets located at 40 mm and 50 
mm depth are shown in Figs. 8 and 10 while their corresponding beam 
profiles are shown in Figs. 9 and 11 where noise reduction is notable in 
the lateral direction as the Δx is reduced from λ to λ/5. The energy in the 
side lobe regions is the main factor that affects the image contrast level 
[11,34]. Thus, attenuating side lobes more frequently through a process 
similar to autocorrelation with smaller Δβg helps improve image CR. The 
significant effect of sidelobe reduction along the lateral direction with 
FDMAS is illustrated in Fig. 8, row ii. 

The results of CRs are presented in Fig. 12(a) and (b). The perfor-
mance index shows the improvements when the Δx is reduced from λ to 
λ/5 for DAS and FDMAS. The CRs are improved by 4.18 dB and 10.38 dB 
for DAS and FDMAS, respectively for CPWI, N = 9. 

The results of CNRs are presented in Fig. 12(c) and (d). As opposite to 
LR and CR, the CNR performance deteriorates when the Δx is reduced 
from λ to λ/5 for DAS and FDMAS. The CNRs decreased by 2.74 dB and 
1.36 dB for DAS and FDMAS, respectively for CPWI, N = 9. This is ex-
pected due to more drop out regions in the speckle (i.e., black regions) 
that cause a higher variance (i.e., more noise) in the speckle, which 
therefore increases the denominator of the CNR equation when the Δx is 
reduced from λ to λ/5. The drop out regions could be potential prob-
lematic for the segmentation process because the active contour seg-
mentation algorithms might think that a black region in the speckle is a 
cyst. 

Higher CNR values are not main criteria for better segmentation 
process. The segmentation process which is initialized from the inside of 

Fig. 2. Effect of reducing Δx was evaluated on probes with the pitch, p = λ and 
λ/2 by measuring Δβg and ρg according to Eqs. (9) and (11). 
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the anechoic region such as a cyst does not depend on the speckle for-
mation, but more on the level of clutter noise and CR. This is because the 
contour formation can be stopped by the false edge caused by clutter 
noise [35]. 

The leaking of the side lobes into the anechoic region also continues 
diminishing as the Δx is reduced from λ to λ/5. This phenomenon is 
illustrated in Fig. 13 which presents 1.3 mm-diameter cysts. As the Δx is 
reduced from λ to λ/3, the cyst edges become steeper due to side lobe 
reduction. 

This can be seen from the lateral beam profiles shown in Fig. 14 for 
DAS and FDMAS. Side lobe reduction in the anechoic region from the Δx 
λ to λ/3 with FDMAS significantly improves BSAC segmentation on both 
cysts. The B-mode image and lateral beam profiles for a 3.0 mm-diam-
eter cysts as the Δx reduced from λ to λ/5 are shown in Figs. 15 and 16. 

Any low-quality B-mode image produced with the Δx of λ can be 
associated with beamforming that does not occur at the right location 

where the point target is located. A pixel length in the x direction is 
equal to the λ, which is comparably longer than the exact length of the 
point target diameter, i.e 120 μm. Thus, a single grey colour intensity 
will be assigned through the λ length, which represents the Δx, but not 
the exact intensity on that location. One of the solutions for this problem 
is reducing the Δx used for beamforming. 

Tables 4 and 5 presents the results obtained from a two-cycle sinu-
soidal excitation signal compounded with N = 9 and N = 25 for the Δx of 
λ/2 and λ/3. Only the values obtained with the two Δx were compared in 
this study because both values produced comparably good image qual-
ity. Moreover, only these values were compared to demonstrate that 
performance can be improved with less compounding angles when 
beamformed with a smaller Δx. All spatial and contrast performance 
indicators, except CNR produce better results with FDMAS, CPWI, N = 9 
and the Δx of λ/3 instead of with FDMAS, CPWI, N = 25, and the Δx of 
λ/2. All the values that compare the compounding and Δx are high-
lighted in Tables 4 and 5 in bold typeface. From the results, a conclusion 
can be drawn that FDMAS generally needs lower compounding angles 
with a smaller Δx, which can improve the temporal resolution of B-mode 
images. The reduction of the number of compounding angles from N =
25 to N = 9 results in a 178% improvement in temporal resolution. 

The main reason for the improvement in CR and CNR with the 
increased number of compounding angles is because the decorrelation 
between the side lobes that appear along the lateral direction. Each 
steered plane wave can be divided into two main components in general, 
the side lobe and main lobe. The side lobe appears at different spatial 
location for every steered plane wave whereas the main lobe appears 
almost at the same location for a particular point spread function. Thus, 
when coherent compounding takes place, noise cancelation mainly takes 
place for the side lobe. Beyond a certain number of compounding angles, 
the LR will not be improved but reduced since the main lobe broadens 
after the summation of contributions from different angles. The theory 
behind this is related to the beam directivity which determines the ob-
ject appearance and shape in the compound image. The intensity dis-
tributions of steered plane waves are different for different angles. As the 
angle increases or decreases; the beam pattern and its intensity distri-
bution are shifted accordingly. This phenomenon is mainly observed on 
the side lobes along the lateral direction. 

4.3. Effect of reducing lateral beamforming step, Δx on segmentation 

The sizes of the segmented cyst marked by green dashed lines as 
shown in Figs. 13 and 15 were measured and compared to their nominal 

Fig. 3. B-mode images from CPWI, N = 9 for a point target located at 40 mm depth for the Δx of λ/2: a) DAS, p = λ, E = 128; b) FDMAS, p = λ, E = 128; c) DAS, p =
λ/2, E = 256 and d) FDMAS, p = λ/2, E = 256. 

Fig. 4. Lateral beam profiles of a point target at a depth of 40 mm simulated 
using Field II using the pitch sizes, p of λ and λ/2 beamformed with the Δx of 
λ/2. The simulation parameters are identical to those in Table 3. Regardless of 
the pitch size, both beamforming techniques produced nearly similar results 
when beamformed with the same Δx. The legend represents the beamforming 
techniques-lateral beamforming step-pitch size. 
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values. To determine the region size, the number of pixels within the 
cyst was counted and multiplied with their corresponding lateral and 
axial pixel sizes. The axial pixel size was fixed to 9.625 μm. The nominal 
cyst areas with the diameter of 1.3 mm and 3.0 mm are 1.33 mm2 and 
7.07 mm2, respectively. As shown in Fig. 17, the cyst sizes measured are 
approaching nominal values with FDMAS and lower Δx. This shows the 

reduction of the Δx improves the BSAC-based segmentation process. The 
convergence time of the snake towards the cyst border covered by seg-
mentation represented by the contour shown in green colour in Figs. 13 
and 15 for 1.3 mm and 3.0 mm-diamter cysts was evaluated by fixing the 
number of iterations to 100 [36,37]. The total time needed for the snake 
to converge from the center of the object to the desired boundary 

Fig. 5. B-Mode images of point targets beamformed with (a) DAS and (b) FDMAS, N = 9 with the Δx of λ/3.  

Fig. 6. B-mode images of cysts located at depths of 15 mm and 45 mm beamformed with (a) DAS and (b) FDMAS, N = 9 with the Δx of λ/3. Two regions with the 
same size, one inside and the other outside, as shown in (b) are selected to measure image CR. 
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depends on the amount of clutter noise present inside the object [38,39]. 
Longer time may be required when the snake fails to find its minimum 
energy due to the presence of high clutter noise inside the cysts region. 
Table 6 shows the amount of time needed for the snake to converge to 
the 1.3 mm and 3.0 mm-diameter cysts borders with DAS and FDMAS. 
The snake convergence time with DAS are higher than FDMAS for every 

Δx. As the Δx reduced, the amount of time needed for the snake to 
converge is shorter with FDMAS. This shows that the reduction of the Δx 
reduced clutter noise present inside the cysts region and this cordially 
facilitates the snake to converge to the cyst border faster compared to 
larger Δx. 

Fig. 7. LR performance at − 6 dB: a) DAS and b) FDMAS, LR at − 20 dB; c) DAS and d) FDMAS for CPWI from N = 1 to N = 25 as the Δx is reduced from λ to λ/5. The 
measurements were performed on a point target with a diameter of 120 μm at a depth of 40 mm. Results shown with the standard deviation error bars based on 10 
measurements. 

Fig. 8. B-mode images of point targets located at 40 mm depth beamformed with DAS (row i) and FDMAS (row ii) using different Δx ranging from λ to λ/5 and CPWI, 
N = 9. The colour map for the figure is the same as the one presented in Fig. 5. All the images are shown within a dynamic range of 50 dB. 
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4.4. In vivo images 

The performance of DAS and FDMAS with in vivo data was evaluated 
on the right side of one carotid artery. Clutter noise and side lobes are 
reduced as the Δx is reduced from λ to λ/5, facilitating enhancement of 
spatial and contrast resolutions with the FDMAS beamforming tech-
nique, as shown in Fig. 18, row ii. The side lobes leaking into the carotid 
artery anechoic regions demonstrate the same phenomenon observed in 
the cyst region shown in Fig. 15. However, the medium that surrounds 
the cyst border is uniformly composed of hypoechoic regions. Thus, the 
amount of side lobe signal leaking from the hypoechoic region to the 
anechoic region is less observable, although such leak also exists. 
However, the carotid artery presents a different case. The side lobes that 
are leaking into the carotid anechoic regions are caused by an extremely 

strong hyperechoic medium. Thus, such leak becomes an obstacle to 
contour formation on the carotid boundary during the segmentation 
process. The speckle and clutter noise present in the B-mode image pose 
a challenge to the segmentation process which BSAC fails to converge to 
the intended boundary [40,41,39]. Thus, the reduction of clutter and 
side lobes in the carotid regions improves the segmentation process 
[42]. 

The 3D reconstruction of the carotid artery from the 2D transversal 
imaging also depends on a good segmentation output [43]. Thus, 
applying the segmentation output from FDMAS with a smaller Δx is 
expected to produce a good 3D carotid image. 

Fig. 9. Lateral beam profiles of the point targets located at 40 mm depth plotted for a) DAS and b) FDMAS beamforming techniques as the Δx starts to decrease from 
λ to λ/5 for CPWI, N = 9. 

Fig. 10. B-mode images of point targets located at 50 mm depth beamformed with DAS (row i) and FDMAS (row ii) using different Δx ranging from λ to λ/5 and 
CPWI, N = 9. The colour map for the figure is the same as the one presented in Fig. 5. All the images are shown within a dynamic range of 50 dB. 

Fig. 11. Lateral beam profiles of the point targets located at 50 mm depth plotted for a) DAS and b) FDMAS beamforming techniques as the Δx starts to decrease from 
λ to λ/5 for CPWI, N = 9. 
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5. Conclusion 

In this study, the performance of DAS and FDMAS have been eval-

uated with CPWI, various pitch sizes, p, and lateral beamforming steps, 
Δx. The results clearly show that FDMAS produces better image quality 
than DAS when Δx is smaller than λ/2. The main observation from 

Fig. 12. CR performance: a) DAS and b) FDMAS, CNR; c) DAS and d) FDMAS for CPWI from N = 1 to N = 25 as the Δx is reduced from λ to λ/5. Both CR and CNR 
were computed on the 3.0-mm diameter cyst located at depth of 15 mm by creating two regions with the same dimension at same level as shown in Fig. 6. Results 
shown with the standard deviation error bars based on 10 measurements. 

Fig. 13. CPWI, N = 9 B-mode images of a 1.3 mm-diameter cyst located at a depth of 15 mm beamformed with a Δx ranging from λ to λ/5 with (i) DAS and (ii) 
FDMAS. The contour of the cyst boundary shown in green dashed lines that represents the BSAC segmentation implemented on DAS and FDMAS continues to improve 
as the Δx starts to decrease. The arrows shown on the 2nd rows indicate the side lobe reduction in the lateral direction. The colour map for the figure is the same as 
that presented in Fig. 6. All the images are shown within a dynamic range of 50 dB. 
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Fig. 14. Normalized lateral beam profiles of the 1.3 mm-diameter cyst at a depth of 15 mm with a) DAS and b) FDMAS from the Δx of λ to λ/5 for CPWI, N = 9.  

Fig. 15. CPWI, N = 9 B-mode images of a 3.0 mm-diameter cyst located at a depth of 15 mm beamformed with a Δx ranging from λ to λ/5 with (i) DAS and (ii) 
FDMAS. The contour of the cyst boundary shown in green dashed lines that represents the BSAC segmentation implemented on DAS and FDMAS continues to improve 
as the Δx starts to decrease. The arrows shown on the 2nd rows indicate the side lobe reduction in the lateral direction. The colour map for the figure is the same as 
that presented in Fig. 6. All the images are shown within a dynamic range of 50 dB. 

Fig. 16. Normalized lateral beam profiles of the 3.0 mm-diameter cyst at a depth of 15 mm with a) DAS and b) FDMAS from the Δx of λ to λ/5 for CPWI, N = 9.  

Table 4 
LR for DAS and FDMAS.  

CPWI, N   LR, − 6 dB [mm] LR, − 20 dB [mm]   

λ/2  λ/3  λ/2  λ/3  

9 DAS 0.56 ± 0.05 0.49 ± 0.04 1.05 ± 0.06 0.93 ± 0.03  
FDMAS 0.54 ± 0.05 0.38 ± 0.04 1.21 ± 0.07 0.73 ± 0.02  

25 DAS 0.56 ± 0.07 0.49 ± 0.05 1.07 ± 0.07 0.94 ± 0.03  
FDMAS 0.54 ± 0.06 0.39 ± 0.04 1.18 ± 0.08 0.73 ± 0.04  

Table 5 
CR and CNR for DAS and FDMAS.  

CPWI, 
N   

CR [dB] CNR [dB]   

λ/2  λ/3  λ/2  λ/3  

9 DAS − 22.58 ±
1.76 

− 22.69 ±
1.53 

9.24 ± 0.2 8.68 ±
0.75  

FDMAS − 23.70 ±
1.68 

− 26.40 ±
1.63 

5.59 ±
0.63 

4.97 ±
0.28  

25 DAS − 25.65 ±
1.55 

− 26.14 ±
1.19 

9.47 ± 0.6 8.96 ±
0.78  

FDMAS − 24.74 ±
1.57 

− 27.96 ±
1.25 

5.47 ±
0.46 

4.97 ±
0.39  
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reducing the Δx is that the performance of FDMAS is improved when the 
process similar to autocorrelation occurs with a smaller step. The 
multiplication and addition of RF signals with a smaller Δx further 
attenuated clutter noise, which can increase image CR. Attenuating 
clutter noise also makes the CNR value a little deteriorated. Although 
reducing Δx from λ to λ/5 improves image quality, the most significant 
improvement occurs between λ and λ/3. Thus, λ/3 is selected for FDMAS 
to optimize beamforming processing time. This work found that a high 
frame rate can be achieved without sacrificing image spatial and 
contrast resolutions when the received RF signal is beamformed with 

FDMAS at a smaller Δx. The BSAC segmentation applied to FDMAS 
exhibits significant improvement as Δx, is reduced from λ to λ/5. A small 
CNR does not affect the segmentation process since the CR and LR pa-
rameters play much important roles in contour formation. The boundary 
definition is improved because the side lobes leaking into the anechoic 
region are reduced. Thus, FDMAS beamforming technique will be 
beneficial for segmentation purposes and other beamforming technique 
such as DAS could be suitable for better anatomical viewing. 

CRediT authorship contribution statement 

Asraf Mohamed Moubark: Conceptualization, Methodology, Soft-
ware, Writing - original draft. Zainab Alomari: Software, Validation. 
Mohd Hairi Mohd Zaman: Visualization, Investigation. Mohd Asyraf 
Zulkifley: Visualization, Investigation. Sawal Hamid Md Ali: Visuali-
zation, Investigation. Luzhen Nie: Supervision, Writing - review & 
editing. Steven Freear: Supervision, Writing - review & editing. 

Fig. 17. The region covered by segmentation represented by the contour shown in green colour in Figs. 13 and 15 measured for (a) 1.3 mm and (b) 3.0 mm-diameter 
cysts. Results shown with the standard deviation error bars based on 10 measurements. 

Table 6 
Snake convergence time, in seconds for 100 iterations.  

Properties Values 

Δx  λ  λ/2  λ/3  λ/4  λ/5  

DAS, 1.3 mm 4.7 ± 0.5 4.6 ± 0.4 4.6 ± 0.5 4.6 ± 0.3 4.6 ± 0.3 
FDMAS, 1.3 mm 4.5 ± 0.3 4.1 ± 0.1 3.2 ± 0.1 3.1 ± 0.2 3.1 ± 0.1 
DAS, 3.0 mm 6.0 ± 0.5 5.8 ± 0.6 5.8 ± 0.3 5.7 ± 0.4 5.8 ± 0.3 
FDMAS, 3.0 mm 5.1 ± 0.2 4.6 ± 0.1 4.3 ± 0.1 4.1 ± 0.2 4.0 ± 0.3  

Fig. 18. Carotid artery B-mode images obtained with a two-cycle sinusoidal excitation signal and nine compounding angles beamformed from the Δx of λ to λ/5 with 
DAS (row i) and FDMAS (row ii). The arrows shown on the 2nd rows indicate the side lobe reduction in the lateral direction as the Δx is reduced. This improves the 
boundary formation with the segmentation process on CCA. The colour map in the figure is the same as the one presented in Fig. 6. All the images are shown within a 
dynamic range of 50 dB. 
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