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Abstract

Generative Adversarial Networks (GANs) are machine

learning networks based around creating synthetic data. Voice

Conversion (VC) is a subset of voice translation that involves

translating the paralinguistic features of a source speaker to a

target speaker while preserving the linguistic information. The

aim of non-parallel conditional GANs for VC is to translate

an acoustic speech feature sequence from one domain to an-

other without the use of paired data. In the study reported

here, we investigated the interpretability of state-of-the-art im-

plementations of non-parallel GANs in the domain of VC. We

show that the learned representations in the repeating layers of

a particular GAN architecture remain close to their original ran-

dom initialised parameters, demonstrating that it is the number

of repeating layers that is more responsible for the quality of

the output. We also analysed the learned representations of a

model trained on one particular dataset when used during trans-

fer learning on another dataset. This also showed high levels of

similarity in the repeating layers. Together, these results pro-

vide new insight into how the learned representations of deep

generative networks change during learning and the importance

of the number of layers, which would help build better GAN-

based speech conversion models.3

Index Terms: voice conversion (VC), generative adversar-

ial networks (GANs), canonical correlation analysis (CCA),

SVCCA, transfer learning, non-parallel VC, multi-domain VC

1. Introduction

Deep Learning networks have been shown to exhibit superior

abilities in a range of problem domains [1, 2, 3]. However, such

networks are black-box representations in terms of their inter-

pretability [4], and this can mitigate against informed decision

making when selecting appropriate network configurations.

One problem domain, voice conversion (VC), or voice style

transfer, is a technique aimed at modifying the linguistic style

of speech while preserving the linguistic information contained

therein [5, 6, 7]. VC can be formulated as a regression problem

with the aim of building a function in which the features of a

source speaker A can be mapped to a target speaker B [8, 6, 7].

Applications of VC include modifying speaker identity in text-

to-speech (TTS) systems [9], aiding those with vocal disabilities

[10] and generating accents for assisted language conversion

in domains such as real-time language translation and device-

assisted language learning [11].

Historically, methods employed to achieve VC have in-

cluded mapping code books [12], Gaussian mixture models

1This work was carried out whilst at the University of Sheffield.
3Audio samples available at: https://samuelbroughton.

github.io/interpretability-demo-2020.

(GMMs) [8, 9, 13] and artificial neural networks (ANNs)

[14, 15]. However, variations of generative adversarial net-

works (GANs) [16] have recently shown success in a range of

different domains, such as producing convincingly real images

and videos [2, 17], enhancing the quality of images [1], gener-

ating new music [18] and, of interest here, a methodology for

achieving VC [19, 20, 21, 3, 22, 23].

Some of the VC methods mentioned above can be cate-

gorized as either parallel or non-parallel. Parallel VC refers

to source and target speaker utterances being perfectly aligned

[6, 7]. Such data can be a laborious task to collect. Further-

more, once collected, the data would need to be pre-processed

with automatic time alignment which can fail, resulting in other

methods of correction. However, GANs are able to learn map-

ping functions between data of similar domains and so mitigate

the need for a parallel dataset [2]. Recent state-of-the-art non-

parallel generative VC architectures include CycleGAN-VC2

[3] and StarGAN-VC2 [21]. Both make use of a gated convo-

lutional neural network (CNN) [24], identity-mapping loss [25]

and 2-1-2D CNN architecture [3].

A major advantage of using the StarGAN [26] framework

when compared to CycleGAN [2], is the ability to perform

multi-domain conversion whilst only requiring a single gener-

ator. With regards to VC, the StarGAN framework allows for

learned mapping functions between multiple speakers. Extend-

ing this framework, StarGAN-VC [27] and StarGAN-VC2 [21]

make various modifications including updates to the training

objective and alterations to the network architecture.

However, despite StarGAN-VC2 demonstrating superior

VC in both objective and subjective experiments when com-

pared to StarGAN-VC [21], there has been very little investiga-

tion into the interpretability of it’s network representations - as

is the case with many deep neural networks.

In this work, we conducted an evaluation of learned net-

work representations by performing Singular Vector Canonical

Correlation Analysis (SVCCA) [28] in a range of different ex-

periments using an adaptation of the StarGAN-VC2 network.

The aim was to provide insights into issues relating to the sim-

ilarity of learned representations to their random initial states.

This was achieved by conducting experiments with networks in-

cluding frozen layers, observing how quickly networks reached

their optimal representations, exploring the effects of modifying

the size of networks and investigating learned network represen-

tations when trained using transfer learning.

The rest of the paper is structured as follows: Section 2

outlines the generative network architecture used, Section 3 re-

views SVCCA, Section 4 describes the experimental conditions

and research questions, Section 5 discusses the results, and Sec-

tion 6 presents the conclusion.



2. Generative Network Architecture

The network architecture implemented for the experiments pre-

sented in this paper was based on StarGAN-VC2 [21], which al-

lows for non-parallel many-to-many learned mappings for VC.

2.1. Training objectives

The main objective of the StarGAN framework [26] is to learn

many-to-many mapping functions between multiple domains

whilst only using a single generator G. StarGAN does this

by conditioning itself on ‘one-hot’ representations of domain

codes c ∈ {1, ..., N}, where c and N indicate the domain

code the number of domains, respectively. More specifically

in StarGAN-VC2, G can be formulated as the mapping func-

tion G(x, ĉ) −→ x̂, taking an acoustic input feature sequence

x ∈ R
Q×T and target domain code ĉ to generate an acoustic

output feature sequence x̂. StarGAN-VC2 does this by mak-

ing use of an adversarial loss [16], reconstruction or cycle-

consistency loss [2] and identity-mapping loss [25].

Adversarial loss is used in GANs to encourage generated

data, conditioned on target domain code, to be indistinguishable

to that of real data [26]. Here, we implement an adversarial loss

to help G generate an output closer to the real target data:

Ladv = E(x,c)∼P (x,c)[logD(x, c)]

+ Ex∼P (x),ĉ∼P (ĉ)[logD(G(x, ĉ), ĉ)], (1)

where D is a real/fake discriminator that attempts to maximise
this loss to learn the decision boundary between real and fake

features. G attempts to minimize this loss by generating an

output indistinguishable to the real acoustic features of target

domain ĉ.

Cycle-consistency loss is used in order to guarantee that the

converted output feature sequence preserves the source charac-

teristics of input feature sequence x [2, 26]:
Lcyc = E(x,c)∼P (x,c),ĉ∼P (ĉ)[||x−G(G(x, ĉ), c)||1]. (2)

This cyclic constraint encourages G to reconstruct the original
input feature x from the generated output x̂ and source domain

code c. This helps G to preserve the linguistic information of

the speech [27].

Identity-mapping loss is employed to encourage the

preservation of input feature identity within generated output

data [25]:
Lid = E(x,c)∼P (x,c)[||G(x, c)− x||]. (3)

Identity-mapping loss has previously been used in image-to-
image translation for colour preservation [2].

The full objective can be summarised as follows:
LG = Lst-adv + λcycLcyc + λidLid, (4)

LD = −Lst-adv, (5)

where λcyc and λid are hyperparameters for each term. Here,
G aims to minimise the loss whilst D is trying to maximise it.

2.2. Network architectures

The fully convolutional GAN architecture used in the study re-

ported here allows for acoustic input feature sequences of arbi-

trary sizes.

Generator: The input to G was an image of size Q × T

of an acoustic feature sequence x, where Q and T are the fea-

ture dimension and sequence length, respectively. A 2-1-2D

CNN [3, 21] architecture was used to construct G. 2D con-

volutions are well suited for holding the original data structure

whilst 1D convolutions work well at dynamically changing the

data [3]. The implementation specifically used a gated CNN

[24], which allowed for relevant features to be selected and

propagated based on previous layer states. The effectiveness

of a gated CNN for VC has already been confirmed in previous

studies [27, 20].

Conditional domain specific style code was injected in the

1D CNN architecture by a modulation-based method [21]. Con-

ditional instance normalisation (CIN) [29] was used to modulate

parameters in a domain-specific manner, and were defined as:

CIN(f, ĉ) = γĉ(
f − µ(f)

σ(f)
) + βĉ, (6)

where µ(f) and σ(f) are the average and standard deviation
of feature f and γĉ and βĉ are domain-specific scale and bias

parameters, respectively.

The 1D repeating blocks were not residual because the use

of skip connections was reported to result in partial conversion

[30].

Real/Fake Discriminator: A 2D gated CNN [24] was used

for the architecture of the real/fake discriminator D, which has

been formulated as a projection discriminator [31], as seen in

StarGAN-VC2 [21]. D outputs a sequence of probabilities, cal-

culating how close the input acoustic feature sequence x is to

domain c.

3. SVCCA on Deep Neural Representations

Singular Vector Canonical Correlation Analysis (SVCCA) is an

extension of Canonical Correlation Analysis (CCA), a method

used in statistics to measure the similarity of two vectors formed

by some underlying process [34, 35, 36]. In the case of

deep neural networks, these are the “neuron activation vectors”

formed from training on a particular dataset [36, 28]. A single

neuron activation vector is the output of a single neuron of a

layer in a network. Combining the outputs of all neurons for a

particular layer in a network results in a set of multidimensional

output [36, 28]. Subsequently, CCA can be used to compare

the similarity between two layers of the same network, simi-

lar networks using layers of same/differing dimensionality, or a

given layer at different stages of training [36]. Given subspaces

X = {x1, ..., xT } and Y = {y1, ..., yN}, maximal correlation

between X and Y is calculated by finding bases w, s for two

matrices such that the subspaces are projected onto these bases
wT

∑

XY
s

√

wT
∑

XX
w
√

sT
∑

Y Y
s

(7)

where
∑

XX
,
∑

XY
,
∑

Y Y
are the covariance and cross-

covariance. SVCCA is an extension to CCA that involves a

preprocessing step [36, 28]. The authors of [28] explain that

SVCCA takes the same inputs as CCA, for example two layers

of a neural network l1 and l2 that each contain a set of neuron

activation vectors. SVCCA then factorises the vectors by com-

puting Singular Value Decomposition (SVD) over each layer to

obtain subspaces l′1 ⊂ l1 and l′2 ⊂ l2. These subspaces contain

the most important variance directions, which can account for

99% of the variance in input layers l1 and l2 [28]. CCA is then

performed on l′1 and l′2 to return the correlation coefficients,

providing a measure of similarity of the two layers.

4. Experiments

Datasets: To evaluate our methods, we made use of the Device

and Produced Speech Dataset [37], as seen in the multi-speaker

VC task in the Voice Conversion Challenge 2018 (VCC2018)

[7] and the English Multi-speaker Corpus for CSTR Voice



Figure 1: Network architectures of the fully convolutional [32] generator and discriminator based on StarGAN-VC2 [21]. In the input,

output and reshape layers ‘h’, ‘w’ and ‘c’ represent the height, width and channel number respectively. In the Conv2d, Conv1D and

ConvT2D convolution layers, ‘k’, ‘c’ and ‘s’ represent the kernel size, channel number and stride, respectively. ‘IN’, ‘GLU’, ‘GSP’

and ‘FC’ denote instance normalisation [33], gated linear unit [24], global sum pooling and fully connected layers, respectively.

Cloning Toolkit (CSTR VCTK) [38]. We used a subset of

both datasets in all experiments except during transfer learn-

ing where the initial model was trained using the CSTR VCTK

dataset.

In both datasets four speakers were selected covering all

inter- and intra-gender conversions. In the CSTR VCTK dataset

we selected speakers labelled p262, p229, p272 and p232;

speakers p262 and p229 are female, and speakers p272

and p232 are male. The data from VCC2018 mimicked the

data used to test StarGAN-VC2 [21], whereby VCC2SF1 and

VCC2SF2 are female speakers, and VCC2SM1 and VCC2SM2

are male speakers.

For each experiment, 4 × 3 = 12 source-and-target pair

mappings were learnt for each single model trained on both

datasets. All the recordings for both datasets were downsam-

pled to 22.05 kHz. 36 Mel-cepstral coefficients (MCEPs) were

extracted from each recording. The logarithmic fundamental

frequency (logF0) and aperiodicities (APs) were extracted ev-

ery 5 ms using the WORLD vocoder [39].

Conversion process: The conversion process mimicked

that of StarGAN-VC [27] and StarGAN-VC2 [21], by not using

any form of post filtering [40, 41] or powerful vocoding [42, 43]

and just focusing on MCEP conversion. As in previous studies,

the WORLD vocoder [39] was used to synthesise speech, di-

rectly taking APs and converting the logF0 using a logarithm

Gaussian normalised transformation [44].

Network implementations: Figure 1 presents the network

architectures for G and D, influenced by StarGAN-VC2 [21]

and CycleGAN-VC2 [3]4. The networks were initially trained

for 2.5× 105 batch iterations on both datasets. During transfer

learning, optimal models trained on the CSTR VCTK dataset

were selected and trained for an extra 1.5×105 batch iterations

on the VCC2018 dataset. During the training of the networks

for all experiments, the states for G and D were saved at every

1 × 104 batch iterations. All networks were trained using the

‘Adam’ optimizer [45] with a momentum term β1 set to 0.5.

The batch size was set to 8 and we randomly cropped segments

of 512 frames from randomly selected sentences. Learning rates

for G and D were both set to 0.0001, λcyc = 10 and λid = 5.

Lid was only used for the first 104 iterations.

Experimental investigation: Experiments were conducted

in order to provide insights into questions relating to the in-

terpretability of the trained networks. Experiment 1 addressed

the issue as to how similar the learned representations of the

optimally trained network are to its random initialisation. Ex-

periment 2 addressed the question of how similar the learned

representations of networks trained via transfer learning on a

new dataset are to their previously optimal representations when

4StarGAN-VC2 source code available at: https://github.

com/SamuelBroughton/StarGAN-Voice-Conversion-2
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Figure 2: Average CCA distance between the downsampling,

repeating and upsampling portions of the trained network and

its random initial states (trained on the CSTR VCTK dataset).

trained on the original dataset. Experiment 3 addressed the issue

as to how similar the learned representations of networks with

various frozen repeating layers are. Experiment 4 addressed

the question of how the quality of the output feature sequence

changes with networks of a differing number of repeating lay-

ers.

5. Results and Discussions

Experiment 1: To assess how close the optimally trained

network’s learned parameters were to their random initialisa-

tions, SVCCA was used to compare networks at 0 and their

optimal number of batch iterations. The number of optimal

batch iterations for networks trained on the CSTR VCTK and

VCC2018 datasets were found to be approximately 1.5 × 105

and 1.2× 105, respectively.

Figures 2 and 3 show the CCA distance between the learned

parametric representations of layers in the network at different

stages of training and their random initialisation. Both figures

show a greater correlation of similarity in the learned network

representations of the repeating 1D CNN layers (R1-R9) and

their random initial states when compared to the less similar

downsampling and upsampling portions of the network. Both

figures show networks trained using the CSTR VCTK dataset

however, similar results were observed with the VCC2018

dataset.

The extreme similarity observed at D1 can be seen as a

fundamental trait of these networks. During pre-experiments,
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Figure 3: CCA distance between each layer of a network at different stages of training and its random initial states, where “BI” denotes

batch iteration trained on the CSTR VCTK dataset.

this trait was also seen in training StarGAN-VC [27]. We re-

moved the GLU of the first downsampling layer to check if this

was preventing the first convolution from learning as much as it

could. However, the same trait was still observed.

The results show that the parameters learned for network

representations in these optimally trained networks remain

close to their initial random states, especially in the repeating

1D CNN layers.

Experiment 2: The optimal model trained on the CSTR

VCTK dataset in experiment 1 was used as the initial state for

training during transfer learning on the VCC2018 dataset. Sim-

ilar to experiment 1, the repeating 1D portion of the network

remained closer to its random initialisations. As expected, this

gave rise to a better output quality of samples converted using

this transfer learning model when compared with the original

model trained on the same dataset.

Experiment 3: The motivation of this experiment is to find

inter-dependencies between the layers over time in the training

process. By freezing corresponding layers to their initial ran-

dom state, we aim to find the layers’ learning dynamics. The

random initial state of the models trained in experiment 1 were

used to train networks with various frozen layers in the repeat-

ing portion of the network. A total of four were evaluated with

various frozen layers, the first of which froze R2, R3 and R4.

The second network froze R5 and R6, and the third network

froze R7 and R8. The similarity of these networks was then cal-

culated against the optimally trained model from experiment 1.

The repeating 1D layers again showed a high degree of similar-

ity in their learned network representations and were extremely

similar in terms of their acoustic output.

Experiment 4: This experiment’s motivation is to analyse

the extent of repeating convolution 1D layers in an audio gen-

eration. The random initial state of the models trained in exper-

iment 1 were used to train networks with differing numbers of

repeating 1D layers. Four models were trained with 3, 6, 12 and

15 repeating layers in addition to the previously trained model

from experiment 1, which had 9 repeating layers. It was ob-

served that, in general, the audio quality of the models using 3,

6 and 9 repeating layers sounded better than the models using

12 and 15 layers. However, each model included at least one

instance of having a worse quality of output than their counter-

parts for various different source-target pairs.

It was also observed that, as the number of repeating lay-

ers increased, the modification of speaker identity was more

pronounced. In other words, the output from models with a

greater number of repeating layers had clearer accents than the

output of those with fewer repeating layers. However, at some

points the modification of speaker identity was so pronounced

that the intelligibility of the audio began to deteriorate. Also, as

the amount of repeating layers of the network increased, so the

overall level of noise increased.

6. Conclusions

In the research reported here, we provide new insights into the

interpretability of Generative Adversarial Networks (GANs) for

Voice Conversion (VC). Using a network architecture based

on StarGAN-VC2 [21], we conducted an investigation into the

learned representations of the network over a range of differ-

ent experimental conditions. The results showed that there is

at least one local optimum that lies close to the random initial

states of the network. It was also found that it is the number

of repeating layers in the network architecture that has a no-

ticeable effect on the quality of the output speech. In general,

as the number of repeating layers in the network increased, so

too did the noise and certain aspects of speaker identity became

more pronounced. Future work will involve looking more into

the importance of network depth in GANs for VC.
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