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Abstract—Scalability of optimization algorithms is a major
challenge in coping with the ever-growing size of optimization
problems in a wide range of application areas from high-
dimensional machine learning to complex large-scale engineering
problems. The field of large-scale global optimization is concerned
with improving the scalability of global optimization algorithms,
particularly, population-based metaheuristics. Such metaheuris-
tics have been successfully applied to continuous, discrete, or
combinatorial problems ranging from several thousand dimen-
sions to billions of decision variables. In this two-part survey,
we review recent studies in the field of large-scale black-box
global optimization to help researchers and practitioners gain a
bird’s-eye view of the field, learn about its major trends, and
the state-of-the-art algorithms. Part I of the series covers two
major algorithmic approaches to large-scale global optimization:
1) problem decomposition and 2) memetic algorithms. Part II
of the series covers a range of other algorithmic approaches to
large-scale global optimization, describes a wide range of problem
areas, and finally, touches upon the pitfalls and challenges of
current research and identifies several potential areas for future
research.
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I. INTRODUCTION

THE CURSE of dimensionality is “a malediction that has
plagued the scientists from the earliest days” [1] and tam-

ing it has been at the heart of many research efforts in compu-
tational sciences ranging from computational linear algebra [2]
and machine learning [3] to numerical optimization [4]. The
prime motive in all these areas is to devise new ways of build-
ing scalable computational systems capable of “doing more
with less.”

In the context of numerical optimization, the curse of dimen-
sionality is caused by the exponential growth in the size of
the search space with respect to an increase in the num-
ber of input variables. In recent years, this has been loosely
referred to as “large-scale optimization” or “large-scale global
optimization.” The term global is to emphasize the role of
heuristics and metaheuristics, especially in the context of con-
tinuous optimization. It should be noted that the notion of
“large-scale” changes over time and varies from problem to
problem. In this article, a problem is considered large scale if
it causes scalability issues on the state-of-the-art algorithms.

More specifically, a single objective optimization problem
can be defined as follows (assuming minimization):

min f (x), x = (x1, . . . , xn) ∈ A (1)

s.t. : g(x) ≤ 0 (2)

h(x) = 0 (3)

where A is the domain of the function f and x is an n-
dimensional vector in A, and g(x) = (g1(x), . . . , gp(x))

and h(x) = (h1(x), . . . , hq(x)) are vectors of inequality and
equality constraints, respectively. Large-scale optimization is
concerned with the scalability of optimization algorithms as n
grows in size and its effect on the number of constraints and
their dimensionality.

Rapid technological advancements cause the emergence
of ever-growing optimization problems in various areas. For
example, in construction engineering, we are entering the
so-called “era of the megatall buildings” with the construc-
tion of the first kilometer-tall building already underway [5].
This has resulted in large-scale optimization problems [6] in
construction engineering. Similarly, the data explosion phe-
nomenon has caused the emergence of large-scale optimization
problems at the heart of many data analytics and learning
problems [3], [7]. Advances in machine learning and the
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Fig. 1. Publication trend in large-scale global optimization from 1971 to
2021. The results show the number of documents containing variations of the
phrases “large-scale optimization” or “large-scale global optimization” in their
title, abstract, or keywords. The results also include the hyphenated version
and also apply to multi- and many-objective algorithms. (a) Documents per
year. (b) Subject contributions. Source: Scopus.

rise of deep artificial neural networks have also resulted in
optimization problems with over a billion variables [8], [9].
These optimization problems not only grow in size but do so
in an exponential manner, i.e., the number of decision variables
they entail also grows exponentially [10]. This rapid growth
has stimulated scientific research in various areas to build scal-
able optimization algorithms. Fig. 1(a) clearly shows the rapid
growth in the number of scientific articles published on large-
scale optimization in the last decade. Fig. 1(b) also shows the
contribution of different subject areas to the topic. The domi-
nance of computer science and mathematics is an indication of
the importance of the algorithmic aspects of designing efficient
optimization methods.

Population-based metaheuristics have also gained popular-
ity in recent years for solving large-scale global optimization
problems [11]. Despite the common criticism of being com-
putationally expensive, the ubiquity of parallel computing has
rendered the issue of population size and generational cost
of secondary nature in light of their unique capacity in deal-
ing with multimodal landscapes, deceptive functions, and their
general search capability. It has recently been shown that
evolutionary algorithms, a type of population-based meta-
heuristics, can rival classic optimization methods that have
dominated the field of deep learning [12]. Evolutionary algo-
rithms have also shown great capacity in solving problems
of millions or even billions of variables where their classic
counterparts proved inefficient [13]–[17].

In dealing with very complex problems, we are deemed to
resort to two main strategies: 1) to find an exact solution to a
simplified model of a given problem and 2) to find an approx-
imate solution to a complex but more accurate model of a
given problem. Therefore, using a less competent optimization
(or search) algorithm either demands over simplification of a
given problem, or results in a low-quality solution to a more
accurate model of the problem. In the context of large-scale
global optimization, developing better search algorithms has
two implications: 1) we can start to tackle even larger (more
complex) problems and 2) we can find better solutions to
the problem of the same size. In recent years, a wide range
of methods has been considered for large-scale optimization.
These often fall within one of the following themes.

1) Problem decomposition.
2) Hybridization, memetic algorithms, and local search.
3) Sampling and variation operators.
4) Approximation and surrogate modeling.
5) Initialization.

6) Parallelization.
In this two-part survey, we give a comprehensive review

of large-scale global optimization looking into each of the
above themes, summarizing the main research findings, and
discussing their advantages and disadvantages. The scope and
the breadth of topics we cover in this series make it dis-
tinct from other review works in the field [11], [18]. Areas,
such as large-scale constrained optimization and large-scale
multiobjective optimization, have become active in the last two
years, which are almost absent from other reviews. They also
categorize the large-scale algorithms into decomposition and
nondecomposition methods. Based on the main approaches
stated above, in this article, we give a more nuanced taxonomy
of approaches to large-scale global optimization.

Another unique feature of this article is that it looks at
the above themes from a variable interaction perspective. We
believe that the efficiency of algorithms is largely dependent
on their effectiveness in exploiting problem structure. Variable
interaction is an important attribute of optimization problems
with a direct effect on a problem’s degree of nonlinearity, its
overall structure, and degree of modularity. In classic genetic
algorithms (GAs) research, for example, tight linkage is central
to their scalability [19]. The design of an inversion operator is
also motivated by the importance of tight linkage to minimize
the disturbance of interacting genes by the crossover operator.
In memetic algorithms, variable interaction affects the effi-
ciency of dimensionwise local search [20], [21]. In cooperative
coevolution (CC) and other divide-and-conquer methods, vari-
able interaction governs the utility of a decomposition [22].
In estimation of distribution algorithms (EDAs) and other
related algorithms, their rotational invariance is determined
by how well the interaction information are captured within
their covariance matrix [23]. These are just a few examples to
emphasize the extensive impact of variable interaction. Part II
of this survey also features a section on pitfalls and challenges
of large-scale optimization, open research questions, and other
special topics, such as large-scale multiobjective optimization
and large-scale dynamic optimization.

Outline: This survey series comes in two parts and a supple-
mentary document accompanying part I. The two parts jointly
cover the six approaches listed above as well as five major
problem areas, including overlapping functions, imbalanced
contribution, multiobjective optimization, constraint handling,
and benchmarks and applications. Fig. 2 depicts a high-level
structure of the main topics covered across both parts. Part
I covers problem decomposition (Section II) and hybridiza-
tion, and memetic algorithms and local search (Section III),
which are two of the most widely researched approaches in
the field. Part II covers the remaining algorithmic approaches,
several major problem areas, and a section on the pitfalls
and challenges of large-scale global optimization, and some
suggestions for future research. The background material is
covered in the supplementary document accompanying part I.

II. LINKAGE LEARNING AND EXPLOITING

PROBLEM STRUCTURE

The guiding principle of the algorithms presented in this
section is to exploit the hidden or clouded structure of a given



804 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 26, NO. 5, OCTOBER 2022

Fig. 2. Outline of the topics covered in the two parts of this survey series
on large-scale global optimization.

(a) (b)

Fig. 3. (a) Black-box optimization problem can be converted to a (b) gray-box
problem by means of variable interaction analysis or incorporation of other
sources of information such as analyzing its constraints or domain knowledge.

problem. Exploiting problem structure is common in many
branches of optimization [24]–[27]. Gray-box optimization is
a relatively new concept referring to the study of incorpo-
rating problem structure into the optimization process [28]
(see Fig. 3). This notion of finding and exploring the “hid-
den order” [29] is an old one in evolutionary computation
and has been studied extensively in the context of linkage
learning [30], [31]. Goldberg et al. [32] showed that linkage
plays a crucial role in the performance of GAs. Even separable
problems can be exponentially difficult for simple GAs if the
variable dependence information is unknown [32], [33]. It has
also been shown that GAs with no linkage learning mechanism
requires an exponentially growing population size in order to
locate the global optimum [34]. In the continuous domain, the
rotation of the fitness landscape, which has the effect of intro-
ducing linkage between decision variables, changes the time
complexity of GAs from O(n log n) to O(nn) [35]. It is, there-
fore, clear that in high-dimensional spaces, for an algorithm
to be computationally plausible, incorporation of structural
information is paramount.

In gray-box optimization, it is assumed that the problem
structure is known a priori. This is particularly the case for a
wide range of discrete and combinatorial problems. For exam-
ple, it is not realistic to assume that nothing is known about
a traveling salesman problem (TSP), therefore, treating it as

strictly black-box [36], [37]. The same goes for other popular
discrete problems such as gene sequencing [38], or pseu-
doboolean problems such as MAX-kSAT or CNF-SAT [39].
Constraints of a problem can also reveal some information
about its structure. For example, the variable reduction strat-
egy [40], [41] allows the explicit use of constraint functions
to infer some relationships among the variables and formulate
some variables as functions of a set of core variables. In many
problems, however, particularly, in the continuous domain, the
structure may not be evident. Therefore, to exploit the problem
structure, it first needs to be discovered. Many algorithms have
been proposed for discovering problem structure in the form
of capturing its variable interaction topology. The merits of
these algorithms are not limited to converting black-box prob-
lems into gray boxes. There are studies showing that even
when the problem formulation is fully known (white box) and
the dimensionality is not necessarily high, variable interaction
analysis methods can help reveal nontrivial information about
the problem [42].

There are also several different forms in which the struc-
tural information can be used to enhance the optimization
performance. Some methods such as CC [43] decompose
the problem into a number of explicit lower dimensional
subproblems, therefore, requiring a variable interaction anal-
ysis method to form a plausible problem decomposition.
Some other methods, such as EDAs [44], [45] and Bayesian
optimization algorithms (BOAs) [46], do not decompose the
problem per se. They instead implicitly capture and make use
of the interaction information in a probabilistic model of the
problem they construct during the optimization process. In the
rest of this section, we review such methods in the context of
large-scale optimization. Fig. 4 gives an overview of implicit
and explicit methods of exploiting problem structure. The sec-
tion that follows covers the implicit methods and Section II-B
covers the explicit methods.

A. Implicit Methods

Implicit methods exploit problem structure by building and
evolving a model of the problem, which can then be used to
bias the search toward promising regions of the search space.
These methods differ in their choice of model representation
and the information from which the model is created.

Interaction Adaptation: These methods are extensions of
simple GAs with added mechanisms to promote tight linkage
in problem representation. The simplest of such mechanisms is
the inversion operator [47], which acts on a string of variables
and changes their order to increase the likelihood of placing
the interacting variables next or close to one another. Although
the reordering of variables (genes) has shown to improve the
performance of GAs [48], they are extremely slow in gener-
ating tight linkages [49]. This clearly limits their applicability
to large-scale optimization.

Other methods such as the messy GA (mGA) [32], fast
mGA (fmGA) [50], gene expression mGA (gemGA) [51],
linkage learning GA (LLGA) [52], and linkage evolving
genetic operator (LEGO) [53] use more sophisticated represen-
tations than a simple bit string to encode linkage information
into the representation and employ special operators to change
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Fig. 4. Exploiting problem structure can be done implicitly (Section II-A) by adapting the problem representation or probabilistic modeling, or explicitly
(Section II-B) by means of variable interaction analysis (Section II-B1) and problem decomposition (Section II-B2).

the representation over time to promote tightly linked repre-
sentations.

Probabilistic Models: These methods use a probability dis-
tribution to represent the objective function or its various
characteristics. EDAs [44], [54] compact GA (cGA) [55],
BOAs [46], [56], and Bayesian optimization [57] are examples
of such methods. The high-level working principle of these
methods is to generate one or more sample solutions from
a probability distribution. The generated solution(s) are then
used to update the parameters of the probabilistic model in an
iterative process. Many different versions of such probabilis-
tic optimization algorithms exist in the literature, which differ
in the choice of their probabilistic models and how they are
updated. Below is a short summary of three major types.

1) Building a Model of Variable Interactions:
EDAs [44], [54], and BOAs [46] are two impor-
tant such algorithms that capture variable interactions
in their probabilistic models. BOAs are different from
Bayesian optimization, which builds a model of the
objective function and is discussed in the next bullet
point. EDAs with a multivariate normal distribution
can represent the interaction by adapting the covari-
ance matrix of the Gaussian distribution. Different
variants of EDAs have been used for large-scale global
optimization, which will be covered later in this section.
BOA uses Bayesian networks to represent interactions.
To do so, the algorithm needs to learn the structure of
the Bayesian network and its parameters (conditional
probabilities). This method is very flexible and effi-
cient in representing and solving complex interaction
patterns, such as overlapping [58] or hierarchical [58]
problems. However, the model selection process that
involves learning the structure of the Bayesian network
is an NP-hard problem, which makes BOA a poor
choice for large-scale global optimization.

2) Building a Model of the Objective Function: In Bayesian
optimization [57], not to be confused with BOA, the
unknown objective function is treated as a random func-
tion modeled by placing a prior distribution over it.
Whenever the actual objective function is evaluated, its
input/output pair is used as new evidence to update the
prior distribution to form the posterior distribution of
the objective function. Finally, an acquisition function

is constructed from the posterior distribution, which is
used to determine the location of the next query point.
Scalability of Bayesian optimization is the subject of
several recent studies [59]–[67]; however, a detailed
review of such techniques is out of the scope of this arti-
cle. For a review of Bayesian optimization, the readers
are referred to this article by [57].

3) Building a Model of the Population Movement: The
covariance matrix adaptation evolution strategy (CMA-
ES) [68] is a popular model building algorithm, which
uses a multivariate Gaussian distribution to model the
so-called successful steps taken by the algorithm dur-
ing the course of optimization. In differential evolution
(DE), its contour matching property [69], which is simi-
lar to the notion of modeling population movement, the
step sizes, and their orientations are adapted to the land-
scape of the objective function. Details of advances in
the DE literature on large-scale optimization is given in
part II of the survey.

Estimation of Distribution Algorithms: A major problem of
EDAs is their scalability issue in solving large-scale prob-
lems. Three major reasons contribute to this scalability issue:
1) accurate estimation of the distribution of high-quality solu-
tions requires a relatively large sample size, which grows
exponentially with the dimensionality of the problem [70];
2) a small sample size will result in poor estimation of the
eigenvalues of the covariance matrix [71]; and 3) the cost
of sampling from a multidimensional Gaussian distribution
increases cubically with problem size [72].

The strategies to alleviate the scalability issue of EDAs
can be categorized into two major types: 1) space partition-
ing and dimensionality reduction methods where the aim is to
control the complexity of the covariance matrix and 2) the
use of heavy-tail distributions to improve exploration and
diversity.

Space Partitioning and Dimensionality Reduction: EDAs
with univariate models [73], [74] treat an n-dimensional
problem as n 1-dimensional problems and as such are the sim-
plest and have the most efficient sampling. However, several
theoretical [75], [76] and empirical [77] studies have shown
that univariate EDAs are inadequate in solving nonseparable
problems. A full multivariate model on the other hand can be
computationally expensive in high-dimensional spaces.
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Dong et al. [78] proposed an EDA with model complexity
control, which applies a threshold to the global Pearson corre-
lation matrix to find weakly correlated dimensions and models
them with univariate distributions and partitions the remaining
strongly correlated variables into a set of lower dimensional
spaces each of which is modeled using a multivariate dis-
tribution. To alleviate the deficiencies of Pearson correlation
with non-Gaussian samples, Xu et al. [79] proposed to use
mutual information instead to detect variable dependence. A
major downside of using mutual information, however, is its
high computational cost [22]. Space partitioning by means
of random grouping and CC has been used in several other
studies [80]–[83] to manage the complexity of EDAs.

Dimensionality reduction techniques and space projection
are other alternatives to control the model complexity of mul-
tivariate EDAs. Kabán et al. [84] borrowed the idea of random
projection to lower dimensions from the theory of random
matrices to tackle the scalability issue of EDAs [84], [85].
They proposed an algorithm that randomly projects the origi-
nal large-scale problem into an ensemble of lower dimensional
problems. The random matrix theory suggests that with an
appropriate choice of target dimensions, it is possible to
preserve important features of the original space (such as
Euclidean distances or dot products) in the reduced space
within a reasonable tolerance [86]. It has also been shown that
the distribution of the sample points becomes more Gaussian
in the reduced space [87]. These features makes it possible
to capture the variable correlation of the high-dimensional
space using a lower dimensional subspaces; therefore, mak-
ing the parameter estimation of EDAs more viable using less
computational resources. This eliminates the need for over
simplification of the model in EDAs as is the case in uni-
variate EDAs. It is clear that random projection to a lower
dimensional space is not unique, and sample points can be
projected down into any subspace of the original space. For
this reason, [84] uses an ensemble of projected points and
estimates the covariance of the sample points in each lower
dimensional subspace. Finally, the ensemble of projections is
used to construct a new population (sample) in the original
space. It has been shown that a proper combination of the
ensemble of projected points results in a natural smoothing
effect that ensures the exploration capability of the algorithm.
In a similar vein, [88] used PCA to transform the multivariate
Gaussian model of EDA into its principal lower dimensional
latent subspace.

Heavy-Tail Distributions: Sampling based on heavy-tail
distributions has been used in many population-based algo-
rithms [89]–[91] with the aim of improving exploration and
population diversity. A range of such distributions, including
Lévy, Cauchy, and t-distributions, has been used to enhance
the performance of EDAs [73], [92], [93]. Among these, the
Cauchy distribution has been used more widely with EDAs.
Although the literature is clear on the efficacy of Cauchy
sampling on low-dimensional problem [94], [95], there is
controversy in its utility on high-dimensional problems [96].
Hansen et al. [97] reported that Cauchy’s long jumps are
almost invariably ineffective, while other studies found it bene-
ficial [73], [74]. Sanyang et al. [92] compared the performance

of univariate and multivariate Cauchy distributions with the
Gaussian distribution within a random projection framework
on a range of large-scale problems with up to 1000 dimensions.
They reported that although a multivariate Cauchy performs
better than a univariate Cauchy, they both perform worse
than a multivariate Gaussian distribution on large-scale prob-
lems. In another subsequent study, they provided a theoretical
explanation for the poor performance of Cauchy distribution
on large-scale problems, which was shown to be consistent
with empirical results [96]. The study showed that unlike
Gaussian norms, Cauchy norms lack a good concentration
property causing a disproportionate number of very large steps,
which results in an inefficient search strategy as the dimensions
increase.

Scalability of CMA-ES: CMA-ES [98] is a popular
optimization algorithm, which approximates the contours of
a given objective function by means of a Gaussian distribu-
tion. CMA-ES exhibits several invariance properties including
rotation invariance, which is central for efficient optimization
of nonseparable functions. This is achieved through iterative
updating of a covariance matrix used to control its underly-
ing sampling Gaussian distribution. CMA-ES has two major
limitations in dealing with high-dimensional problems [99]:
1) high number of strategy parameters, which is the degrees
of freedom in the covariance matrix and scales quadratically
with the dimension. In other words, the space complexity of
CMA-ES is O(n2) and 2) high computational complexity that
comes from the operations needed to adapt the covariance
matrix, i.e., sampling from a multivariate normal distribution,
and updating of the covariance matrix and its factorization and
eigen-decomposition. This results in a cubic complexity in the
number of dimensions O(n3).

There have been several attempts to improve the scalabil-
ity of CMA-ES by reducing its time and space complexities.
Igel et al. [100] replaced the eigen-decomposition update rule
of CMA-ES with the Choleskey decomposition resulting in
reducing its time complexity to O(n2). Poland and Zell [101]
proposed the adaptation of the most significant mutation vec-
tor in the main vector adaptation evolution strategy (MVA-ES),
which reduces the time complexity of the algorithm to linear.
Knight and Lunacek [102] restrained the optimization of an
n-dimensional problem to its m main components. This algo-
rithm, L-CMA-ES, reduces the time complexity to O(m2n)

and the space complexity to O(mn). For the case of m = 1,
the algorithm reduces to MVA-ES, and for m = n, it reduces to
CMA-ES. Sun et al. [103] proposed another linear time evolu-
tion strategy, R1-NES, which uses a low-rank approximation
of the covariance matrix by only considering its predominant
eigen-direction. Ros and Hansen [99] proposed sep-CMA-
ES, in which only the diagonal elements of the covariance
matrix are adopted. This reduces the time complexity of the
algorithm to O(n). LM-CMA [104], [105] is another lim-
ited memory implementation of CMA-ES inspired by the
classic L-BFGS [106]. LM-CMA combines the idea of a low-
rank approximation of the covariance matrix with Choleskey
decomposition to reduce the time and space complexity of the
algorithm to O(mn). Inspired by LM-CMA, Li et al. [107]
proposed the fast CMA-ES for large-scale optimization, which
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maintains a number of evolution paths and uses two to generate
new solutions.

Beyer and Sendhoff [108] proposed matrix adaptation
ES to avoid the construction of the covariance matrix by
replacing it with an overall transformation matrix involving
only matrix–matrix and matrix–vectors operations. This has
reduced the time complexity of the algorithm to �(n3/ log(n)).
Loshchilov et al. [109] further improved the time and space
complexity to �(n2) by replacing the multiplicative updates
with additive ones.

Li and Zhang [110] proposed to reduce the time and space
complexity of CMA-ES by restricting the covariance matrix
to a specific simple form. More specifically, they suggested
the following form: C = αS + L, where C is the covariance
matrix, S is a sparse matrix, L is a symmetric low-rank matrix,
and α > 0. When S = I, and L is a rank-one matrix, the algo-
rithm becomes a rank-one ES (R1-ES). By controlling the rank
of L, the model can be generalized to rank-m ES (Rm-ES).
He et al. [111] proposed to completely replace the Gaussian
sampling by a Gaussian mixture model, which exhibits richer
variable interaction modeling capability.

B. Explicit Methods

Explicit methods capture problem structure information into
explicit forms such as variable interaction matrices or trees
and use them to either decompose the problem into a set of
lower dimensional subproblems [43], or design special vari-
ation operators, such as crossover, that respect the problem
structure [112], [113]. Unlike implicit methods, explicit meth-
ods require extra objective function evaluations to find the
variable interaction structure.

One popular explicit method, which has gained popularity
in large-scale global optimization, is the CC [43]. The CC
framework requires the problem to be decomposed into a set
of lower dimensional subproblems each of which is optimized
separately. The CC framework maintains a separate population
for each subproblem (a.k.a component), which are “coevolved”
in a round-robin fashion. Since the candidate solutions to each
component do not form a complete solution, representative
solutions of other components are required to form a complete
solution for evaluation. These representative solutions form a
complete solution known as the context vector [114], which
is used to evaluate all partial solutions. The context vector
is updated iteratively and acts as the context in which the
cooperation occurs.

The first design choice in using CC is problem decomposi-
tion. It is clear that this can be performed in many different
ways. The first CC algorithm [43], cooperative coevolution
genetic algorithm (CCGA), decomposes an n-dimensional
problem into n 1-dimensional problems, where n is the
problem dimension. CCGA was used to solve problems
with up to 30 dimensions. Liu et al. [115] made the first
attempt to solve large-scale optimization problems using a CC
framework. They used fast evolutionary programming as the
component optimizer in a CC framework with the decompo-
sition strategy of CCGA to solve problems with up to 1000
dimensions [115].

Van den Bergh and Engelbrecht [114] suggested that full
decomposition strategy of CCGA runs the risk of introduc-
ing pseudominima, i.e., “minima created as a side effect of
the partitioning of the search space.” This is consistent with
the observation that CCGA does not perform well on prob-
lems with interacting decision variables, such as Griewank and
Rosenbrock test functions [43]. To alleviate this problem, van
den Bergh and Engelbrecht [114] proposed the use of particle
swarm optimization (PSO) with a k s-dimensional decompo-
sition instead of the extreme n 1-dimensional decomposition
used by CCGA. Another decomposition strategy, divide-in-
half, was proposed by [116] where the problem is divided into
two equally sized components, which are optimized iteratively
using DE [117].

It is clear that the algorithms discussed so far are oblivi-
ous to variable interaction and may place interacting variables
in different components. This has a detrimental effect on the
optimization performance and makes the algorithm sensitive
to the updating policy of the context vector. A function can be
decomposed in many different ways without any knowledge
of the underlying variable interaction structure. It is, therefore,
important to form the components such that the interaction
between them is kept to a minimum. In the next section, we
review several algorithms that attempt to deal with the variable
interaction problem.

1) Dealing With Variable Interaction: This section is
devoted to the review of various techniques to address variable
interaction. Most of the methods presented here are con-
cerned with an accurate identification of variable interactions,
which are subsequently used to decompose a problem into
its constituent parts. The decomposition of a problem often
has two components: 1) a mechanism to identify interactions
between the decision variables (covered in this section) and
2) a mechanism to form a set of subproblems based on the
interaction information (Section II-B2). It is often the case that
the interaction detection mechanism necessitates a certain way
of forming the groups. For example, some methods provide
the interaction information for every pair of variables in the
form of an interaction matrix. This matrix contains sufficient
information about the number of components and their sizes
to warrant an automatic decomposition. Some other methods
rely on various heuristics that increase the likelihood of placing
interacting variables close to one another. Such methods do not
suggest an obvious decomposition of the problem, therefore
requiring extra information such as the number of components
and their sizes to be supplied by the user.

In this article, we identified seven interaction detection prin-
ciples and three decomposition mechanisms. Fig. 5 shows this
classification and the interplay between them. Table S-I in the
supplementary material contains a list of specific algorithms
belonging to each class and its corresponding decomposi-
tion strategy. In what follows, each detection principle and
decomposition mechanism is studied in further details.

a) Random grouping: Random grouping [118] is the
most basic way of dealing with variable interaction in CC.
The rationale behind it is to randomly arrange the decision
variables after each coevolutionary cycle to increase the proba-
bility of placing interacting variables into the same component.
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Fig. 5. Common variable interaction detection principles (olive) and variable
grouping strategies (dark teal) used by explicit decomposition algorithms. The
links indicate which grouping principles are common among which detection
principles. The light teal color indicates variation on the grouping strategies.

Despite being superior to an arbitrary static decomposi-
tion [119], random grouping has two major drawbacks. First,
the user has to decide about the number and the size of each
component. Second, the probability of simultaneously placing
several interacting variables in one components approaches
zero when there are many such variables. More specifically,
given N cycles, the probability of assigning v interacting vari-
ables into one of the m available components for at least k
cycles is [120]

P(X ≥ k) =
N∑

r=k

(
N

r

)(
1

mv−1

)r(
1 − 1

mv−1

)N−r

. (4)

Equation (4) shows that the probability of placing v variables
in one component for at least k cycles decreases geometrically
as v increases. Fig. 6(a) shows the sharp decline in probabil-
ity correctly grouping interacting variables as the number of
such variables increases. The figure also shows that a 200-
fold increase in the number of random reordering can hardly
accommodate two extra variables with the same probability.
Fig. 6(b) shows how the probability of correctly grouping
v = 3 to v = 6 interacting variables increases with the num-
ber of trials; however, this does not significantly increase the
likelihood of a correct grouping when the number of variables
is high.

b) Delta grouping: An alternative grouping approach
called delta grouping [121] was shown to outperform random
grouping on most functions from a set of 20 large-scale bench-
mark problems [122]. The rationale behind delta grouping is

(a) (b)

Fig. 6. Random grouping’s likelihood of correctly grouping interacting vari-
ables (m = 10). (a) Probability of detecting v variables given N cycles.
(b) Probability of detecting variables as a function of number cycles.

(a) (b)

Fig. 7. Shrinkage of improvement intervals under coordinate rotation of the
same landscape. (a) No interaction. (b) Interaction due to rotation.

that the improvement interval of nonseparable variables is rel-
atively smaller than those of separable variables [123] (Fig. 7).
Therefore, delta grouping sorts the variables based on the aver-
age dimensionwise displacement of the sample points between
two consecutive iterations. Once the decision variables are
sorted based on the magnitude of their average displacement
called “delta” (δ), they are grouped into k components of size
s both of which are determined by the user. A major draw-
back of delta grouping is its low performance on functions
with more than one nonseparable component. Ge et al. [124]
improved the grouping quality of delta grouping by measur-
ing the success and failure rate of groups and evolving the
grouping accordingly.

Liu et al. [125] used the idea of delta grouping to solve
nonseparable functions. The algorithm that they proposed uses
line search along each dimension to estimate the improvement
along each dimension. The dimensions with similar improve-
ments are then grouped together to form a subproblem for
optimization. Unlike delta grouping, which is used with CC,
this method uses local search and a modified DE, which
applies the mutation operator to a designated subset of decision
variables belonging to the same group.

c) Fitness difference minimization: The methods
reviewed in this section are based on adaptive rearrangement
of decision variables to minimize an error function, which is
claimed to minimize the interaction between resultant com-
ponents [126]. The rationale is that for a partially separable
function, the difference between the overall objective function
and the sum of its nonseparable subfunctions should be zero,
i.e., f (x) − ∑m

i=1 fi(xi) ≡ 0, where fi(xi) is the ith nonsep-
arable subfunction. Motivated by this, Sayed et al. [126]
decomposed a problem by finding an arrangement of decision
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variables that minimizes an approximation to the following
least square equation:

min

[
f (x) −

m∑

i=1

fi(xi)

]2

. (5)

Due to the black-box assumption, the number of com-
ponent sizes and their dimensions is unknown. Therefore,
Sayed et al. [126] assumed uniform k d-dimensional compo-
nents and search of a rearrangement of the decision variable
that minimizes the following equation:

min

[
m(f (c1) + f (c2)) −

k∑

i=1

{
f̂i(c1; c2) + f̂i(c2; c1)

}]2

. (6)

This equation is an approximation to (5) where c1 and c2
are solutions whose elements are set to constants c1 and c2,
respectively, and f̂i(x; y) is a parameterized version of f with
the variables belonging to the ith component set to x and
the rest to y. This variable grouping method, which is called
dependency identification (DI), was shown to outperform ran-
dom grouping on the CEC’2010 large-scale benchmark suite.
Aguilar-Justo and Mezura-Montes [127] replaced the random
rearrangement with two more systematic strategies to generate
variations in the grouping, which showed better performance
as compared to the random case. A problem of all decom-
position methods based on fitness difference minimization is
that they require the user to specify the number or the size
of each component. To fix this problem in the context of
constrained problems, Aguilar-Justo et al. [128] proposed to
evolve the best arrangement of the decision variables as well
as the number of components using GA.

Sayed et al. [129] also proposed a variation of (6) where the
sum of absolute differences is used instead of sum of squares.
Despite DI’s improved performance as compared to random
grouping, the optimization problem defined in (6) is NP-hard
due to the large number of possible k d-dimensional decompo-
sitions. To alleviate this problem, Sayed et al. [126] randomly
rearranged only 10% of the decision variables with greedy
search. Dai et al. [130] conducted a study on the effect of this
parameter on the performance of DI. The experimental results
showed that DI is sensitive to this parameter with a tendency
toward a better performance when the rate is larger than 60%.
The results also confirmed the superiority of DI over random
grouping on a wide range of rates; however, this was not the
case when compared to delta grouping.

d) Statistical methods: The methods reviewed in this sec-
tion rely on statistical features of the evolving population to infer
variable interaction. Tiwari et al. [131] proposed the idea of
using regression analysis to deal with what they call inseparable
function interaction and variable dependence. Inseparable func-
tion interaction is identical to what we call variable interaction or
epistasis in this article. Variable dependence, however, pertains
to the existence of functional dependence between decision
variables, i.e., the possibility of expressing one variable as a
function of some other set of variables. Although the two notions
appear to be linked, the authors did not investigate their connec-
tion from a formal mathematical point of view. Following the

idea of variable dependence, Tiwari and Roy [132] proposed the
GA for variable dependence (GAVD), which uses regression
analysis to find a set of dependent and independent decision
variables by iteratively setting regression coefficients of indi-
vidual decision variables to zero and examining the goodness
of fit. Once the independent and dependent decision variables
are found, GA is used to optimize the independent set and
regression analysis is used to estimate proper values for the
dependent set. Roy and Tiwari [133] proposed the general-
ized regression GA (GRGA) to deal with inseparable function
interaction. They employed regression analysis on the decision
variables in the course of optimization and study the changes
in the coefficient of the regression model over time to guide
the optimization process. A major drawback of both GAVD
and GRGA is poor scalability.

One statistical way of dealing with variable interactions
is to calculate the Pearson correlation matrix of the popu-
lation and use a threshold on the coefficients to form the
components. Here, the assumption is that weak correlations
indicate weak interactions. These techniques often calculate
the correlations based on either the entire population or its
top p% samples. Correlation-based adaptive variable parti-
tioning (AVP) [134] is one such method which groups pairs
of variables whose correlations are larger than a predefined
threshold and optimizes them against the remaining set in
a co-evolutionary manner. Singh and Ray [135] proposed an
improved version, AVP2, which can form multiple groups of
various sizes depending on the underlying variable interaction
structure. For each variable i ∈ {1, . . . , n}, AVP2 forms
a group with all other decision variables whose correlation
coefficient with the ith variable is above a certain thresh-
old. This results in a total of n potentially overlapping
groups, which are subsequently merged based on their com-
mon variables to form a set of disjoint groups. Rojas and
Landa [136] proposed another correlation-based decomposi-
tion, 4CDE, which calculates the correlation coefficient of each
variable and the objective function and divides the resulting
correlation coefficients into equally sized intervals. The vari-
ables whose correlation coefficient fall within the same interval
form a component, which is subsequently optimized in a CC
framework with DE as its component optimizer. This process
is repeated and the correlation coefficients are updated using
exponential smoothing.

Some algorithms use the dimensionwise variance magni-
tudes of the population to form the groups. In variance priority
CC, Wang et al. [137] formed the groups based on the variance
magnitude of the current candidate solutions along various
dimensions and selected the top k variables having the largest
variances to form a component. Liu and Tang [83] proposed
a cooperative coevolutionary framework based on CMA-ES,
which adaptively selects from a pool of three decomposition
strategies at each coevolutionary cycle. The three decom-
position methods are: 1) random grouping; 2) min-variance
decomposition (MiVD); and 3) max-variance decomposition.
The rationale behind using various decompositions is to reg-
ulate the exploration/exportation balance of the algorithm.
MiVD sorts the variables based on the magnitude of the main
diagonal elements of CMA-ES’s covariance matrix and divides
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them into k s-dimensional groups. This strategy minimizes the
intragroup variances. Conversely, MaVD maximizes the intra-
group variance and forms the groups by taking a variable from
every group formed by MiVD which is also used in variance
priority CC proposed by [137]. To coordinate between various
decomposition methods, the algorithm assigns a probability
value to each decomposition method at the end of each cycle,
which is used to randomly select a decomposition method for
the next cycle.

All the statistical methods presented so far cannot detect
interacting variables with a reasonable precision and rely on a
user to specify the number and/or the size of components.
For example, although the use of variance magnitudes has
its own merits and can potentially improve the optimization
performance, its effectiveness in capturing variable interaction
has not been established. The Pearson correlation can only
capture linear relationships among the variables, which is
also inaccurate for measuring variable interaction. To address
these issues, Sun et al. [22] proposed the maximum entropic
epistasis (MEE), which uses maximal information coeffi-
cient [138] to check for functional relationship between a
variable i and the partial derivative of the objective func-
tion with respect to another variable j, i.e., (∂f /∂xj). Since
MIC is based on mutual information, it can capture nonlin-
ear relationships. To deal with the black-box nature of the
problem, MEE approximates (∂f /∂xj) using finite differences:
(∂f /∂xj) ≈ ([f (xj + δxj) − f (xj)]/δxj). MEE uses this method
to check for direct interactions between all pairs of variables
by applying a threshold on the MIC values to form a binary
variable interaction matrix. Finally, the interaction matrix is
treated as the adjacency matrix of an undirected graph and
the groups are formed by finding independent components
using the breadth-first search algorithm. MEE has shown a
very high variable interaction detection accuracy on an array
of 24 high-dimensional functions. Two major drawbacks of
MEE are its high computational cost caused by pairwise anal-
ysis of the decision variables, and its sensitivity to the choice
of the threshold value.

e) Metamodeling: The methods discussed in this section
infer variable interaction information in the process of build-
ing a surrogate or a metamodel for the objective function.
Although metamodeling is often used for expensive function
optimization, there has been little or no attempts to use it for
finding the problem structure. One such algorithm is proposed
by [139], which uses the high-dimensional model represen-
tation (HDMR) [140] technique to find interacting variables.
HDMR has the following general form that can be used to
approximate a function

f (X) = f0 +
n∑

i=1

fi(xi) +
∑

1≤i≤j≤n

fij(xij) + f1...n(x1, . . . , xn) (7)

where f0 is the zeroth order term, fi(xi) is the first-order
terms capturing the effect of each variable acting indepen-
dently, fij is the second-order term capturing the correlated
contribution of xi and xj, and finally, f1...n is the nth-order
term capturing the joint correlation of all decision variables
not covered by all other terms. HDMR has a finite number
of terms and is exact once all terms are included. A nice

property of HDMR is that if the contribution of a pth order
terms is negligible, the contribution of all higher order term
will be smaller. Mahdavi et al. [139] used a particular type of
HDRM called RBF-HDMR [141] to approximate the objec-
tive function up to the second-order terms in order to capture
variable interaction between pairs of variables. This new tech-
nique is capable of finding the number of components and their
sizes with good accuracy and has shown good performance
on the CEC’2010 large-scale benchmark suite. In another
study, [142] used cut-HDRM [143] to find separable and
nonseparable variables, which are used in turn to approxi-
mate a given high-dimensional function using support vector
regression HDMR.

f) Monotonicity detection: Munetomo and
Goldberg [144] were the first to propose a variable
interaction detection method by checking the violation of
monotonicity conditions through systematic perturbation
of the objective function. The monotonicity conditions are
defined as follows [144]:

if f (s(i)) > f (s) and f (s(j)) > f (s)

then f (s(ij)) > f (s(i)) and f (s(ij)) > f (s(j)) (8)

if f (s(i)) < f (s) and f (s(j)) < f (s)

then f (s(ij)) < f (s(i)) and f (s(ij)) < f (s(j)) (9)

where s(·) denotes a candidate solution vector perturbed at the
index specified in the bracket. It is clear that (8) checks for
monotonic increase, and (9) checks for monotonic decrease.
Munetomo and Goldberg [144] developed an algorithm based
on (8) and (9) called linkage identification by nonmonotonicity
detection (LIMD), which checks for violation of these condi-
tions on a randomly initialized population. Any violation of the
above two conditions for variables i and j will declare them
as interacting. LIMD was tested on low-dimensional binary
problems.

In the context of large-scale optimization, Chen et al. [145]
proposed CC with variable interaction learning (CCVIL) in
which they used a similar principle as was used in LIMD
for variable interaction in large-scale continuous problems.
They declared two dimensions i and j interact if the following
condition holds:

∃ s, s(i), s(j), s(ij) : f (s) > f
(

s(i)
)

∧ f
(

s(j)
)

< f
(

s(ij)
)
. (10)

Similar to the notation used before, s(·) denotes the solu-
tion s perturbed at dimensions specified in the parenthesis.
Although (10) appears to be different from the monotonicity
checks defined by (8) and (9), the algorithmic implementation
of CCVIL ensures that the following condition is also satis-
fied: f (s) > f (s(j)). CCVIL uses monotonicity checking within
a coevolutionary framework proposed by [146] to find disjoint
interaction groups of a given objective function. CCVIL starts
by assuming full separability among all decision variables.
It then iteratively processes all dimensions and checks their
interaction with other dimensions. If an interaction is detected,
the respective dimensions merge to form an interaction group.
It should be noted that CCVIL uses a generalization of (10) in
which multiple dimensions can be perturbed simultaneously.
This allows the algorithm to check for interaction between a
decision variable and an entire interaction group. CCVIL has
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shown good performance on the CEC’2010 LSGO benchmark
suite [122].

It should be noted that satisfaction of the monotonicity con-
ditions for a given set of sample points does not guarantee
separability of the decision variables. Indeed, two variables
are separable only if the conditions hold for all possible
choices of the four sample points needed in (8) and (9).
Therefore, repeated application of the monotonicity conditions
can increase the likelihood that two variables are actually
detected as separable. Based on this idea, Sun et al. [147]
proposed statistical variable interdependence learning (SVIL)
in which the monotonicity conditions are checked for all pairs
of variables over k random sets of points. SVIL treats the
proportion of detected interactions between the ith and the
jth variables as their interaction probability, which is stored
in a matrix D. To decompose a problem, SVIL applies a
threshold on D to force it into a binary matrix. Since the
grouping accuracy of SVIL is sensitive to the choice of the
threshold parameter, the algorithm adapts this parameter in
the course of optimization. Next, for each decision variable, a
group is formed with all other decision variables, which inter-
act with it. This means that SVIL forms n overlapping groups
where n is the dimensionality of the problem. Finally, SVIL
is used in a CC framework to optimize each component in a
round-robin fashion. Although the empirical results on high-
dimensional CEC’2005 benchmark suite [148] suggest that
SVIL is effective in improving the optimization performance,
its variable interaction accuracy has not been studied indepen-
dently using modular benchmarks suite as the CEC’2010 [122]
and CEC’2013 [149] large-scale suites.

A major drawback of SVIL is its high computational cost
due to its pairwise interaction detection mechanism between
the decision variables, which makes it a quadratic algorithm,
i.e., O(n2). To alleviate this issue, Ge et al. [150] proposed
a generalized version of the monotonicity check in which is
simultaneous perturbations of multiple dimensions are allowed
to check for interaction between two sets of decision variables
B1 and B2. This is equivalent of replacing dimension i with B1
and dimension j with B2 in (8) and (9). This generalization
allows us to check the interaction of a single variable with
all other variables with a single application of monotonicity
conditions, i.e., B1 = {xi} and B2 = {1, . . . , n}\{xi}. Based
on this generalization, the authors propose a recursive algo-
rithm where the interaction of a single variable (xi) is checked
against a set, which is initialized to all other variables. If xi

is found to be separable, the procedure returns; otherwise, the
set is recursively divided into smaller sets until its cardinality
reaches one. At this stage, all function calls return and merge
the interacting variables into a group. This reduces the time
complexity of the algorithm down to O(n log n). For separable
functions, the decomposition can happen in linear time in the
number of dimensions n.

g) Finite differences: The methods discussed in this sec-
tion use finite differences to detect interacting variables.
Although not explicitly defined as such, linkage identifi-
cation by nonlinearity check (LINC) [151] is a variable
interaction learning algorithm based on finite differences to
find the linkage sets of binary optimization problems. The
same mechanism has also been used to identify interacting

groups for real-valued problems (LINC-R) [152]. Both LINC
and LINC-R were used with multipopulation GAs for solving
low-dimensional problems [151], [153]. Omidvar et al. [154]
proposed differential grouping (DG) by deriving a set of finite
difference equations for interaction detection from the defini-
tion of partially additive functions (see Definition S-3 in the
supplementary material) and applied it to large-scale problems.
Omidvar et al. [154] showed LINC-R equations can be derived
from the DG theorem. Despite their algebraic equivalence, DG
is less susceptible to computational roundoff errors due to its
simpler computations.

Theorem 1 [154]: Let f (x) be an additively separable func-
tion. ∀a, b1 
= b2, δ ∈ R,1 δ 
= 0, variables xp and xq interact
if the following condition holds:

�δ,xp[f ](x)|xp=a,xq=b1 
= �δ,xp[f ](x)|xp=a,xq=b2 (11)

where

�δ,xp[f ](x) = f (. . . , xp + δ, . . . ) − f (. . . , xp, . . . ) (12)

refers to the forward difference of f with respect to variable
xp with interval δ.

Theorem 1 states that two variables xp and xq interact if the
result of (12) for a given value of xp yields different results for
different choices of xq (i.e., b1 and b2). Theorem 1 is derived
by showing that under the assumption of additive separability,
the finite difference functions on the two sides of (11) give the
same results, i.e., separability =⇒ �(1) = �(2). The contra-
position of this proposition can be used to detect interactions,
i.e., �(1) 
= �(2) =⇒ nonseparability. Since exact equality
cannot be checked on computational systems, the left-hand
side of the implication is changed to λ = |�(1) − �(2)| > ε.
It should be noted that although �(1) 
= �(2) implies an
interaction, their equality does not necessarily imply separa-
bility. Indeed, the theorem is silent for this case. However, by
invoking weak syllogism, one can argue that observing �(1) =
�(2) makes separability more plausible. If repeated applica-
tion of Theorem 1 with different random values results in
�(1) = �(2), the probability of the two variables being separa-
ble increases exponentially [152]. However, for most practical
applications, a single equality observation is sufficiently accu-
rate for finding separable variables. Nonetheless, failing to
detect an interaction is more detrimental to the optimization
performance than the conservative case of assuming separable
variables to be interacting.

Although Theorem 1 can be used to individual interactions
between pairs of variables, the theorem itself does not dic-
tate a particular grouping mechanism. Canonical DG works
by choosing a candidate variable xi and scanning all other
dimensions to find all interactions with xi. If an interaction is
found, the variable is removed from the set being scanned and
is grouped with xi to form a component. The process continues
until all variables interacting with xi are extracted and added to
the component containing xi. This procedure assumes full non-
separability within a component, i.e., all variables interact with
all other variables. This approach fails on problems with over-
lapping components. For example, if the following interaction

1Values of a, b1, b2, and δ are chosen such that f is evaluated within its
domain.
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pattern exists: xi ↔ xj ↔ xk, in the first pass of the algorithm,
xj will be removed from the set and the interaction between xj

and xk will never be checked. Rosenbrock is such a problem
on which DG exhibits a poor accuracy [154].

Another grouping strategy is to form an n × n interaction
matrix and form the nonseparable groups (or components) based
on analyzing the interaction matrix. Several algorithms are based
on this idea and treat the interaction matrix as the adjacency
matrix of an undirected graph and use the connected components
algorithm to form the groups. Global DG (GDG) [155], graph-
based DG (gDG) [156], and DG2 [157] are such methods.
These algorithms can potentially give an accurate picture of
the problem structure at the expense of having a quadratic
time complexity. Among these, DG2 is the most efficient and
achieves the theoretical lower bound for the required number
of function evaluations to form a complete interaction matrix
based on the repeated application of Theorem 1. This lower
bound suggests that to improve the efficiency we either need to
compromise the accuracy or change the underlying theorem.
These two possibilities are addressed next.

Indirect Interactions: Sun et al. [158] proposed the notion of
indirect interactions (Definition 1) and used it in an algorithm
called extended DG (XDG) to improve the grouping efficiency.

Definition 1: Let f : Rn → R̄ be a differentiable function.
Decision variables xi and xj conditionally (indirectly) interact
if for any candidate solution x∗, ([∂2f (x∗)]/[∂xi∂xj]) = 0, and
a set of decision variables {xk1, . . . , xkt } ⊂ X exists, such that
xi ↔ xk1 ↔ · · · ↔ xkt ↔ xj.

XDG works by forming n components, one for each vari-
able, containing all the variables it interacts with. This means
that a variable may appear in multiple components. To reduce
the number of function evaluations, XDG relies on Definition 1
and does not check xi and xj for interaction if both interact with
a common variable xk. Finally, XDG merges the groups whose
intersection is not null. Although XDG saves some function
evaluations due to the indirect interaction assumption, it is not
as efficient as DG2 and its time complexity remains O(n2).
Fast interdependency identification (FII) [159] is another algo-
rithm that draws on the notation of indirect interaction to
improve the grouping efficiency.

Generalized Theorem: Hu et al. [159] were first to use
simultaneous perturbations multiple dimensions to check the
interaction of any two sets of decision variables using only
four function evaluations. This makes it possible to find all
separable variables in O(n) by iteratively checking each vari-
ables against all other variables. For nonseparable variables,
the algorithm starts with a candidate variable and checks it
against all other variables. If an interaction is detected, the
variables are merged to form a group. Thereafter, the vari-
ables formed into the group are perturbed simultaneously to
find if any of its members interacts with the next decision
variable. Since a group is always checked against a variable,
a considerable number of function evaluations can be saved.

Sun et al. [160] formalized the notion of simultaneous per-
turbations and proposed the following extended version of the
DG theorem:

Theorem 2 [160]: Let f : Rn → R̄ be an objective function
and D = {1, . . . , n}; X1 ⊂ D and X2 ⊂ D be two mutually

(a) (b)

Fig. 8. Interaction structures represented by (a) and (b) cannot be
distinguished by RDG, FII, and XDG [157].

exclusive subsets of decision variables: X1 ∩ X2 = ∅. If there
exist two unit vectors u1 ∈ UX1 and u2 ∈ UX2 , two real num-
bers l1, l2 > 0, and a candidate solution x∗ in the decision
space, such that

f
(
x∗ + l1u1 + l2u2

) − f
(
x∗ + l2u2

) 
= f
(
x∗ + l1u1

) − f
(
x∗)

(13)

there is at least one interaction between a variable in X1 and
another in X2.

Theorem 2 implies that with only four function evalua-
tions, the interaction between arbitrary sets X1 and X2 can be
established. Sun et al. [160] used Theorem 2 to propose recur-
sive DG (RDG) to form the interaction groups. This reduces
the time complexity of interaction detection to O(n log n),
which is lower than the theoretical lower bound based on
DG2 [157]. As stated earlier, this reduction in time com-
plexity comes at the expense of losing on the accuracy of a
full interaction matrix. As a result, algorithms, such as RDG,
FII, and XDG, cannot detect overlapping components of a
function. For instance, these algorithms cannot distinguish the
interaction graphs depicted in Fig. 8. Yang et al. [161] further
reduced the computational cost of RDG by maintaining and
using historical information during the decomposition process
to avoid some unnecessary evaluations. Kim and Choi [162]
also improved upon RDG by pruning its recursive search three
in the divide-and-conquer process. They also used a variable
influence metric to presort the decision variables with the
aim of increasing the chance of pruning and hence, reducing
the total number of objective function evaluations. In another
study, Xue et al. [163] reduced the depth of RDG’s recur-
sion tree by dividing the variables into three subsets [164]
instead of two, thus reducing the number of objective func-
tion evaluations. Xue et al. [163] proposed an alternative view
of the simultaneous perturbations and augmented it with the
topological information of the problem to further reduce the
computational cost of problem decomposition.

Interaction Detection Accuracy of Finite Difference
Methods: In addition to the challenge of computational effi-
ciency, most finite difference methods presented in this section
are sensitive to the threshold parameter (ε) used to distinguish
between separable and nonseparable variables. Theoretically,
a nonzero λ = |�(1) −�(2)| signifies an interaction. However,
computational roundoff errors can sometimes cause nonzero λ

values even for separable variables. Therefore, when observ-
ing a nonzero value, it is important to find whether it is caused
by a genuine interaction or by computational errors. This
clearly affects the choice of ε, which has been investigated in
several studies. gDG [156] normalizes the values which make
it less sensitive and uses tighter threshold they call σ to detect



OMIDVAR et al.: REVIEW OF POPULATION-BASED METAHEURISTICS FOR LARGE-SCALE BLACK-BOX GLOBAL OPTIMIZATION—PART I 813

interactions. This resulted in 100% accuracy almost all of the
CEC’2010 benchmark suite. Cao et al. [165] extended gDG
to decompose large-scale multiobjective problems. GDG [155]
and EVIID [162] define ε to be a function of the objective
function based on the rationale that the magnitude of the com-
putational errors is a function of the objective function value:
ε = α · min{f (x1), . . . , f (xk)}, where x1 . . . xk are k random
samples of the search space, and α is a small user-defined
parameter allegedly less sensitive to computational errors as
compared to ε. Although GDG found the ideal decomposition
for 18 out of 20 functions from the CEC’2010 LSGO bench-
mark suite, its performance deteriorates on the imbalanced
functions of the CEC’2013 LSGO benchmark suite [166]. In
FII [159], two different threshold values are used, one for
detecting separable (λ = |�(1) − �(2)| < ε1), and another for
the nonseparable variables (λ = |�(1) − �(2)| > ε2). Despite
this suggestion, FII uses ε1 = ε2 = 10−2 for the experiments.

Omidvar et al. [157] conducted a systematic error anal-
ysis of DG2 to place tight bounds on the roundoff errors.
DG2 estimates the greatest lower bound einf and the least
upper bound esup of the computational errors. For each pair
of variables, if the quantity λ < einf, it is treated as genuine
zero and the pair will be declared as separable; otherwise, if
λ > esup, it is treated as a genuine nonzero value and the pair
will be declared as having interaction. For λ ∈ [einf, esup], ε

will be set to a weighted average of the two bounds based
on the total number of genuine zero and nonzero detections.
Unlike the previous finite difference methods, DG2 is parame-
ter free and calculates a different threshold value for each pair
of the decision variables. On the CEC’2013 LSGO bench-
mark suite, DG2 outperformed CCVIL, DG, GDG, and XDG.
Chen et al. [167] proposed the global information-based adap-
tive threshold (GIAT) as an improved method for setting the
threshold value based on einf and esup. GIAT calculates these
two quantities according to DG2, and it then calculates the
quantity ζ = ([(λ − einf)fs(λ − einf)]/[max{|�(1)|, |�(2)|}])
for all pairs of variables similar to the way it is done by DG2.
Finally, all ζ values are sorted and the two adjacent values with
the largest difference are taken as the basis for calculating the
threshold. GIAT uses this approach only on partially separable
functions and sets the threshold value to the minimum of the
two retrieved ζ values.

We close this section by reviewing two recent variants
of RDG. RDG2 is the state-of-the-art decomposition algo-
rithm that applies the error analysis mechanism of DG2 on
the recursive mechanism of RDG to find the error bounds.
This algorithm inherits the accuracy of DG2 and efficiency
of RDG and outperforms both methods in grouping accu-
racy with a time complexity of O(n log n) [168]. RDG3 [169],
the winner of CEC’2019 Competition on Large-Scale Global
Optimization,2 builds upon RDG2 and includes a mechanism
to deal with problems with overlapping components.3

2) Grouping Principles: This section revisits the explicit
decomposition methods reviewed in the previous section and

2For more information on LSGO competitions see part II of the survey.
3Problems with overlapping components are covered in part II of this

survey.

analyzes them based on their grouping mechanism rather than
the interaction detection principles (Fig 5). The grouping prin-
ciples can be classified into three major groups: 1) automatic;
2) semiautomatic; and 3) k s-dimensional.

a) Automatic: The groups are either formed automati-
cally in which case the number and the size of components
are determined by the algorithm. This is usually done by pro-
cessing the interaction information identified by the detection
mechanisms outlined in Section II-B1. For example, DG2
and GDG use the connected components algorithms on the
interaction matrix of the function to form the groups. Other
algorithms such as graphDG [156] use other graph partition-
ing techniques to form the groups. The automatic methods
are predominantly based on DG and monotonicity detection,
which are among accurate interaction detection mechanisms
(see Table S-I in the supplementary document). The variations
in the grouping principles of these techniques mainly affect
problems with overlapping components. Peng et al. [170] sug-
gested a solution exchange scheme between components based
on multimodal optimization to cope with grouping inaccura-
cies. Ren et al. [171] also proposed the bihierarchical CC,
which occasionally merges components to deal with decom-
position inaccuracies. Overlapping problems are covered in
part II of the survey.

b) Semiautomatic: Semiautomatic methods require the
size or the number of components to be specified by the
user. Cluster based methods such as the algorithm proposed
by [172] use the fuzzy c-mean algorithm to form the groups,
which requires the number of components as input. Some stud-
ies [173], [174] use spectral clustering with DG to take the
degree of interaction into account. In statistical detection meth-
ods, such as AVP2 [135] and 4CDE [136], a threshold or a set
of intervals should be defined on the correlation coefficients
to form the groups.

A special type of semiautomatic grouping is called
multilevel [175], [176], in which the user specifies a list of
potential component sizes for the algorithm to choose from.
The algorithm often uses a probability distribution to choose
a component size from the list and uniformly divide the n-
dimensional problem into smaller components. The algorithm
often adapts the parameters of the probability distribution
based on the performance of the selected item in the course
of optimization. Some multilevel algorithms, however, use
deterministic methods to gradually reduce the number of
components during optimization [177].

c) k s-dimensional components: These algorithms are
the least informed and require both the number and the size
of each component to form the groups. Detection princi-
ples, such as random grouping [118], [120], [178], [179],
delta grouping [121], fitness difference partition-
ing [126], [127], [129], [130], and statistical methods [83],
[134], are among such methods.

C. Advantages and Disadvantages of Explicit and
Implicit Methods

Explicit and implicit methods each have their own mer-
its. In dealing with partially additively separable functions,
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explicit methods are generally more efficient in finding the
interaction structure using systematic perturbation methods
than the implicit methods, relying on statistical information
through random sampling. Although dimensionality is a major
challenge to both types, the efficiency of implicit methods
drops more sharply than explicit methods in higher dimen-
sions. Accurate model estimation in implicit methods requires
an exponentially increasing sample size with dimension [70],
whereas the state-of-the-art decomposition algorithms require
O(n log n) to infer interactions [160]. When the interaction
structure is more complicated and a “crisp” decomposi-
tion is not possible, implicit methods are generally more
flexible in representing and exploiting such structures. For
instance, when the underlying components of the objective
function have shared decision variables (overlap), it is not clear
how it should be decomposed into a set of disjoint groups
(see Section VI-A). Another advantage of implicit methods
is that they build their model during optimization whereas
explicit methods work offline and infer interactions prior to
optimization. However, as was stated before, this flexibility
comes at the cost of significant computational overhead to
find a suitable model in the first place. For instance, BOAs
use Bayesian networks, which can represent any arbitrary
interaction structure; however, discovering the “right” model is
an NP-hard problem [46]. Another advantage of implicit meth-
ods, such as CMA-ES, is their rotational invariance property
making them particularly suitable for solving nonseparable
problems. Some studies attempted to combine decomposition
methods with implicit methods to help EDAs scale better and
bring the flexibility and the invariance property of the implicit
methods to decompositions [80]–[83]

III. HYBRIDIZATION AND MEMETIC ALGORITHMS

According to the No Free Lunch theorem [180], no single
search algorithm can uniformly outperform all other algo-
rithms on all possible problems. This suggests that there are
niche problem areas in which particular algorithms perform
better than others. The aim of hybridization is to bene-
fit from unique search capabilities of several algorithms to
find high-quality solutions to problems, which are better than
the solutions obtained by the individual algorithms in isola-
tion. More generally, the aim of hybridization in evolutionary
algorithms is to [181]: 1) improve their performance (such
as convergence speed); 2) improve the final solution qual-
ity obtained by such algorithms; and 3) incorporate such
algorithms as part of a larger system. Some hybridization
algorithms are generic in the sense that they can hybridize
any number or combination of existing search algorithms.
Ensemble strategies are a major allied topic concerned with
the study of designing stable optimization algorithms by com-
bining a set of “unstable and diverse” ones [182]. Hybrid
local search and memetic algorithms play an important role
in large-scale global optimization.

A. Hybrid Local Search Algorithms

As distinct from memetic algorithms, these algorithms are
solely based on local search with no explicit global search

component. They often rely on an initial systematic initializa-
tion, such as orthogonal arrays [183], to attain a good coverage
of the search space. Multiple trajectory search (MTS) [183]
used three different local search methods employed based
on the properties of the search space in the vicinity of
existing candidate solutions. Before performing an extensive
local search, MTS tests all three local search mechanism
and picks the best mechanism that performs the best in
that neighborhood. MTS has been tested on the CEC’2008
LSGO benchmark functions with up to 1000 dimensions.
Gardeux et al. [184] also combined two line search algo-
rithms, i.e., enhanced unidirectional search (EUS) and 3-2-3
line search algorithm, for large-scale global optimization. EUS
searches along lines specified by a series of unit vectors not
necessarily aligned with the coordinate system. Although vari-
able interaction can have significant effect on the choice of
direction vectors, this aspect has not been studied by the
authors.

B. Memetic Algorithms

Memetic algorithms [185] represent a special hybridization
paradigm in which local search is applied to individuals within
an explorative evolutionary framework to mimic the individual
learning procedure. This dual-phase mechanism has the poten-
tial to balance between exploration and exploitation forces,
which are inspired by Darwinian evolution and the effect
of individual learning considered in Baldwinian/Lamarckian
evolution, respectively. Memetic algorithms have gained pop-
ularity in large-scale global optimization, some of which
ranked first in IEEE CEC Competition on Large-Scale Global
Optimization.4 Memetic algorithms have also been applied
to discrete optimization [186], boolean satisfiability prob-
lems [187], and a range of application areas, such as large-
scale hybrid flow shop problems [188], large-scale capacitated
arc routing problems [189], [190], and big data optimization
problems [191].

Major design considerations in memetic algorithms
are [192]: 1) frequency of applying local search; 2) choice
of solutions participating in local search (individual learn-
ing); 3) search intensity, i.e., the duration of applying local
search; and 4) choice of local search algorithms. In addition
to the above, the algorithms using a repertoire of local search
procedures need to devise a policy to choose from the avail-
able local search operators. In what follows, we review the
relevant memetic and other hybrid algorithms used for large-
scale global optimization in reference to the above design
considerations.

1) Local Search Frequency: The most commonly used way
of controlling the frequency of applying local search is to
run at regular interval as controlled by a user-defined parame-
ter [193]–[195]. An extreme case for this approach is to run the
local search procedure at every iteration [183], [196]–[198].
In some cases, if the local search process is marked as stag-
nant, it will not be invoked [196]. MTS, which uses multiple
local search operators, runs all its operators at the beginning
of every cycle and picks the best performing operator for the

4For more information on competition results, refer to part II of the survey.
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rest of that cycle. In some algorithms, instead of resorting to
running the local search at fixed regular intervals, the local
search operators are applied such that the ratio between the
local and global search is fixed [199]–[201]. In some algo-
rithms such as MA-SW-Chains [199], [200], search frequency
and intensity (covered later in this section) are linked through a
fixed local/global search ratio. In other words, once the global
search ratio is fixed, specifying search frequency or intensity
determines the other. Some other approaches decide the invo-
cation of local search probabilistically using a prespecified
distribution whose parameters are set and/or adapted based on
its success/failure rate [202], [203].

2) Choice of Solutions: The choice of solutions to partici-
pate in the local search process can be random, performance
based, complete (i.e., all solutions participate) [198], or any
combination of the three. For example, the algorithm proposed
by [203] chooses five random solutions, the best solution, and
the top 25%. The performance-based methods either apply
local search to the best solution [194]–[197], [201], [202],
top n solutions [183], top p% solutions [193], or those
improved more than a predefined threshold in previous itera-
tions [199], [200]. Some methods also emphasize the solutions
not selected before [199], [200]. Zhao et al. [203] proposed
to use the niching algorithm Clearing proposed by [204] to
choose the solutions to undergo local search. They start from
several solutions that progressively reduce to one, with the aim
of controlling the exploration/exploitation balance.

3) Search Intensity: Search intensity is defined as the dura-
tion in which the local search is active. The simplest way of
specifying the search intensity is a fixed-budget policy, i.e., to
run the local search operator for a fixed and predetermined
number of function evaluations [193], [196], [201], [202].
MTS [183] uses a greedy approach and runs the local search
algorithm until no improvement is observed. Other algo-
rithms using MTS-based local optimizers also use a similar
strategy [194], [195]. As was discussed previously in the
context of search frequency, some algorithms link search
frequency and intensity by forcing a fixed local/global search
ratio [199], [200]. A more sophisticated way of specifying
search intensity is to do so adaptively during the course of
optimization. Liu and Li [197] determined the search intensity
based on the success/failure rate of the local search proce-
dure. Bolufé-Röhler et al. [198] simply doubled the search
intensity every time the local search procedure is invoked.
Zhao et al. [203] ran the global and local search procedures
once at the beginning of each cycle, and the search intensity
for each case is specified proportional to their success/failure
rates.

4) Local Search Procedure: A wide range of global and
local search algorithms has been hybridized for solving large-
scale global optimization algorithms. Table I summarizes
various hybridizations proposed in the literature. In the table,
“G” denotes a global search mechanism, “L” denotes a local
search procedure, the combination of which indicate a memetic
algorithm, whereas “H” denotes a generic hybridization of
a set of local or global search procedures. The table shows
that DE [117] is the most widely used global search mecha-
nism followed by PSO [220]. A wide range of local search

operators is also used that can be categorized as random
search, line search, and coordinate descent. Algorithms from
all three categories are commonly used in various memetic
or hybrid frameworks; however, the coordinate decent proce-
dure of MTS [183], known as MTS-LS1, and the Solis and
Wets’ [221] random search algorithms are the most popular
operators.

In most cases, a single local search procedure is used
within a global exploratory process. However, in some cases,
more than two operators, local or global, are used simulta-
neously, the application of which needs to be coordinated by
the hybrid framework. For instance, an algorithm proposed
by [201] probabilistically selects between random walk and
Nelder-Mead [222] based on an exponential distribution whose
parameter is adapted according to a measure of popula-
tion diversity. Another algorithm by [191] adaptively selects
between Rosenbrock’s [205] and Powell’s [206] search algo-
rithms by testing their effectiveness using statistical hypothesis
testing methods during the course of optimization. MTS coor-
dinates between three local search operators by running them
on m solutions at the beginning of each cycle and uses the best
performing operator for the rest of the cycle until it becomes
stagnant. There are also some algorithms [125], [213], which
employ memetic algorithms in a CC framework. These algo-
rithms decompose the problem into separable and nonsepara-
ble components and employ different local search operators
suitable for the separable and the nonseparable components.
Further details of coevolutionary memetic algorithms are given
later in this section.

A multiple offspring (MOS) framework [223] is an abstrac-
tion layer on top of the reproductive operators of existing
evolutionary algorithms, which systematizes the coordina-
tion of several search operators. MOS employs a repertoire
of evolutionary operators and applies them based on their
performance over the course of optimization in order to
achieve a higher long-term performance. In the context of
large-scale optimization, several evolutionary operators have
been hybridized using the MOS framework [208]–[210],
which are summarized in Table I. The experimental results
on a wide range of benchmark functions with up to 1000
dimensions showed the scalability of MOS framework to high-
dimensional problems, making it the first-ranked algorithm in
CEC’2013 and CEC’2015 competition on large-scale global
optimization. The readers are referred to part II of the sur-
vey for a discussion on LSGO competitions and more recent
results.

5) Parallel Versus Sequential Hybrids: Memetic algorithms
and other hybrid methods can be implemented in a par-
allel paradigm or a sequential one. In the context of
large-scale global optimization, parallel hybrids are lim-
ited [16], [214], with most algorithms following a sequential
paradigm. Wang et al. [216] suggest that parallel hybrids may
not be effective in utilizing the benefits of various search
algorithms due to disparities in their convergence speed and
diversity maintenance. Molina et al. [224] proposed the idea
of local search chains in which also emphasizes a sequen-
tial paradigm. The aim of these search chains is to perform
an intensive local search during the course of optimization.
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TABLE I
SUMMARY OF COMMON ALGORITHMS USED IN HYBRIDIZATION FRAMEWORKS. THE ALGORITHMS ARE CLASSIFIED INTO: GLOBAL SEARCH,

RANDOM SEARCH, LINE SEARCH, COORDINATE DESCENT, AND OTHER DERIVATIVE-FREE METHODS, SUCH AS NELDER-MEAD, CMA-ES,
OR TABU SEARCH. THE CHARACTER G DENOTES THAT THE ALGORITHM IS USED AS A GLOBAL SEARCH OPERATOR, L DENOTES A

LOCAL SEARCH OPERATOR, AND H DENOTES A GENERIC HYBRIDIZATION OF A SET OF LOCAL OR GLOBAL SEARCH OPERATORS

The term chain alludes to the fact that a local search operator
can be applied in succession, and each invocation can resume
the search process from where it stopped in its previous
invocation. Hence, forming a chain of local searches has
the capacity to better exploit the properties of the landscape
and focus on more promising regions. The idea of local
search chains was first used with CMA-ES [68] as the local
search operator to form the MA-CMA-Chains algorithm [224].
The computational cost of CMA-ES makes it prohibitive
for large-scale optimization. Therefore, [199] employed the
Solis Wets’ [221] algorithm as the local search operator
and proposed MA-SW-Chains. This algorithm, ranked first
in the CEC’2010 Competition on Large-Scale Optimization,
showed better performance relative to other algorithms on
the CEC’2010 large-scale benchmark problems [122]. Later,
a variant of MA-SW-Chains, called MA-SSW-Chains, was
developed in which the local search was only applied to a
random subset of the decision variables [200].

6) Cooperative Coevolution and Memetic Algorithms:
Decomposition methods (see Section II-B) and memetic
algorithms are the two most widely used approaches to
large-scale global optimization with algorithms from both
categories ranked first in large-scale global optimization

competitions [169], [225], [226]. To benefit from the advan-
tages of both approaches, some authors suggest the use of
memetic algorithms [125], [126], [191], [207], [213] or other
hybrids [218] as component optimizers in a CC framework.
The general approach is to decompose the problem into a
set of lower dimensional subproblems using the methods
described in Section II-B, and optimize each component using
a global search algorithm followed by an episode of local
search. Cao et al. [207] proposed to use SaNSDE [227]
followed by Solis and Wets’ [221] on each component
and adjust their search intensity/frequency according to their
performance. Sun et al. [213] also used SaNSDE as the
global search operator followed by dedicated local search
procedures for the separable and nonseparable components.
Sabar et al. [191] used two local search operators (i.e.,
Rosenbrock’s [205] and Powell’s [206]) in conjunction with
DE as the global search algorithm. Liu et al. [125] proposed
to use coordinate descent and Quasi-Newton local search
algorithms on separable and nonseparable components respec-
tively, followed by a round of DE to further improve the
population.

The MLSHADE-SPA algorithm [228], runner-up of the
IEEE CEC’2018 large-scale competition, takes a different
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approach to combining memetic and coevolutionary search.
The algorithm divides the entire search process into sev-
eral rounds where each round is comprised of an initial
coevolutionary search phased followed by a local search
phase. In the coevolutionary phase, the problem is decom-
posed into three equally sized components each of which
is optimized using a different DE-based algorithm. The
coevolutionary phase is followed by local search where the
best found solution is improved using a modified MTS-LS1
algorithm [183].

IV. CONCLUDING REMARKS

In this part of the series, we covered two major approaches
to large-scale global optimization: 1) algorithms, which exploit
problem structure in the form of variable interaction and
2) hybrid algorithms, most notably memetic algorithms and
local search.

Exploiting problem structure and gray-box optimization has
shown to be effective ways of solving large-scale problems
(Section II). These structural information can be used in the
form of explicit decomposition or implicitly through model
building. The challenge of explicit methods is the cost of
offline variable interaction learning, which requires objective
function evaluations and causes an overhead on the overall
optimization cost. Another issue is that a crisp decomposition
is sometimes impractical due to various forms of couplings
caused by the existence of multiple objectives, overlapping
components (shared variables among subfunctions), or cou-
pling through constraints. Implicit methods also suffer from
the accuracy of capturing problem structure, especially when
the problem size grows in size. Finding more efficient and
effective ways of exploiting structural information, such as
overlap, can have a significant impact on improving the
scalability of optimization algorithms.

Hybrid methods and memetic algorithms, in particular, use
the available computational budget in a more economical way
and gain competitive advantage by means of extensive local
search. It is not clear how these algorithms may perform in
finding global optimum under more relaxed budget constraints.
Their dimensionwise local search procedures are generally
blind to variable interactions making them better suited for
separable functions. In memetic frameworks, the design con-
siderations, such as the frequency of local search or the choice
of the local search procedure, are ad hoc and require exten-
sive experimentation. Designing generic frameworks capable
of finding the optimal search intensity and the choice of local
search procedures can significantly improve the performance
of these algorithms and also make them readily available to
practitioners in other fields.

In the next part of this survey series, we cover several other
approaches to large-scale global optimization and also look
at several important problem areas, such as multiobjective
optimization and constraint handling. The next part also
touches upon two major issues pertaining to the future of the
field: 1) pitfalls and challenges that hinder the progress of the
field and 2) the pressing open questions and potential areas of
future research.
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