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Abstract
Self-	contamination	during	doffing	of	personal	protective	equipment	 (PPE)	 is	a	con-
cern	for	healthcare	workers	(HCW)	following	SARS-	CoV-	2-	positive	patient	care.	Staff	
may	subconsciously	become	contaminated	through	improper	glove	removal;	so,	quan-
tifying this exposure is critical for safe working procedures. HCW surface contact se-
quences	on	a	respiratory	ward	were	modeled	using	a	discrete-	time	Markov	chain	for:	
IV-	drip	care,	blood	pressure	monitoring,	and	doctors’	rounds.	Accretion	of	viral	RNA	
on gloves during care was modeled using a stochastic recurrence relation. In the simu-
lation,	the	HCW	then	doffed	PPE	and	contaminated	themselves	in	a	fraction	of	cases	
based on increasing caseload. A parametric study was conducted to analyze the ef-
fect	of:	(1a)	increasing	patient	numbers	on	the	ward,	(1b)	the	proportion	of	COVID-	19	
cases,	(2)	the	length	of	a	shift,	and	(3)	the	probability	of	touching	contaminated	PPE.	
The driving factors for the exposure were surface contamination and the number of 
surface contacts. The results simulate generally low viral exposures in most of the 
scenarios	considered	 including	on	100%	COVID-	19	positive	wards,	although	this	 is	
where the highest self- inoculated dose is likely to occur with median 0.0305 viruses 
(95%	CI	=0–	0.6	viruses).	Dose	correlates	highly	with	surface	contamination	showing	
that this can be a determining factor for the exposure. The infection risk resulting 
from the exposure is challenging to estimate, as it will be influenced by the factors 
such as virus variant and vaccination rates.
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1  |  INTRODUC TION

Severe	acute	respiratory	syndrome	coronavirus	2	(SARS-	CoV-	2)	is	an	
enveloped virus which has infected in excess of 200 million people to 
date and caused more than four million deaths worldwide according 
to	Johns	Hopkins	University's	COVID-	19	dashboard.1 Inanimate ob-
jects known as fomites may host pathogens and have the potential to 
contribute to transmission in healthcare environments. This occurs 
in viral contamination spread2– 4	including	SARS-	CoV-	2.5,6 However, 
it should be noted that there are uncertainties as to the relationship 
between the molecularly detected viruses and infectious viruses. In 
terms	of	persistence,	there	appears	to	be	a	similarity	between	SARS-	
CoV-	1	and	2	on	surfaces,	where	initial	concentrations	of	103.7 me-
dian	tissue	culture	infectious	dose	(TCID50)/ml	(SARS-	CoV-	2)	and	of	
103.4 TCID50/ml	(SARS-	1)	reduced	to	10

0.6 TCID50/ml	(SARS-	CoV-	2)	
and 100.7 TCID50/ml	(SARS-	1),	respectively,	due	to	the	decay	of	vi-
ability of the virus after 72 h on plastic surfaces.7 Persistence on the 
scale of days under heavy contamination conditions allows an op-
portunity for exposure through hand- to- fomite contacts. Although 
personal	 protective	 equipment	 (PPE)	 such	 as	 gloves,	 gowns,	 and	
masks are worn to protect both patients and healthcare workers 
(HCW)	 from	 the	 exposure,	 self-	contamination	 during	 PPE	 doff-
ing processes8,9 poses risks to HCW and enables spread from one 
patient	 to	another	during	multiple	care	episodes.	SARS-	CoV-	2	has	
been	detected	on	healthcare	worker	PPE10 and in the environment 
of rooms where doffing occurs, demonstrating that errors in doffing 
could	facilitate	COVID-	19	exposure	and	transmission.

While	SARS-	CoV-	2	has	been	detected	on	PPE	and	patient	sur-
faces, the relationship between viral RNA concentrations and risk 
of infection is still unknown.11 Bullard et al.12 present TCID50 and 
cycle threshold values relative to days since symptom onset, but 
these may not be translatable to concentrations on fomites due to 
the	potential	for	more	SARS-	CoV-	2-	genetic	material	corresponding	
to inactivated viruses resulting from incomplete surface disinfection 
practices.	Quantitative	microbial	 risk	assessments	 (QMRA)	 involve	
the use of mathematical models to estimate doses of a pathogen 
and	 subsequent	 infection	 risk	 probabilities.	 Quantifying	 infection	
exposure and risk for any given dose can be used to guide inter-
vention decision- making and have been used in other public health 
contexts,	 such	as	 in	 setting	water	quality	 standards.13 These typi-
cally rely on experimental doses of a microorganism inoculated into 
healthy	participants	or	mice	models	 in	a	known	quantity.	Whether	
they develop the infection can then be recorded.13 QMRA model-
ing and surface contact models have been used to evaluate multiple 
transmission pathways. The role of care- specific behaviors in en-
vironmental microbial spread14 includes the effect of glove use in 
bacterial spread from one surface to another15 and evaluating risk 
reductions through hand hygiene or surface disinfection interven-
tions.16– 18 While a strength of QMRA is related to environmental 
monitoring data to health outcomes, a common limitation is the lack 
of specific human behavior data such as hand- to- face or hand- to- 
surface	 contact	 sequences	 that	 result	 in	 dose	 exposures.18,19 The 
use of the QMRA modeling framework incorporating care type 

surface	contact	patterns	before	potential	self-	contamination	via	PPE	
doffing will offer insight into viral exposure per shift.

The	 objective	 of	 this	 study	 is	 to	 relate	 SARS-	CoV-	2	 concen-
trations on surfaces to predict the exposure of a single healthcare 
worker over an 8- hour shift and estimate the effects of doffing mis-
takes and number of care episodes per shift on inoculated dose per 
shift.

2  |  METHODOLOGY

This approach combines human behavior and fomite- mediated ex-
posure models of 19 hospital scenarios, for which concentrations 
of	 SARS-	CoV-	2	 on	 hands	 and	 infection	 risk	 for	 a	 single	 shift	 are	
estimated for a registered nurse, an auxiliary nurse, and a doctor. 
A control scenario was defined as a single episode of care with a 
SARS-	CoV-	2-	positive	individual	with	an	assumed	80%	probability	of	
self-	contamination	during	doffing:	a	“worst-	case	scenario.”	Eighteen	
other scenarios covered three likelihoods of self- contamination: 
10%, 50%, and 80%, ×2	caseload	conditions:	7	patients	(low)	vs.	14	
patients	(high)	×	3	probabilities	of	any	given	patient	being	COVID-	19	
positive:	 low	 (5%),	medium	 (50%),	 and	 a	 100%	COVID-	19-	positive	
ward. These rates of self- contamination during doffing were as-
sumed due to uncertainty as to how workload and stress, especially 
under	 pandemic	 conditions,	 would	 influence	 doffing.	 Exploring	
probabilities of self- contamination as low as 5% and as high as 80% 
allows for the exploration of optimistic and worse- case scenarios.

During low caseload conditions, it was assumed that the number 
of care episodes per shift would be less7 than that of the high load 
conditions.14 The assumed number of patient care episodes when 
PPE	is	worn	per	shift	for	low	and	high	caseload	scenarios	were	7	and	
14, respectively, based on a respiratory ward in a university teach-
ing	hospital	in	the	UK.	The	low	caseload	estimate	was	based	on	the	
communication	with	a	UK	NHS	consultant,	who	tracked	 the	num-
ber of gowns used by healthcare workers over a week on a mixed 
COVID-	19	 8-	bed	 respiratory	 ward.	 All	 model	 parameters	 are	 de-
scribed and reported in Table 1. Per scenario, three simulations were 

Practical Implications

Infection	risk	from	self-	contamination	during	doffing	PPE	
is an important concern in healthcare settings, especially 
on	a	COVID-	19	ward.	Fatigue	during	high	workload	shifts	
may	result	in	an	increased	frequency	of	mistakes	and	hence	
the risk of exposure. Length of staff shift and a number 
of	COVID-	19	patients	on	a	ward	correlate	positively	with	
the risk to staff through self- contamination after doffing. 
Cleaning	 of	 far-	patient	 surfaces	 is	 equally	 important	 as	
cleaning traditional “high- touch surfaces,” given that there 
is an additional risk from bioaerosol deposition outside the 
patient zone.
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run	 where	 sequences	 of	 hand-	surface	 contacts	 per	 care	 episode	
were	care-	specific	(IV	care,	observational	care,	or	doctors’	rounds).

2.1  |  Healthcare worker surface contact 
behavior sequences

Fifty episodes of mock patient care were recorded overtly using 
videography	in	a	respiratory	ward	side	room	at	St	James’	Hospital,	
Leeds. Mock care was undertaken by doctors and nurses with a vol-
unteer from the research team to represent the patient. While these 
observations	were	carried	out	prior	to	COVID-	19,	it	is	assumed	that	
patient care would be similar for any infected patient, including a 
COVID-	19	patient.	Ethical	approval	for	the	study	was	given	by	the	
NHS	Health	Research	Authority	Research	Ethics	Committee	(London	

–		 Queen	 Square	 Research	 Ethics	 Committee),	 REF:	 19/LO/0301.	
Sequences	of	surface	contacts	were	recorded	for	three	specific	care	
types:	IV	drip	insertion	and	subsequent	care	(IV,	n =	17)	conducted	
by	registered	nurses	(RN);	blood	pressure,	temperature,	and	oxygen	
saturation	measurement	(Observations,	n =	20)	conducted	by	aux-
iliary	nurses;	and	doctors’	rounds	(Rounds,	n =	13).	Data	from	care	
were used to generate representative contact patterns to model 
possible	sequences	of	surface	contacts	by	HCWs	in	a	single	patient	
room. Discrete Markov chains were used because HCWs were found 
to touch surfaces in a non- random manner, insofar that transitional 
probabilities fit to observed behaviors from moving from one sur-
face	category	were	not	all	equal.	By	assigning	each	surface	category	
a numerical value from 1 to 5, where Equipment = 1, Patient = 2, 
Hygiene areas = 3, Near- bed surfaces = 4, and Far- bed surfaces = 5, 
HCW	 sequential	 contact	 of	 surfaces	 can	 be	modeled	 in	 terms	 of	

TA B L E  1 Model	parameters	and	their	distributions/point	values

Parameter Distribution/point value Reference

Surface	contamination	(CRNA)
(RNA/swabbed	surface	area)

For infected patient scenarios
Surfaces:
Triangular	(min	= 3.3 × 103, mid=2.8 × 104, max=6.6 × 104)
Patient:
Point estimate: 3.3 × 103

28

Area	of	any	given	surface	(Asurface)	(cm
2) Triangular	(min	= 5, max = 195, mid =	100) Assumed

Fraction	of	RNA	(infective)
assumed to be infectious

Uniform	(min	= 0.001, max =	0.1) Assumed

Finger-	to-	surface	transfer	efficiency	(β)	(fraction) Normal	(mean	=	0.118,	SD	=	0.088)
Left-  and right- truncated at 0 and 1, respectively

4

Surface-	to-	finger	transfer	efficiency	(λ)	(fraction) Normal	(mean	=	0.123,	SD	=	0.068)
Left-  and right- truncated at 0 and 1, respectively

4

Finger-	to-	mouth	transfer	efficiency	(TEHⓇM)	(fraction) Normal	(mean	=	0.339,	SD	=	0.1318)
Left-  and right- truncated at 0 and 1, respectively

50

Glove	doffing	self-	contamination	transfer	efficiency Uniform	(min	= 3 × 10−7, max =	0.1) 8

T99 on Hands
(h)	used	for	calculating	inactivation	constants

Uniform
(min	= 1, max =	8)

24, 51

T50 on surfaces
(h)	used	for	calculating	inactivation	constants

Uniform
(min	= 4.59, max =	8.17)

7

Hand	hygiene	efficacy:	alcohol	gel	(log10	reduction) Uniform	(min	= 2, max =	4) 35

Hand	hygiene	efficacy:	soap	and	water	(log10	reduction) Normal	(mean	=	1.62,	SD	=	0.12)
Left- and right- truncated at 0 and 4, respectively

34

Fraction of total hand surface area for hand- to- mouth or 
hand-	to-	surface	contacts	(Sm and Sh)

For in/out events:
Uniform	(min	= 0.10, max =	0.17)
For patient contacts:
Uniform	(min	= 0.04, max =	0.25)
For other surface contacts:
Uniform	(min	= 0.008, max =	0.25)
For hand- to- face contacts:
Uniform	(min	= 0.008, max =	0.012)

26

Total	hand	surface	area	(Ah)	(cm
2) Uniform	(min	= 445, max =	535) 19, 38

Dose response curve parametera α 0.36 ± 0.25
0.12, 19.6

46; this 
study

Dose response curve parametera β 5.94 ± 11.4
0.27, 802.1

46; this 
study

aDose response curve parameters are to be used in bootstrapped pairs. Mean ±	SD	and	minimum	and	maximum	are	provided	to	offer	context	as	to	
the magnitude of these parameters.
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weighted probabilities.14 More information regarding the observa-
tion	of	these	behaviors	and	analysis	of	sequences	of	events	can	be	
seen	in	King	et	al.20

The transition of an HCW between surface contacts is mod-
eled using a discrete- time Markov chain approach.14	Using	defined	
weighted probabilities based on observation of patient care, surface 
contact by HCW can be simulated based on the property that given 
the present state, the future and past surfaces touched are indepen-
dent.	This	is	termed	as	the	Markov	property	(Equation	1):

where Xn represents the surface contacted in the nth event, i and j are 
two surfaces, and P represents a conditional probability. This is then 
denoted as Pj→i for the ease of notation. For example, the probability 
if the HCW is currently touching the table and they will next touch 
the chair is Ptable→chair and can be worked out by counting the number 
of times this happens during care divided by the number of times any 
surface is touched after the table.21

Discrete- time Markov chains were fitted to observed care con-
tact	 sequences	 using	 the	 “Markov	 chain	 Fit”	 function	 from	 the	 R	
package Markov chain (version 0.7.0).	Separate	Markov	chains	were	
fitted	to	IV	care,	doctors’	rounds,	and	observational	care	sequences.	
States	included	“in”	(entrance	to	the	patient	room),	“out”	(exit	from	
the	patient	room),	contact	with	a	far-	patient	surface,	contact	with	a	
near-	patient	surface,	contact	with	a	hygiene	surface	(e.g.,	tap,	sink,	
soap,	or	alcohol	dispenser),	and	contact	with	equipment.	For	each	
episode	of	care,	the	first	event	was	the	entrance	into	the	patient's	
room. It was assumed in the simulation that all HCWs wore a gown, 
gloves, mask, and face shield when entering the room in that hand- 
to- face contacts were not modeled during the episodes of care, 
and hand hygiene moments only occurred after doffing in between 
the care episodes. The episode of care ended when an “out” event 
occurred.

2.2  |  Exposure model

Accretion of microorganism on hands from the surface contacts has 
been demonstrated14 to respond to a recurrence relationship with 
the concentration on hands after the nth contact, Ch

n
, with the con-

centration on hands, Ch
n−1

, and on the surface involved, Cs
n−1

, before 
the	contact.	See	Equation	(2).

This	 is	 an	 adaptation	 of	 the	 pathogen	 accretion	 model	 (PAM)	
from	King	 et	 al.14 and a gradient transfer model by Julian et al.22 
Here, the concentration on hands for contact n	is	equal	to	the	pre-
vious	concentration	on	the	hand	(Ch

n−1
)	after	adjusting	for	 inactiva-

tion	for	the	virus	on	the	hand	(kh)	and	surface	ks, minus the removal 
from the hand due to the hand- to- surface transfer plus the gain to 
the hand due to surface- to- hand transfer. Δt is the time taken for 

an episode of patient care and sampled from a uniform distribution 
of range 2– 20 min.23 Here, � and � represent hand- to- surface and 
surface- to- hand transfer efficiencies, respectively. The fraction of 
the	total	hand	surface	area	(Sh)	is	used	to	estimate	how	much	virus	
is available for transfer, given a concentration of the number of viral 
particles/cm2 on the gloved hand and surface.

2.3  |  Estimating inactivation on the hand

Sizun	et	al.	evaluated	the	survival	of	human	coronaviruses	 (HCoV)	
strains	OC43	and	229E	on	latex	glove	material	after	drying.	Within	
6	h,	there	was	a	reduction	in	viral	infectivity	for	HCoV-	229E	that	we	
assume	is	equal	to	99%.24	For	HCV-	OC43,	a	reduction	of	approxi-
mately 99% in viral infectivity occurred within an hour.24 Harbourt 
et al.25	measured	SARS	CoV-	2	inactivation	on	pig	skin	with	virus	re-
maining viable for up to 8 h at 37°C. We, therefore, used a uniform 
distribution with a minimum of 1 h and a maximum of 8 h to estimate 
a distribution of kh inactivation rates.

2.4  |  Estimating inactivation on surfaces

The	decay	of	the	virus	causing	COVID-	19	has	been	shown	to	vary	
under both humidity and temperature, but in contrast with the pre-
vious findings,7 it appears that the surface material may not have 
a large impact on the decay rate.25 We, therefore, use one distri-
bution of inactivation rates regardless of surface type by taking a 
conservative approach and using an averaged half- life τ estimate for 
stainless steel-  and plastic- coated surfaces at 21– 23°C7 at 40% rela-
tive	humidity,	which	are	5.63	h	 (95%CI	=	4.59–	6.86	h)	and	6.81	h	
(95%CI	=	5.62–	8.17	h),	respectively.	We	assume	a	first-	order	decay	
(Equation	3)	 to	estimate	 the	 inactivation	constant	k which we use 
here for brevity instead of ks and kh	in	the	Equation	(2).

Surface	viral	concentration	C at any given time t then depends 
uniquely	on	initial	concentration	C0. Where the half- life τ, is related 
to k by: ks = log(2)∕�.	Since	the	hospital	rooms	are	made	up	of	a	com-
bination of stainless steel and plastic surfaces, we have taken the 
widest confidence interval as bounds when sampling from a uniform 
distribution for inactivation rate ks. Inactivation on gloves is assumed 
to	be	minimal	for	the	time	scale	of	a	care	episode	(2–	20	min).23

2.5  |  Fractional surface area

For contacts with the door handle during “in” or “out” behaviors, a 
fractional surface area was randomly sampled from a uniform dis-
tribution with a minimum of 0.10 and a maximum of 0.17 for open 
hand grip hand- to- object contacts.26 For contacts with the patient, 
a fractional surface area was randomly sampled from a uniform 

(1)P(Xn+1 = i|Xn = j)

(2)Ch
n
= Ch

n−1
e−khΔt − Sh

(
�Ch

n−1
e−khΔt − �Cs

n−1
e−ksΔt

)

(3)C(t) = C0e
−kt
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distribution with a minimum of 0.04 and a maximum of 0.25, for front 
partial finger or full front palm with finger contact configurations.26 
For contacts with other surfaces, the fractional surface areas were 
randomly sampled from a uniform distribution with a minimum of 
0.008 and a maximum of 0.25, spanning multiple contact and grip 
types from a single fingertip up to a full palm contact.26

2.6  |  Transfer efficiencies

All transfer efficiencies used in this model are unitless fractions 
ranging from 0 to 1, representing the fraction of viruses available for 
transfer that transfer from one surface to another upon contact. For 
contacts with surfaces other than the patient, a truncated normal 
distribution with a mean of 0.123 and a standard deviation of 0.068 
with maximum 1 and minimum 0 was randomly sampled for surface- 
to-	finger	 (λ)	 transfer	efficiencies	based	on	aggregated	averages	of	
influenza, rhinovirus, and norovirus.4 For patient contacts, transfer 
efficiencies were randomly sampled from a normal distribution with 
a mean of 0.056 and a standard deviation of 0.032, left-  and right- 
truncated at 0 and 1, respectively. The mean and standard deviation 
were informed by transfer efficiencies for rhinovirus measured for 
direct skin- to- skin contact.27 Transfer efficiencies from fingers to 
surfaces	(β)	are	assumed	to	be	normally	distributed	with	a	mean	of	
0.118 and a standard deviation of 0.088.4

2.7  |  Surface concentrations

If the patient was assumed to be infected, surface contamination 
levels	 (RNA/swab	 surface	 area)	 were	 sampled	 from	 a	 triangular	
distribution where the minimum and maximum were informed by 
minimum and maximum contamination levels reported for the sur-
faces in an intensive care unit ward.28 The median of these was used 
to inform the midpoint of the triangular distribution.28 For patient 
contacts, the concentration of virus detected on a patient mask was 
used	as	a	point	value	(3.3	× 103RNA/swab	surface	area).28 When a 
patient was not infected, it was assumed that contacts with surfaces 
and with the patient would not contribute to additional accretion of 
the virus on gloved hands.

Surface	areas	for	relating	concentrations	of	RNA/swabbed	surface	
area	 reported	by	Guo	et	 al.	 (2020)	 to	RNA/cm2 were not provided. 
While a typical sampling size is 100 cm2, it may be as small as 10– 
25 cm229– 32 and in the real- world scenarios, sampling surface areas 
may be larger or smaller than these depending upon available surface 
area, ease of access, and the contamination magnitude expected. 
Since	the	surface	areas	of	these	surfaces	were	not	provided,	a	triangu-
lar	distribution	(min	= 5, max = 195, mid =	100)	describing	the	surface	
area	(cm2)	of	surfaces	sampled	was	used	to	estimate	RNA/cm2. Not all 
detected RNA was assumed to represent infectious viral particles. This 
is a conservative risk approach when utilizing molecular concentration 
data in QMRA.33 Therefore, concentrations on surfaces CS	(viable	viral	
particles/cm2)	were	estimated	by	Equation	(4),

where CRNA is the RNA/swabbed surface area, Asurface is the surface 
area	(cm2)	of	the	surface,	and	infective is the fraction of RNA that re-
lates	to	infective	viral	particles	(uniform(min	= 0.001, max =	0.1)).	This	
overlaps	with	a	range	used	by	Jones	(2020)	for	COVID-	19	modeling.	
While	data	from	Bullard	et	al.	(2020)	exist	for	relating	molecularly	de-
tected	 SARS-	CoV-	2	 to	 culturable	 SARS-	CoV-	2	 for	 patient	 samples,	
these ratios do not translate to fomite scenarios where surface dis-
infection likely results in a more molecularly detectable viruses that 
do not translate to infectivity. Therefore, we did not use these data to 
inform our assumptions about viral infectivity for molecularly detected 
SARS-	CoV-	2	on	surfaces.

2.8  |  Estimating exposure dose

For all scenarios, it was assumed that the starting concentration on 
gloved	hands	for	the	first	episode	of	care	was	equal	to	0	viral	par-
ticles/cm2. If gloves were doffed and a new pair was donned in be-
tween care episodes, it was assumed that the next episode of care 
began with a concentration of 0 viral particles/cm2 on the gloved 
hands. After each care episode, a number was randomly sampled 
from a uniform distribution with a minimum of 0 and a maximum of 
1.	If	this	value	was	less	than	or	equal	to	the	set	probability	of	self-	
contamination during doffing, self- contamination occurred, where 
the fraction of total virus was transferred from the outer glove sur-
face to the hands was assumed to be uniformly distributed between 
3 × 10– 5% and 10%.8 There was then a 50/50 chance that either 
hand were washed or sanitized using alcohol gel due to the lack of 
available data describing proportions of hand hygiene attributable 
to these two methods occurring aftercare episodes. If they washed 
their hands, a log10 reduction was randomly sampled from a normal 
distribution with a mean of 1.62 and a standard deviation of 0.12 
(min	= 0 and max =	6).34 While these are not coronavirus- specific 
handwashing efficacies they allow for a conservative estimate. If 
hand sanitizer was used, a log10 reduction was randomly sampled 
from a uniform distribution with a minimum of 2 and a maximum of 
4.35

To estimate a dose, an expected concentration on the hands 
after doffing and hand hygiene was estimated, followed by an ex-
pected transfer to a facial mucosal membrane during a single hand- 
to-	nose	contact	after	each	patient	care	episode	(Equation	5).

There was a 50/50 chance that either the right or left hand was 
used for this hand- to- face contact, as contact patterns between 
right and left hands have been shown to lack statistically significant 
differences.36	Here,	 the	transfer	efficiency	 (TH→M)	of	 the	hand-	to-	
nose contact was randomly sampled from a normal distribution with 
a mean of 33.90%, and a standard deviation of 13.18% based on a 

(4)CS =
CRNA

Asurface

⋅ infective

(5)D = Ch ⋅ TEHM ⋅ Sm ⋅ Ah ⋅ e
−khΔt
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viral surrogate.37 These simulated nose contacts were assumed to be 
with the mucosal membrane as opposed to other parts of the nose, 
such as the bridge of the nose, that would not result in a dose. The 
fractional	surface	area	of	contact	 (Sm)	was	assumed	to	be	equal	to	
one fingertip. To estimate this surface area, the minimum and maxi-
mum front partial fingertip fractional surface areas were divided by 
5 to inform the minimum and maximum values of a uniform distribu-
tion.24	The	surface	area	of	a	hand	(Ah)	was	randomly	sampled	from	
a uniform distribution with a minimum of 445 cm2 and a maximum 
of 535 cm2 19	and	is	informed	by	the	values	from	the	Environmental	
Protection	 Agency,	 USA’s	 Exposure	 Factors	 Handbook.38 The ex-
pected inactivation of the virus during this contact assumed a single 
second contact, and the final kh value used in the care episode sim-
ulation was used. Δt represents the time between the doffing and 
touching the mucosa. A total of 10 000 parameter combinations are 
obtained for each care type scenario in a Monte Carlo framework.

2.9  |  Dose– response

Due	 to	 the	 lack	 of	 dose-	response	 curve	 data	 for	 SARS-	CoV-	2,	 an	
exact beta- Poisson dose– response curve39 was fitted to pooled 
data	 for	SARS-	CoV-	1	 and	HCoV	229E,	 assuming	 the	 infectivity	of	
SARS-	CoV-	2	 lies	between	the	 infectivity	 for	 these	two	organisms.	
In	 Equation	 (6),	 1F1(�, � + � , − d)	 is	 the	 “Kummer	 confluent	 hyper-
geometric function” and P(d) is the probability of infection risk given 
dose39:

Ten- thousand bootstrapped pairs of α and β were produced 
based on a maximum likelihood estimation fit. For each estimated 
dose, an α and β pair were randomly sampled, and an infection risk 
was	estimated	with	Equation	(6).	The	infectious	dose	for	50%	of	in-
fections to occur was between 5 and 100 infectious viral particles 
with a mean of 30; the dose– response curve can be seen in Figure 1. 
We use this dose- response curve within the discussion section as a 
comparator	against	the	curve	for	HCoV229E	also	given	in	Ref.	[39]	
which is considered a similar but more infectious virus.

2.10  |  Sensitivity analysis

Spearman	 correlation	 coefficients	 were	 used	 to	 quantify	 mono-
tonic relationships between input variables and viral exposure. This 
method has been used in other QMRA studies to evaluate the rela-
tionship between model inputs and outputs.22,40,41

3  |  RESULTS

Surface	contact	pattern	predictions	varied	by	care	type.	IV	care	
resulted	 in	 the	highest	number	of	surface	contacts	 (mean	= 23, 

SD	 =	 10)	 per	 episode,	 while	 observational	 care	 and	 doctors’	
rounds	had	on	average	14	(SD	=	7)	and	20	(SD	=	6)	contacts,	re-
spectively. A stair plot showing an example HCW surface contact 
pattern derived from the Markov chain prediction can be seen in 
Figure 2.

3.1  |  Estimated dose

Dose values in Table 2 and Figure 3 are given in a number of virus 
plaque-	forming	units	(PFU),	where	we	also	include	all	fractional	val-
ues since these would correspond to multiple viruses for a higher 
surface	load	relating	to	different	SARS	CoV2	variants.

Median	 PFU	 values	 for	 each	 care	 type	 were	 within	 the	 same	
order	 of	 magnitude	 (see	 Table	 2),	 while	 maximum	 values	 for	 IV	
drip	were	47%	higher	than	for	observations	and	68%	than	for	Drs’	
rounds which can be explained by the number of surface contacts 
(IV-	drip	 care:	 23	±	 10,	 doctors’	 rounds:	 14	± 7 and observational 
care: 20 ±	6).	Doubling	patient	load,	regardless	of	COVID-	19	prev-
alence, probability of self- inoculation or care type, caused median 
viral	dose	to	 increase	by	an	order	of	magnitude	from	0.0004PFUs	
to	0.0069PFUs	(95%CI	=	0	to	0.501PFU).	Figure	3	shows	a	bar	chart	
with	standard	deviations	for	care	type,	COVID-	19	prevalence	on	the	
ward, and chance of self- contamination.

A linear regression of dose on all predictor variables conducted 
in	 R	 (version	 4.0.1)	 shows	 that	 dose	 does	 not	 track	 linearly	 with	
COVID-	19	prevalence	(p <	0.001),	where	the	median	dose	received	
during	 100%	 COVID-	19	 prevalence	 was	 an	 order	 of	 magnitude	
higher	than	at	50%	(0.008	PFU	vs.	0.031PFU)	and	0PFU	aftercare	
with	a	ward	of	5%	COVID-	19	patients.

(6)P(d) = 1−1F1(�, � + � , − d)

F I G U R E  1 Dose-	response	risk	curve	for	averaged	SARS	CoV-	1	
and	Coronavirus	229E	response
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Spearman	correlation	coefficients	for	input	parameters	vs.	viral	
dose received are given in Table 2. In terms of most important fac-
tors determining exposure, surface cleanliness was found to be the 
single most important, with hand- to- mouth/eyes/nose transfer ef-
ficiency	only	half	as	important	(correlation	coefficient	ρ = 0.29 vs. 
ρ =	0.12,	 respectively)	 (see	Table	3).	Surface	concentration	relates	
to	cleaning	frequency;	hence,	the	control	case	was	run	for	half	the	
surface bioburden.

4  |  DISCUSSION

4.1  |  Key findings and generalizability

The model developed in this study indicates that the exposure from 
mistakes	after	doffing	PPE	is	likely	to	be	low	for	a	single	shift,	even	
for	 nurses	 on	 100%	 patient	 COVID-	19	 positive	 wards.	 Exposure	
doses	 vary	 by	 care	 type	 as	 greater	 frequencies	 of	 surface	 con-
tacts	 directly	 impact	 viral	 loading	 on	 gloves	 and	 subsequent	 self-	
contamination exposures. The dose increases further if error rates 
in	doffing	are	high	and	a	high	proportion	of	patients	are	COVID-	19	
positive	(Figure	3),	which	highlights	the	importance	of	optimal	hand	
hygiene,	especially	after	PPE	doffing.

Surface	cleanliness	was	the	most	important	factor	in	predicting	
dose regardless of doffing mistake likelihood, highlighting the rele-
vance	of	frequency	of	cleaning	regimes	for	managing	risk.	Halving	

the surface viral concentration decreased the exposure twofold. 
Studies	have	shown	that	microorganisms	can	be	readily	transferred	
between touch sites in a healthcare environment by routine activi-
ties.42 Dispersion of respiratory droplets and aerosols may contami-
nate	less	frequently	touched	surfaces	as	well,	particularly	where	the	
patient is undergoing treatment that generates aerosols such as con-
tinuous	 positive	 airway	 (CPAP)	 ventilation.	 Sampling	 in	COVID-	19	
wards suggests aerosol deposition is a contributor to surface con-
tamination, as one study has reported deposition at a distance of 3m 
from the patient.11 Previous experimental work aerosolizing bacteria 
in an air- conditioned hospital room test chamber showed that sur-
faces well outside the patient zone can become contaminated with 
infectious material.43,44	 Since	 the	 observational	 study	 underlying	
the Markov chains reveals that at least 10% of staff contacts impact 
on	such	surfaces	(excluding	door	handles),	then	the	current	lists	of	
high- touch surfaces45 that had historically been prioritized for clean-
ing, may need to be revised.

A	 dose-	response	 curve	 for	 SARS-	CoV-	2	 is	 not	 yet	 available;	
furthermore,	 the	contribution	of	each	dose	 (i.e.,	upper	 respiratory	
vs.	 lower	respiratory	route)	 to	 individual	 infection	risk	may	still	be	
unclear even if and when it is obtained.46	 Consequently,	we	have	
analyzed the results from the contact model based on relative ex-
posures	and	qualitative	trends	to	try	and	understand	the	effect	of	
key parameters and mitigation strategies. In Figure 4, we plotted the 
risk	[0–	1]	for	each	of	the	doses	that	the	nurses	received.	We	com-
pare the prediction between the Beta Poisson dose- response curve 
presented	above	against	that	for	HCoV229E.	We	also	follow	the	ap-
proach	from	Lei	et	al.	and	assume	that	the	dose	required	for	infec-
tion from the upper respiratory tract relating to a mucosal contact 
is 100 times higher than a dose reaching the lower respiratory tract.

In	general,	the	mean	risk	is	higher	than	the	upper	quartile	allud-
ing to the hypothesis that a few nurses may become infected which 
relates to opportunistic or rare events under these circumstances. 
Using	a	Bernoulli	distribution	with	either	a	1	or	a	0	response,	repre-
senting an infection or not from each one of the predicted exposure 
doses and corresponding individual infection risk probabilities, we 
can predict the number of nurses infected per 100 nurses.

F I G U R E  2 Stair	plot	of	example	HCW	
surface contacts during care, where 
“patient” is a hand- to- patient contact; 
“out” and “in” are exit and entrance 
into the patient room, respectively; 
“FarPatient” is a hand- to- far patient 
surface	contact;	and	“Equipment”	is	a	
hand-	to-	equipment	surface	contact
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FarPatient
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Patient
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TA B L E  2 PFU	doses	for	each	care	type

Quantile IV care Observations
DRS' 
rounds

0% 0 0 0

25% 0 0 0

50% 0.00184 0.0021 0.00127

75% 0.0751 0.0651 0.0409

95% 0.506 0.421 0.234
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From the individual risks predicted using the Beta- Poisson curve 
and	under	a	baseline	assumption	of	5%	COVID-	19	positive	patients,	
14 care episodes, 10% chance of self- inoculation, we see that 1 
nurse is likely to become infected with another 1 possible based 
on the mean and standard deviations obtained from 100 Bernoulli 
simulation	 runs.	 Under	 the	 worst-	case	 scenario	 which	 could	 be	
roughly interpreted as an out- of- control epidemic in the community 
(100%	COVID-	19	 patients,	 14	 care	 episodes,	 80%	 chance	 of	 self-	
inoculation),	this	mean	increases	to	4	per	100	with	a	standard	devi-
ation of 4 infections.

The results in Figure 4 are illustrative to demonstrate the po-
tential variability in infection risk that could result from exposures 
during a shift, but it is important to recognize that analysis of infec-
tion risk also needs to be interpreted in the context of the current 
status of the pandemic within a particular country or region. The 
emergence of more transmissible variants is already changing the 
exposure- risk relationships, and it is likely that dose- response will 
be specific to a particular variant. The risk of infection will also be 
substantially impacted by the vaccination status within a commu-
nity. At the time of writing, 45 million people had received the first 

F I G U R E  3 Bar	chart	showing	dose	per	
shift	for	IV,	observations,	and	doctors’	
rounds	for	different	COVID	patient	
loads.	Error	bars	represent	the	standard	
deviation of the mean

Parameter

Spearman 
correlation 
coefficient

Concentration	on	surfaces	(viral	particles/cm2) 0.27

Transfer efficiency to mouth, eyes, or noseb 0.08

Transfer efficiency surface to hand 0.03

Transfer efficiency hand to surface 0.01

Inactivation constant for surfaces −0.02

Fraction of total hand surface area in contact −0.02

Fraction of RNA relating to infectious particlesa 0.04

Fraction of total hand surface area used in hand- to- face contactb 0.03

Total hand surface areab 0.02

Inactivation constant for hands 0.02

aThe spearman correlation coefficient represents instances where contacts with surfaces that had 
non- zero concentrations were made.
bThe spearman correlation coefficient represents instances in which these parameters were used 
in a simulation where a contaminated hand- to- face contact was made after doffing.

TA B L E  3 Spearman	correlation	
coefficients of input parameters with 
infection risk
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vaccine	dose	and	34	million,	the	second	dose	in	the	UK,	which	will	
substantially reduce the likelihood of infection further than those 
illustrated here.

Regardless	 of	 the	 number	 of	 COVID-	19-	positive	 patients	 on	 a	
ward, notable decreases in predicted infection risk were associated 
with less self- contamination during doffing. For example, for sce-
narios	 involving	all	COVID-	19	patients,	 the	mean	 infection	risk	for	
10% probability of self- contamination while doffing was 0.4%, while 
the mean infection risk for an 80% probability of self- contamination 
while doffing was more than a 420% increase at 2.1%. This empha-
sizes	the	importance	of	adequate	training	for	PPE	use.	Less	risk	of	
self- contamination will decrease the transmission risks, potentially 
through	sanitizing	gloves	with	alcohol	gel	before	doffing.	PPE	can	
be an effective strategy for mitigating exposure if proper doffing 
techniques	are	used.	 In	 addition	 to	 training,	 improvements	 in	PPE	
design that enhance safety and expediency of doffing may lower 
self-	contamination	 rates	 and,	 therefore,	 improve	 PPE	 as	 a	mitiga-
tion strategy.47 For example, fasteners or ties on gowns/masks were 
identified as “doffing barriers” because it was unclear whether these 
were to be untied and there were difficulties in reaching these ties. 
Self-	contamination	due	to	gowns	and	masks	was	not	specifically	ad-
dressed in this model. It is possible that self- contamination during 
doffing of items other than gloves could increase the potential risks 
due	to	incorrect	doffing.	Shortages	of	PPE	have	changed	the	normal	
practice	where	PPE	is	worn	on	a	sessional	basis	rather	than	renewed	
for each patient. This means less doffing and potentially less auto- 
contamination but may increase the risk of virus transfer within the 
unit.

In addition to the importance of safe and proper doffing, the re-
sults from this computational study also emphasize the importance 
of surface decontamination and environmental monitoring strate-
gies. The concentration of virus on surfaces was the most influen-
tial parameter on the dose, which is consistent with other surface 
exposure studies.22	While	SARS-	CoV-	2	RNA	has	been	detected	on	
surfaces, one limitation to a molecular approach is the lack of infor-
mation	regarding	infectivity.	In	a	recent	study	by	Zhou	et	al.	(2020),	
no surface samples demonstrated infectivity. However, it was noted 
that	the	concentrations	of	SARS-	CoV-	2	on	the	surfaces	were	below	
the current detection limits for culture methodologies.32 While 
there are known relationships between cycle threshold values and 

probabilities of detecting a viable virus in a sample,48,49 it is neces-
sary to know what fraction of detected genome copies relate to viral 
particles for QMRAs. More data are needed to better understand 
how molecular concentrations, even concentrations below detec-
tion	limits,	relate	to	infectivity	and	subsequent	infection	risk.

4.2  |  Model uncertainties

The model in this study only evaluates a surface transmission route 
while in reality, risks posed to healthcare workers are due to com-
bined exposure pathways: air, droplet, person- to- person, and sur-
face transmission. As the model only evaluates surface transmission, 
these infection risks are likely to be an underestimate of the total risk 
incurred by the healthcare workers over an entire shift. In a study of 
healthcare	workers	 in	a	 facility	 in	Wuhan,	China,	1.1%	 (110/9684)	
were	COVID-	19	positive.53 According to CDC, from February 12– 
April	9,	2020,	19%	(9282/49	370)	of	COVID-	19	US	cases	for	which	
healthcare professional status was available, were healthcare work-
ers.54 However, it is not known how many shifts were associated 
with these infection rates. Additionally, we assumed that wards with 
non-	COVID-	19	patients	did	not	have	SARS-	CoV-	2	contamination	on	
surfaces,	due	to	lack	of	data	on	SARS-	CoV-	2	surface	contamination	
beyond	COVID-	19	wards	or	patient	rooms.	There	is	a	potential	for	
asymptomatically infected healthcare workers to contribute to envi-
ronmental contamination, especially when considering the relatively 
long shedding durations for asymptomatic infections.55 Infected 
healthcare workers and environmental contamination could be con-
sidered in future extensions of this model.

The fact that the proportions of healthcare workers with 
COVID-	19	discussed	above	are	much	larger	than	the	infection	risks	
estimated suggest that other transmission routes could drive addi-
tional HCW cases. This would include more transmission through air-
borne routes, or HCW to HCW transmission by asymptomatic cases 
outside	 the	 COVID-	19	 care	 environment.56 However, while there 
continues to be disagreement over the contribution of each route to 
overall risk, transmission routes influence each other, making them 
all significant in healthcare environments. For example, surfaces can 
become contaminated due to the deposition of aerosolized virus. 
Viruses	can	later	be	resuspended	from	surfaces,	contributing	to	air	

F I G U R E  4 Boxplot	showing	Infection	
risk	(i.e.,	individual	probability	of	infection	
for	each	predicted	dose),	using	the	Beta-	
Poisson	and	HCoV-	229E	exponential	
dose- response curve.46 Triangles 
represent the mean values

1e−10

1e−07

1e−04

1e−01

Beta Poisson HCoV229E HCoV229E 1:100 dose

R
is

k



10 of 12  |     KING et al.

contamination. Future work should extend current models with a 
multi- exposure pathway approach. This will advance not only our 
understanding	of	SARS-	CoV-	2	transmission	but	the	transmission	of	
pathogens in built environments as a whole.

It should be noted that there is still a large variation in gowns 
and masks and that there is the possibility of double gloving; hence, 
potentially reducing the risk of self- contamination and the type of 
material and the design will also to an extent, determine the con-
tamination risk.

Finally,	 a	 dose–	response	 curve	 informed	 by	 SARS-	CoV-	1	 and	
HCoV-	229E	 data	 was	 utilized,	 due	 to	 the	 lack	 of	 SARS-	CoV-	2-	
specific dose- response data. Despite limitations related to the dose- 
response, the conclusions from the estimated doses were consistent 
with the insights from infection risk estimates. Increases in the prob-
ability of contamination between care episodes related to increases 
in the dose and most notably, for scenarios in which more than 5% of 
patients	had	COVID-	19	(Figure	3).

5  |  CONCLUSION

We propose a model for predicting exposure to healthcare work-
ers from self- contamination during the doffing of personal pro-
tective	 equipment	 over	 a	 single	 shift.	 The	 model	 estimates	 the	
quantity	of	SARS-	CoV-	2	virus	accretion	on	gloved	hands	for	three	
types	 of	 non-	aerosol-	generating	 procedures:	 IV-	care,	 observa-
tions,	 and	 doctors’	 rounds.	 Once	 doffing	 was	 in	 progress,	 staff	
self- contaminated a fraction of the times based on patient- load 
fatigue.	Three	COVID-	19	positive	patient	scenarios	(5%,	50%,	and	
100%	COVID-	19	patients)	were	investigated	amounting	to	a	total	
of 30 000 parameter combinations allowing us to conduct a “what-
	if”	parametric	study	and	sensitivity	analysis.	Surface	viral	concen-
tration was found to be more than twice as important as any other 
factor whereby highlighting the importance of time- appropriate 
cleaning. Transfer efficiency from finger to the nose was of sec-
ondary importance, although hand hygiene following doffing is still 
highly recommended. While the exposure from this type of self- 
contamination is low per healthcare worker shift, this highlights 
that the procedures, if carried out correctly, are generally safe. It 
is accepted that other routes of transmission will play a significant 
role in infection propagation.
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