
This is a repository copy of The multi-depot electric vehicle scheduling problem with power
grid characteristics.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/180812/

Version: Accepted Version

Article:

Wu, W, Lin, Y, Liu, R orcid.org/0000-0003-0627-3184 et al. (1 more author) (2022) The 
multi-depot electric vehicle scheduling problem with power grid characteristics. 
Transportation Research Part B: Methodological, 155. pp. 322-347. ISSN 0191-2615 

https://doi.org/10.1016/j.trb.2021.11.007

Crown copyright © 2021, Elsevier. This manuscript version is made available under the 
CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs 
(CC BY-NC-ND) licence. This licence only allows you to download this work and share it with others as long 
as you credit the authors, but you can’t change the article in any way or use it commercially. More 
information and the full terms of the licence here: https://creativecommons.org/licenses/ 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



1 

 

Please cite the paper as: 
Wu W., Lin Y., Liu R. and Jin W. (2021) The multi-depot electric vehicle scheduling problem with power grid 
characteristics. Transportation Research Part B. In press. 
 

The multi-depot electric vehicle scheduling problem with power 

grid characteristics 

Weitiao Wua1, Yue Lina, Ronghui Liub, Wenzhou Jina 

a. School of Civil Engineering and Transportation, South China University of Technology, Guangzhou 510641, 

China 

b. Institute for Transport Studies, University of Leeds, Leeds, LS2 9JT, United Kingdom 

 

Abstract: Electric buses can bring significant environmental and social benefits in the future public 

transportation systems. However, the large-scale adoption of electric buses faces major technical 

challenges caused by not only the limited running range and long charging time, but also the complex 

power grid characteristics, such as time-of-use (TOU) electricity tariffs and peak load risk. On one hand, 

the operation cost is determined by the TOU pricing and vehicle schedule. On the other hand, the 

unbalanced charging demand resulting from the vehicle schedule will cause peak load risk and pose a 

potential threat to the power grid safety. With the increasing penetration of electric buses, there is a real 

need to carefully design and manage electric bus scheduling to not only reduce the system costs but also 

ensure power grid safety. In this paper, we introduce a bi-objective multi-depot electric vehicle scheduling 

problem, a new generalization to the vehicle scheduling problem where the effects of TOU pricing and 

peak load risk are explicitly considered. The dual objectives are to minimize the total operation cost and to 

minimize the peak load resulting from concurrent recharging activities, as constrained by the running range 

of the electric buses and the capacity of charging depots/stations. A time-expanded network model is 

devised to represent this problem, while the bi-objective optimization model is reformulated by the 

lexicographic method. We propose a tailored branch-and-price method to solve the problem. Heuristics and 

a trip chain pool strategy are embedded into the branch-and-price method to expedite the computation time. 

Our method is validated through a benchmark network and a real-world bus network in Guangzhou, China. 

The results demonstrate that our method is effective in cost savings and peak load leveling, and far 

outperforms the off-the-shelf solver with respect to solution quality and computation efficiency. The 

real-world application results show that compared to state-of-the-practice, the peak load can be 

significantly reduced, on top of cost and fleet size savings. 

Keywords: Public transport; Vehicle scheduling problem; Power grid characteristics; Peak load risk; 

Branch-and-price; Heuristics 
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1. Introduction 

Public transport is vital to address urban traffic congestion problems and to support sustainable urban 

development. While conventionally-fueled diesel buses are prone to low energy efficiency and high 

pollutant emissions, the advancements in renewable energy and battery technology have led to increasing 

adoption of electric buses by transit agencies. In 2019, the total number of electric buses around the world 

was about 425,000, an increase of 32% from 2018. China is leading the way in adopting electric buses. For 

example, in Shenzhen, all heavy diesel buses have been replaced by electric ones. In the United Kingdom, 

electric bus fleets have been implemented in a number of cities including London and Liverpool (Ayre, 
2018).  

Recent developments in electric buses have also created new challenges in transportation. Despite their 

environmental advantages, the relatively short running range and long recharging time remain the major 

factors that hamper the adoption of electric buses. At present, there are three recharging methods: battery 

swapping, in-motion wireless charging, and station charging. Battery swapping has low layover time as the 

depleted batteries can be replaced by fully charged ones almost instantly. However, such a recharging 

method requires professional labor and costly equipment, such as additional batteries and loading robots. 

Using dynamic wireless power transfer technology, wireless lane-based charging allows electric buses to 

be charged on-route. Although this method can reduce the size of batteries and charging time, it requires 

high construction and maintenance costs and is still in the exploratory stage. Two types of chargers are 

available for station-based charging: fast chargers and slow chargers. Even though the buses can be fully 

charged through slow charging overnight, electric buses often cannot complete a full-day’s operation 

without recharging. In practice, even the design running range cannot be fully utilized due to possible road 

gradient, traffic congestion, air-conditioning, and heating. Typically, an electric bus with a design driving 

range of 250 km can run for only 175 km with actuated air-conditioning. Moreover, to prolong the battery 

life, the running range would be deliberately reduced by the public transport operator to avoid deep 

discharge. Therefore, daytime fast charging is often needed to maintain the operation of electric buses for a 

whole day, particularly for buses with a small battery capacity. 

Another challenge of electric bus operation stems from the complex power grid characteristics 

associated with the operation cost and power system safety. In the context of time-of-use (TOU) electricity 

tariffs, the peak tariff is approximately two or three times its low counterpart (Wu et al., 2020). Fig. 1 

displays the TOU pricing in two megacities in China, which shows clearly that the charging costs are 

heavily dependent on the time of day when bus recharging is required, and therefore on the vehicle 

schedule. If more recharging activities can be undertaken in the low-tariff period, charging costs would be 

lower but charging demand for that period would be higher. A highly centralized electric power demand 

has the potential to overload the electricity grid and induce unanticipated voltage drops and poor power 

quality. The mass adoption of electric buses and technological advancements in battery capacity and 

high-power fast-charging devices would increase total energy demand. The regional aggregate power 

demand from both residential and industrial consumption is more likely to exceed the tolerable charging 

station capacity in the season with peak demand (e.g., summer), given the physical constraints of charger 
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equipment. For example, the power capacity of a transformer in North America is limited to 25kVA. An 

added challenge for vehicle scheduling of electric buses, therefore, is how to reduce the peak load as well 
as overall operation costs. 

 

                  (a) Guangzhou                               (b) Beijing 

Fig. 1 Time-of-use electricity tariffs in two megacities 

The vehicle scheduling problem (VSP) is fundamental in public transport planning and transportation 

science. A well-designed vehicle schedule for electric buses would be expected to reduce peak load risk for 

power grids in a cost-efficient manner. Although the VSP has been extensively studied previously, the 

literature on multi-depot electric vehicle scheduling problems is quite rare due to its complexity. With the 

increasing penetration of electric buses, there is an increasing need to carefully design and manage electric 

bus scheduling to not only reduce the system costs but also to ensure power grid safety. To address the 

above challenges, this paper aims to study the multi-depot electric vehicle schedule problem (MDEVSP) 

under TOU electricity tariffs that meet the two objectives: (a) minimizing the total operation cost; and (b) 

minimizing the peak charging load. We propose an exact tailored branch-and-price algorithm to tackle this 

problem, and we validate the proposed method through a benchmark network and a real-world bus 

network in Guangzhou, China. Based on the results, new findings and insights are provided. 

 

2. Literature review and main contributions 

The advancements of electric vehicles have given rise to a number of new research streams in 

transportation science. In what follows, we begin by reviewing the electric vehicle (EV) charging 

infrastructure planning, proceed to review vehicle scheduling problems, and finally point out the objective 

and potential contributions of this paper. 

2.1 EV charging infrastructure planning 

   A stream of research on EV has centered on the charging infrastructure design. This problem aims to 

optimally deploy the charging infrastructure considering various factors. Generally, the research subjects 

can be categorized into two types: light-duty cars and heavy-duty buses. The studies on the former are 
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extensive, and they include optimizing the charging station location, the number of chargers for plug-in 

EVs, and the size of fast charging stations (see a review in Shen et al. (2019)). 

The behaviour of heavy-duty buses is quite different from that of light-duty cars. For a start, most of 

the bus services follow fixed routes, and thus they have limited recharging options, as compared to cars. 

The energy consumption for buses is much higher than that for cars, and therefore they need recharging 

more frequently. As such, the optimization models developed for light-duty cars cannot be directly adapted 

to the electric bus systems. Studies addressing the electric bus charging infrastructure are relatively scarce, 

and are mostly confined to the sphere of transportation assuming unlimited power supply. Wei et al. (2018) 

investigated the spatial and temporal deployment optimization problem for battery-electric bus systems, 

with the aim to minimize the deployment cost of replacing conventional diesel and compressed natural gas 

buses. Rogge et al. (2018) jointly optimized the battery-electric bus scheduling scheme, fleet sizing, and 

charging infrastructure planning. Their considerations are limited to overnight in-depot charging. Lin et al. 

(2019) developed a multi-period bus charging infrastructure planning model under the transportation 

network and power grid system. He et al. (2019) addressed the deployment of fast-charging stations for a 

battery-electric bus system. The model jointly determines the locations and types of fast-charging stations, 

the battery sizes, and whether to install energy storage systems. However, the model is deterministic by 

assuming that the energy consumption is predetermined. An (2020) developed a stochastic integer program 

for optimal siting of charging stations and fleet sizing with uncertain demand. A few studies focus on the 

layout of wireless lanes for electric bus systems. Liu and Song (2017) studied the robust optimization 

problem of locations of wireless charging facilities and battery sizes for battery-electric bus systems. Bi et 

al. (2018) proposed an optimization model for locating wireless charging bus stops, which undertake 

opportunity charging when loading and unloading passengers. 

2.2 Operational planning in public transport 

Public transport planning includes network design, frequency setting, timetabling, and vehicle/crew 

scheduling (Ceder, 2004; Wu et al., 2019). Besides those planning procedures, another stream of research 

is dedicated to the design of control strategies at the operation phase, such as holding control (Wu et al., 

2017) and speed adjustment (Argote-Cabanero et al., 2015; Laskaris et al., 2020). As this paper is primarily 

concerned with the vehicle scheduling at the planning phase, in what follows we review only existing 
relevant research on this direction. 

The vehicle scheduling problem has been studied since the early 1970s and remains a prominent 

research topic because of its inherent complexity. The problem aims to assign a fleet of buses to complete a 

given set of trips within pre-specified start and end times. The vehicle scheduling problem can be divided 

into two categories: the single-depot vehicle scheduling problem (SDVSP) and the multiple-depot vehicle 

scheduling problem (MDVSP). In the MDVSP, some deadheading trips are allowed to share fleet resources. 

The SDVSP can be solved in a polynomial time, whereas the MDVSP has been proven to be NP-hard. 

Hadjar et al (2006) addressed the MDVSP with a branch-and-cut approach. Shen et al. (2016) developed a 

model for vehicle scheduling with random trip time by refining the compatibility of trip pairs. Uçar et al. 

(2017) proposed a recovery method to handle the disruptions in the MDVSP. He et al. (2018) addressed the 
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vehicle scheduling problem with random trip time using an approximate dynamic programming approach. 

Kulkarni et al. (2018) devised a new inventory formulation for the MDVSP, coupling with heuristics based 
on multiple-commodity network flow and Dantzig-Wolfe decomposition.  

There also exist a handful of studies on the integrated optimization of vehicle scheduling and other 

procedures, such as integrated timetabling and vehicle scheduling (Petersen et al., 2013; Desfontaines and 

Desaulniers, 2018; Carosi et al., 2019) and integrated vehicle and crew scheduling (Huisman and 

Wagelmans, 2006; Boyer et al., 2018).  

2.3 Electric vehicle scheduling problems 

With the rising adoption of electric buses around the world, the electric vehicle scheduling problem has 

attracted increased interest recently to support public transport management. The electric vehicle 

scheduling problem is a variant of the classic vehicle scheduling problem, where the characteristics of 

electric buses are explicitly considered, such as the limited running range, long charging time, and fixed 

charging stations. Li (2014) developed an SDVSP for electric buses considering limited energy. Li et al. 

(2019) formulated an MDVSP with a mixed bus fleet composed of electric and diesel buses. Tang et al. 

(2019) studied both static and dynamic versions for electric bus scheduling under stochastic traffic 

conditions, where the static model involves a buffer-distance strategy and the dynamic model reschedules 

the bus fleet. Yang et al. (2018) optimized the charge scheduling for in-motion wireless charging systems 

for electric buses. The objective is to minimize the total charging cost. Yao et al. (2020) optimized electric 

bus scheduling considering multiple vehicle types using a genetic algorithm. Perumal et al. (2020) 

integrated vehicle and crew scheduling for electric bus systems. 

Another line of research concentrates on the recharging schedules and recharging process management 

for electric buses considering the charged amount (Kooten et al., 2017; Janovec and Koháni, 2019). Wen et 

al. (2016) presented an adaptive large neighborhood search algorithm to address the SDVSP, where both 

full recharging and partial recharging are allowed. Wang et al. (2017) developed a framework to optimize 

electric bus recharging schedules for both the planning and operation levels. Recently, He et al. (2020) 

investigated the optimal charging scheduling problem for the on-route fast-charging battery-electric bus 

system. Liu and Ceder (2020) investigated the battery-electric bus scheduling problem with consideration 

of the non-linear battery charging function, with the aim to minimize the required fleet size and battery 

chargers. 

2.4 Objectives and contributions 

   The existing literature reveals that the electric vehicle scheduling problem is a new and important 

research topic from both theoretical and practical perspectives. Most existing studies are concerned with 

solving a transportation problem, assuming unlimited electricity supply and ignoring the potential risk in 

electricity peak load. As far as we are aware, there is no explicit analysis on the effect of power grid 

characteristics (e.g., TOU pricing and peak load risk) in the electric vehicle scheduling problem, even 

though it is highly relevant and critical for transportation electrification. The main contributions of this 

paper are therefore threefold. First, we explicitly consider TOU electricity tariffs and formulate a 

bi-objective electric transit vehicle scheduling problem in the generalized context of multi-route schedule 
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coordination to minimize the operation cost and peak load risk. Second, we reformulate the bi-objective 

optimization model by a powerful and practical lexicographic method. This method contributes to peak 

charging load leveling while reducing operation costs. Third, we propose an exact solution method based 

on a tailored branch-and-price method that embeds heuristics and a trip chain pool strategy to expedite the 

computation time. Our method is validated through a benchmark network and applied to a real-life bus 

network. 

In the next section, the mathematical models are formulated. In Section 4, solution methodologies are 

described. In Section 5, computational experiments and an application are presented. Finally, the 
conclusions and future works are provided. 

 

3. Modeling approach 

3.1 Problem description 

The electric vehicle scheduling problem aims to optimally assign a fleet of buses to complete a given 

set of trips, where each trip has a specific start time, end time, and corresponding terminals (including 

charging stations). The electric vehicles are allowed to be recharged at any of the given charging stations. 

A single overnight charging will be insufficient to perform a full day’s schedule, indicating that within-day 

charging is essential to the schedule. The objective is to first minimize the operation cost considering the 

TOU pricing, and secondly to minimize the charging peak load. The operation cost includes the fixed 

transportation cost, variable transportation cost, waiting time cost, and charging cost. 

To facilitate model development and without loss of generality, the following assumptions are made: 

(A1) The electric buses will be fully charged overnight. Fast charging will be conducted during the 

operation period, and the buses will be fully charged once plugged into the grid. The charging power can 

be lower than the maximum power to reduce the degradation of the vehicles’ batteries. 

(A2) The charging time of each bus equals the full charging time. In practice, the charging time of each 

bus is nearly identical as the overall charging process includes fast charging (with large power) and trickle 

charge (with small power). In the latter process, the bus continues to draw electricity immediately after fast 

charging for a period of time to prolong the battery life. Even if the time spent in fast charging may differ 

depending on the state of charge (SoC), the trickle charge will continue until the required charging time is 

over. 

(A3) The travel times are deterministic depending on the trip starting time. In practice, bus travel times can 

vary due to the stochastic nature of public transit attributes, such as fluctuating demand and changeable 

weather. Nevertheless, the effect of stochastic travel times can be alleviated by incorporating a proper 

slack time into scheduled travel time in the planning phase. For example, the scheduled travel time is 

commonly set as 85-percentile observed travel time to achieve a reliable scheme (Wu et al., 2016; Muller 

and Furth, 2000). In addition, the layover time at terminals can mitigate the stochastic travel times to a 

large extent. 

(A4) The charging stations can be located at either the terminals or any specific location to which the buses 

go off-route. 
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3.2 Time-expanded network  

In this section, we describe the electric transit system and our formulation of the MDEVSP with the 

effect of power grid characteristics in a time-expanded network. To represent the recharging activities at 

different times of the day, the planning horizon is discretized into a set of time windows. For simplicity, 

the length of each time window and the interval between time windows are set as the full charging time. 

We define a combination of charging station and time window (i.e., ‘charging station-time window’) as a 

charging activity/node. Let 𝐷 denote the depot set; 𝑇 denote the set of charging activities; 𝑆 denote the 

trip set; 𝛩 and 𝛩′ denote the set of origin depots and destination depots, respectively. Each trip 𝑠 ∈ 𝑆 

can be defined as a tuple (𝑠𝑡𝑠 , 𝑒𝑡𝑠 , 𝑠𝑙𝑠 , 𝑒𝑙𝑠), where 𝑠𝑡𝑠 represents the trip starting time; 𝑒𝑡𝑠 represents the 

trip ending time; 𝑠𝑙𝑠 is the origin depot; 𝑒𝑙𝑠 is the destination depot. Likewise, each charging activity 𝑢 ∈ 𝑇 can be defined as a tuple (𝑠𝑡𝑢 , 𝑒𝑡𝑢 , 𝑠𝑙𝑢 , 𝑒𝑙𝑢), where 𝑒𝑡𝑢 − 𝑠𝑡𝑢  equals the full charging time. The 

trip starting station is usually different from the trip ending station for a specific trip (i.e., 𝑠𝑙𝑢 ≠ 𝑒𝑙𝑢), 

whereas the trip starting station is identical to the trip ending station for a charging activity (i.e., 𝑠𝑙𝑢 =𝑒𝑙𝑢).  
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Fig. 2 Time-expanded network for MDEVSP 

Since the buses need to pull out and pull in from a certain depot, it will be difficult to track the depot 

associated with a specific vehicle with only one layer. To realistically model the potential movement of 

vehicles, we construct a set of layers, with each one corresponding to a specific depot. As a result, the 

vehicle schedule can be represented by a directed graph 𝐺𝑘 = (𝑉𝑘 , 𝐴𝑘), in which 𝑉𝑘 and 𝐴𝑘 represent 

the set of nodes and arcs of layer 𝑘, respectively. Let 𝛩𝑘  and 𝛩𝑘′  represent the origin depot and 

destination depot of layer 𝑘, respectively. Fig. 2 depicts the parallel time-expanded networks of two layers. 

In the time-expanded network model, there is a network layer for each depot. A trip will be executed by a 

bus from a specific depot. For example, trip 𝑠1 and 𝑠2 can be executed by the bus dispatching from 

depot 𝑘1, while trip 𝑠1, 𝑠2 and 𝑠3 can be executed by the bus dispatched from depot 𝑘2. A node stands 

for a specific activity, including trip dispatch from the depot, trip return to the depot, a bus trip, or a 

charging activity. The trip node and charging node are characterized by the starting time, ending time, 

starting station, and ending station, where the starting and ending stations are physical locations. 

An arc represents a feasible connection between two activities, and there are pull-out arcs, pull-in arcs, 

trip-connection arcs, and charging arcs. The arc capacity is 1, ensuring that each arc can only be executed 

by one vehicle. The pull-out arc connects a depot to a trip node, which represents a vehicle dispatching 

from the depot to begin its first trip. The pull-in arc connects a trip node to a depot, which represents a 

vehicle completing the trip task and returning to the depot. The trip-connection arc connects two trip nodes 

or a trip node and a charging node. There are two possible scenarios for the trip-connection arc: (a) a 

vehicle is held at the current depot and executes the next trip; (b) a vehicle runs empty to another depot and 

executes the next trip after holding. The charging arc connects a trip node to a charging node, which 

indicates a vehicle running empty to the charging station and undertaking a recharging activity.  

For a feasible trip-connection arc {(𝑖, 𝑗) ∈ 𝐴𝑘|𝑖 ∈ 𝑆 ∪ 𝑇, 𝑗 ∈ 𝑆}  or charging arc {(𝑖, 𝑗) ∈ 𝐴𝑘|𝑖 ∈
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𝑆, 𝑗 ∈ 𝑇}, the following condition should be met: 𝑠𝑡𝑗 − 𝑒𝑡𝑖 −𝐷𝐻𝑖𝑗 ≥ 0, that is, the trip starting time 

should exceed the prior trip ending time plus the possible deadheading time between the predecessor and 

the current node, where 𝐷𝐻𝑖𝑗  represents the deadheading trip time from the ending point of node 𝑖 (𝑒𝑙𝑖) 
to the starting point of node 𝑗 (𝑠𝑙𝑗). A feasible trip chain consists of a number of trip nodes and charging 

nodes, with starting depot being 𝛩𝑘 and ending depot being 𝛩𝑘′ , while satisfying the maximum running 

range constraint. The objective of MDEVSP is to optimally find a set of trip chains to cover trip tasks for a 

whole day, while satisfying a series of constraints such as depot and charging station capacity.  

3.3 Arc costs 

In the MDEVSP, the system costs are comprised of fixed transportation cost, variable transportation 

cost, waiting time cost, and charging cost. The fixed transportation cost depends on the number of vehicles 

required, while the variable transportation cost is determined by the travel distance. The charging cost 

consists of fixed charging cost and variable charging cost. The fixed charging cost is associated with the 

number of charge cycles, which results from the maintenance cost, crew cost, and battery degradation. On 

the other hand, the variable charging cost is dependent on the charging time, charging power, and TOU 

electricity tariffs. Evidently, with TOU pricing, the charging cost will be higher if recharging activities are 

to be undertaken during a high-tariff period. Therefore, the vehicle scheduling scheme under TOU pricing 

may exert great influence on the charging cost. For a charging activity 𝑢 ∈ 𝑇, the charging cost can be 

calculated as follows: 

 𝑐𝑏𝑢 = 𝑃 ∙ ∫ 𝑊(𝑡)𝑑𝑡𝑒𝑡𝑢𝑠𝑡𝑢 + 𝑐𝑓   (1) 

where 𝑃 is the charging power; 𝑊(𝑡) is the electricity price at time 𝑡; 𝑠𝑡𝑢 and 𝑒𝑡𝑢 are the starting 

time and ending time of charging activity 𝑢, respectively; 𝑐𝑓  is the fixed charging cost. 

    As a result, the arc cost takes the following piece-wise function: 

 

𝑐𝑖𝑗𝑘 = {  
  𝑐𝑑 ∙ 𝑑𝑖𝑗𝑘 + 𝑐𝑣 ,                              𝑝𝑢𝑙𝑙 − 𝑜𝑢𝑡 𝑎𝑟𝑐𝑐𝑑 ∙ 𝑑𝑖𝑗𝑘 + 𝑐𝑤 ∙ 𝐼𝐷𝑖𝑗 ,    𝑡𝑟𝑖𝑝 − 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛 𝑎𝑟𝑐𝑐𝑑 ∙ 𝑑𝑖𝑗𝑘 + 𝑐𝑤 ∙ 𝐼𝐷𝑖𝑗 + 𝑐𝑏𝑗 ,           𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔 𝑎𝑟𝑐𝑐𝑑 ∙ 𝑑𝑖𝑗𝑘 ,                                           𝑝𝑢𝑙𝑙 − 𝑖𝑛 𝑎𝑟𝑐 (2) 

where 𝑑𝑖𝑗𝑘  denotes the deadheading distance from the ending point of node 𝑖 (𝑒𝑙𝑖) to starting point of 
node 𝑗 (𝑠𝑙𝑗). We note that the distances between the depot and each trip node can vary among different 

depot layers, although the deadheading distances between trip nodes (or between the trip node and the 

charging node) are the same. In other words, the lengths of deadheading trip-connection arcs (or charging 

arcs) are the same for different depot layers, whereas the lengths of deadheading pull-out arcs and pull-in 

arcs can vary among different depot layers. 𝑐𝑑 denotes the transportation cost per unit kilometer; 𝑐𝑤 

denotes the waiting time cost per unit time with the waiting time being 𝐼𝐷𝑖𝑗 = 𝑠𝑡𝑗 − 𝑒𝑡𝑖 − 𝐷𝐻𝑖𝑗; 𝑐𝑣 

denotes fixed transportation cost per unit vehicle; 𝑐𝑏𝑗  denotes the variable charging cost of activity (node) 𝑗. 
 

3.4 Optimization models 
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As the power required for during-the-day fast charging is very high, the scheduling scheme of electric 

buses should consider the grid load of power systems to distribute charging demand throughout different 

times of the day so as not to overload the grid. This would however require that some electric buses are 

charged during the high-tariff period, incurring excess charging costs. Thus there are trade-offs between 

the objectives of operation cost minimization (i.e., charging in the low-tariff period) and charging load 

leveling. In this paper, we formulate the MDEVSP with power grid characteristics as a bi-objective 

optimization problem, to address the trade-off of these dual objectives. 

Prior to the optimization model formulation, the decision variables and associated parameters are 

introduced. Let 𝑥𝑖𝑗𝑘  denote a binary decision variable, 𝑥𝑖𝑗𝑘 = 1 indicates that a bus is assigned to node 𝑗 
after node 𝑖 in the layer for depot 𝑘; otherwise, it is 0. Let 𝑔𝑖𝑘 denote a continuous decision variable 

standing for accumulated distance traveled to node 𝑖 in the layer for depot 𝑘, which is to ensure that the 

accumulated distance does not exceed the maximum running range. Let 𝑐𝑖𝑗𝑘  denote the cost of arc (𝑖, 𝑗) 
in the layer for depot 𝑘; 𝑑𝑖𝑗𝑘  denote the distance from node 𝑖 to node 𝑗 in the layer for depot 𝑘; 𝐺 

denote the maximum running range that a fully-charged bus allows; 𝑁 denote the fleet size; 𝑉𝛩𝑘 denote 

the capacity of depot 𝑘; 𝑉𝑇𝑗  denote the charging station capacity corresponding to charging activity 𝑇𝑗; 𝐿 is a variable that denotes the charging peak load, which refers to the maximum number of buses charged 

simultaneously at charging stations. 

The objectives of MDEVSP are to find the vehicle-to-trip assignment and charging plan that 

minimize the total cost from the system perspective, while reducing the peak charging load. With the costs 

discussed above, the MDEVSP can now be formulated as the following bi-objective mixed-integer 

nonlinear programming: 

  𝑚𝑖𝑛  ∑ ∑ 𝑐𝑖𝑗𝑘𝑥𝑖𝑗𝑘(𝑖,𝑗)∈𝐴𝑘𝑘∈𝐾  (3) 

  𝑚𝑖𝑛 𝐿 (4) 

s.t.   

  ∑ ∑ 𝑥𝑖𝑗𝑘𝑖:(𝑖,𝑗)∈𝐴𝑘𝑘∈𝐾 = 1     ∀𝑗 ∈ 𝑆 (5) 

  ∑ 𝑥𝑖𝑗𝑘𝑖:(𝑖,𝑗)∈𝐴𝑘 −∑ 𝑥𝑗𝑖𝑘𝑖:(𝑗,𝑖)∈𝐴𝑘 = 0     ∀𝑗 ∈ 𝑆 ∪ 𝑇;  𝑘 ∈ 𝐾 (6) 

  𝑔𝑗𝑘 ≤ 𝑔𝑖𝑘 + 𝑑𝑖𝑗𝑘 + (1 − 𝑥𝑖𝑗𝑘 ) ∙ 𝑀     ∀𝑗 ∈ 𝑆;  𝑘 ∈ 𝐾; (𝑖, 𝑗) ∈ 𝐴𝑘 (7) 

  𝑔𝑗𝑘 ≥ 𝑔𝑖𝑘 + 𝑑𝑖𝑗𝑘 − (1 − 𝑥𝑖𝑗𝑘 ) ∙ 𝑀     ∀𝑗 ∈ 𝑆;  𝑘 ∈ 𝐾; (𝑖, 𝑗) ∈ 𝐴𝑘 (8) 

  𝑔𝑖𝑘 = 0     ∀𝑖 ∈ 𝛩𝑘 ∪ 𝑇,∀𝑘 ∈ 𝐾 (9) 

  𝑔𝑖𝑘 + 𝑑𝑖𝑗𝑘 ≤ 𝐺 + (1 − 𝑥𝑖𝑗𝑘 ) ∙ 𝑀     ∀𝑗 ∈ 𝑇 ∪ 𝛩𝑘′ ;  𝑘 ∈ 𝐾; (𝑖, 𝑗) ∈ 𝐴𝑘 (10) 

  ∑ ∑ 𝑥𝑖𝑗𝑘𝑗:(𝑖,𝑗)∈𝐴𝑘𝑘∈𝐾 ≤ 𝑁     ∀𝑖 ∈ 𝛩𝑘 (11) 

  ∑ 𝑥𝑖𝑗𝑘𝑗:(𝑖,𝑗)∈𝐴𝑘 ≤ 𝑉𝛩𝑘     ∀𝑖 ∈ 𝛩𝑘 ; 𝑘 ∈ 𝐾 (12) 

  ∑ ∑ 𝑥𝑖𝑗𝑘𝑖:(𝑖,𝑗)∈𝐴𝑘𝑘∈𝐾 ≤ 𝑉𝑇𝑗     ∀𝑗 ∈ 𝑇 (13) 

  ∑ ∑ 𝑥𝑖𝑗𝑘𝑖:(𝑖,𝑗)∈𝐴𝑘𝑘∈𝐾 ≤ 𝐿     ∀𝑗 ∈ 𝑇 (14) 

  𝑥𝑖𝑗𝑘 ∈ {0,1}     ∀(𝑖, 𝑗) ∈ 𝐴𝑘 ;  𝑘 ∈ 𝐾 (15) 

  𝑔𝑖𝑘 ≥ 0     ∀𝑖 ∈ 𝛩𝑘 ∪ 𝑆 ∪ 𝑇 ∪ 𝛩𝑘′ ;  𝑘 ∈ 𝐾 (16) 

  𝐿 ∈ 𝑁+ (17) 
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Objective (3) is to minimize the total operation cost. Objective (4) is to minimize the charging peak 

load. Constraints (5) enforce trip covering such that each trip is assigned to only one vehicle. Constraints 

(6) enforce the flow conservation for the nodes of one layer other than the depots, thereby rendering each 

vehicle able to find a feasible path on the time-expanded network. Constraints (7) and (8) determine the 

accumulated distance traveled to node 𝑗 , which equals the accumulated distance traveled to the 

predecessor plus the distance between the predecessor and the current node. Constraints (9) ensure that the 

accumulated travel distance is 0 when a bus immediately is dispatched from the depot or completes the 

recharging activity at a station. Constraints (10) ensure that the maximum running range cannot be 

exceeded. Constraints (11) guarantee that the total number of buses required should not exceed the fleet 

size. Constraints (12) force that the number of dispatched buses should not exceed the depot capacity. 

Constraints (13) guarantee that the total number of buses with the same charging activity does not exceed 

the charging station capacity. Constraints (14) guarantee that the peak load restriction cannot be violated 

for each charging station. Constraints (15)-(17) state the attributes of the decision variables. 

3.5 Model reformulation 

The problem formulated in (3)-(17) is a bi-objective optimization model. There are a few solution 

methods for this type of problem, such as the weighted sum method, epsilon-constrained method, and 

lexicographic method. Interested readers are referred to Deb (2001) and Ehrgott (2005) for a detailed 

description of these methods. A good vehicle scheduling scheme should achieve win-win situations 

benefiting two stakeholders, that is, a transit agency and a power system. Meanwhile, for the vehicle 

scheduling problem, operation cost saving is usually the top priority from the perspective of public 

transport authorities. The lexicographic method assumes that the objectives can be ranked in the order of 

importance, and solves a sequence of single-objective optimization problems without degrading the prior 

objective. Moreover, the lexicographic method does not require that the objective functions be normalized, 

as opposed to the weighted sum method. For this reason, we adopt the lexicographic method to address the 

bi-objective optimization model with different dimensions (cost and load) and set minimizing operation 

cost as the primary objective.  

Thus, we first optimize the primary objective function (minimize cost) without considering the other 

objective function (peak load) or constraints (14) to obtain the minimum cost, denoted 𝑧1∗. We then 

optimize the second objective function (minimize peak load) with constraints (5)-(17) plus an added 

constraint to ensure the operation cost is no greater than 𝑧1∗. To find a set of Pareto solutions, we relax the 

added constraint with a parameter 𝑟𝑔𝑎𝑝 ≥ 0, so that the cost is no greater than 𝑧1∗(1 + 𝑟𝑔𝑎𝑝). The value 

of 𝑟𝑔𝑎𝑝 is the relative gap that controls the upper bound of total operation cost. Minimizing the peak load 

with different values of 𝑟𝑔𝑎𝑝 allows a set of Pareto solutions to be found. 

The cost-minimization problem is described mathematically as follows: 

[P1]   

  𝑚𝑖𝑛  ∑ ∑ 𝑐𝑖𝑗𝑘𝑥𝑖𝑗𝑘(𝑖,𝑗)∈𝐴𝑘𝑘∈𝐾   

s.t.   

 Eqs: (5)-(13)  
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 Eqs: (15)-(16)  

Using the optimal solution 𝑥𝑖𝑗𝑘 ∗of problem [P1], we formulate the peak load minimization problem 

[P2] as follows: 

[P2]   

  𝑚𝑖𝑛 𝐿 (18) 

s.t.   

  ∑ ∑ 𝑐𝑖𝑗𝑘𝑥𝑖𝑗𝑘(𝑖,𝑗)∈𝐴𝑘𝑘∈𝐾 ≤ ∑ ∑ 𝑐𝑖𝑗𝑘𝑥𝑖𝑗𝑘 ∗(𝑖,𝑗)∈𝐴𝑘𝑘∈𝐾 (1 + 𝑟𝑔𝑎𝑝) (19) 

 Eqs: (5)-(17)  

When 𝑟𝑔𝑎𝑝 = 0 the solution of [P2] provides the minimum peak load 𝐿 for the minimum cost 

solution. [P1] and [P2] are mixed-integer linear programming problems, with binary decision variables 𝑥𝑖𝑗𝑘  

and continuous decision variables 𝑔𝑖𝑘. Problem [P2] also includes the integer variable 𝐿. Problem [P1] is 

an NP-hard problem, where small instances can be readily solved by commercial solvers (such as CPLEX). 

However, solving larger instances of problem [P1] by commercial solvers is not an easy job because of the 

formidable number of variables in the model. According to our preliminary experiments, CPLEX fails to 

obtain a feasible solution for a medium-size instance (400 trips, see Table 1) even after two days of 

computation. In the following section, we devise a branch-and-price method to solve [P1]. Problem [P2] is 

a mixed-integer linear programming problem, but it can be solved with an off-the-shelf solver. 

Remark 1: The solution approach above can be viewed as a form of the epsilon-constrained method where 

the right-hand side of constraints (19) is the epsilon value (𝜀). Thus, the set of Pareto solutions can be 

obtained by adjusting the value of 𝜀 , or 𝑟𝑔𝑎𝑝 . For discussion on implementation of the 

epsilon-constrained method, see Mavrotas (2009). 

 

4. Branch-and-price method 

4.1 Preliminaries 
The multi-depot vehicle scheduling problem (MDVSP) has been proven to be NP-hard. Therefore, 

MDEVSP is also NP-hard since MDVSP is only a special case of MDEVSP. In this study, we devise an 

exact algorithm to address this NP-hard problem. The cost-minimization problem [P1] is recast as a trip 

chain selection problem, where each trip chain satisfies constraints pertaining to fleet size limitation, 

depot/charging station capacity, and trip covering (see Section 4.2). Given a large number of possible trip 

chains, it is almost impossible to enumerate all feasible trip chains in an acceptable amount of time. 

Nevertheless, the problem can be tackled by a well-designed branch-and-price method (Barnhart et al., 

1998). In this part, we devise a tailored branch-and-price method to address MDEVSP. In particular, we 

devise a couple of reinforcements and heuristics to help to find approximate solutions in a reasonable time 

for large-scale scenarios. 

As a critical component of the branch-and-price method, column generation is an efficient algorithm 

for solving large-scale linear optimization problems and is widely used to solve vehicle and aircraft 

scheduling problems (Li, 2014; Zeighami and Soumis, 2019). Motivated by this fact, we use the column 
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generation algorithm to efficiently find high-quality trip chains. Instead of handling all trip chains, the 

column generation algorithm solves the problem using only a subset of incumbent trip chains, which we 

refer to as the restricted master problem (RMP). In the column generation algorithm, if the newly 

generated trip chain contributes to improving the RMP, it will be added onto the trip chain pool (see 

Section 4.7); otherwise, the process is terminated. 

To illustrate the concept of trip chain generation, as shown in Fig. 3, suppose there is a matrix where 

each column represents a feasible trip chain satisfying trip-connection constraints. A trip chain is 

composed of a depot set, a trip set, and a charging station-time window set, which represents the origin 

depots, service trips, and charging activities, respectively. These elements of a trip chain can be mapped 

into the nodes of the time-expanded network. The service trips in the trip set are sorted in chronological 

order according to the departure time. Since each trip can be executed by one electric bus in a specific 

period, the trip chain and the corresponding cost can be uniquely determined given the set elements. 

Through solving the RMP, the dual variables of constraints can be obtained. On the left side of Fig. 3, 

there are 6 trip chains in the trip chain pool. Suppose the incumbent optimal (feasible) solutions are trip 

chains 3 and 4. By solving the sub-problem using dual variables, a new column with minimum reduced 

cost that contributes most to improving the master problem can be identified (7th column). This column is 

then added to the master problem, yielding the optimal solution: trip chains 2 and 7, as shown on the right 

side of Fig. 3. The new column can improve the master problem only with a negative reduced cost. This 

process is repeated iteratively until the master problem cannot be improved. 

1   0   0   1   0   1

0   1   1   0   1   0

1   0   0   1   0   1

0   1   0   1   1   1

0   0   1   0   0   1

0   0   1   0   1   0 

1   1   0   1   0   1

0   0   0   1   0   1 

0   0   0   0   0   0

1   0   1   0   0   0
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[
[
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 station 1-time 1

1   0   0   1   0   1   1

0   1   1   0   1   0   0

1   0   0   1   0   1   1

0   1   0   1   1   1   0

0   0   1   0   0   1   1

0   0   1   0   1   0   1

1   1   0   1   0   1   0

0   0   0   1   0   1   0

0   0   0   0   0   0   0

1   0   1   0   0   0   1

0   1   0   0   0   0   0

depot 1

depot 2

trip 1

trip 2

trip 4

trip 5

trip chain         1    2    3   4     5   6    7

[
[

trip 3

depot

trip

charging 

station-

time window

 station 1-time 2

station 2-time 1

station 2-time 2

 station 1-time 1
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   set

 

Fig. 3 Illustration of column generation for MDEVSP 

Note that the solutions to the master problem by column generation cannot guarantee integrality. To 

address this issue, the branch-and-bound algorithm can be used to obtain integral solutions. Integration of a 

branch-and-bound algorithm and column generation yields the branch-and-price algorithm. Nevertheless, 

as noted by Barnhart (1998), such integration is not a trivial task since the branching constraints are likely 

to destroy the structure of the sub-problems. However, to improve the algorithmic efficiency, some 

customized strategies can be devised and embedded into the branch-and-price method. 

Fig. 4 shows the flowchart of the branch-and-price method. The set of initial columns (trip chains) are 

constructed by heuristics (see Section 4.6.1) and form a trip chain pool, which corresponds to the root node 
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in the search tree. In the initialization, the upper bound is set as a sufficiently large value, and the root node 

is added to a list that is used for recording unexplored nodes in the search tree. If the nodes on the list 

remain, then one of them is selected and the corresponding linear programming relaxation of the set 

partitioning problem is solved by column generation, which provides a tight lower bound. If the solution is 

worse than the upper bound, the node is removed. If the solution is better than the upper bound and integer 

feasible, the upper bound is updated and the incumbent node is removed. If the solution is better than the 

upper bound and integer infeasible, a heuristic (see Section 4.6.2) is adopted to seek a better integer 

solution, thereby branching on this node. 

Solving the linear relaxation problem independently for each node in the branch-and-price tree is 

usually time-consuming. If the trip chains can be known in advance, the redundant computation can be 

avoided, which reduces the computation burden. To this end, a trip chain pool strategy is proposed to 

handle column generation sub-problems and trip chains generated by heuristics (see Section 4.6). At the 

beginning of the column generation, feasible trip chains with branching information (see Section 4.5) are 

drawn from the trip chain pool and added onto the RMP. Note that the trip chains with branching feasible 

are identified one-by-one. Specifically, the branching conditions (see Section 4.5) will prevent the vehicle 

from going through specific arcs on the time-expanded network; if these arcs are not included in the trip 

chain, then the trip chain ensures branching feasibility. 

When new trip chains are generated by the sub-problem, they are added onto the trip chain pool and 

RMP again. The stop condition can be associated with: (i) empty list; (ii) maximum allowable 

computational time; and (iii) the maximum number of visited nodes. 

 
Fig. 4 Flowchart of the branch-and-price method 

4.2 The column generation master problem 
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   Recall that a trip chain is a sequence starting and ending with a depot and containing charging stations 

and service trips. Let 𝑅 be the set of feasible trip chains in the RMP. Then, the RMP can be formulated as 

the following set partitioning problem: 

 𝑚𝑖𝑛∑ 𝑐𝑟𝑧𝑟𝑟∈𝑅    (20) 

s.t.   

 ∑ 𝛿𝑘𝑟𝑧𝑟𝑟∈𝑅 ≤ 𝑉𝛩𝑘     ∀𝑘 ∈ 𝐾 (21) 

 ∑ 𝛿𝑠𝑟𝑧𝑟𝑟∈𝑅 = 1      ∀𝑠 ∈ 𝑆 (22) 

 ∑ 𝛿𝑢𝑟𝑧𝑟𝑟∈𝑅 ≤ 𝑉𝑇𝑢     ∀𝑢 ∈ 𝑇 (23) 

 ∑ 𝑧𝑟𝑟∈𝑅 ≤ 𝑁  (24) 

 𝑧𝑟 ∈ {0,1}      ∀𝑟 ∈ 𝑅 (25) 

where 𝑧𝑟, 𝑟 ∈ 𝑅 denotes the binary decision variable, and 𝑧𝑟 = 1 if trip chain 𝑟 is undertaken by an 

electric bus in the fleet. 𝑐𝑟 denotes the total operation cost of trip chain 𝑟. 𝛿𝑘𝑟, 𝑘 ∈ 𝐾 denotes the trip 

chain incidence coefficient equal to 1 if trip chain 𝑟 starts from depot 𝑘. 𝛿𝑠𝑟, 𝑠 ∈ 𝑆 denotes the trip 

chain incidence coefficient equal to 1 if service trip node 𝑠 is covered by trip chain 𝑟. 𝛿𝑢𝑟, 𝑢 ∈ 𝑇 

denotes the trip chain incidence coefficient equal to 1 if charging node 𝑢 is covered by trip chain 𝑟. 𝐾, 𝑆, 

and 𝑇 denote the set of depots, service trips, and charging activities, respectively. Note that 𝛿𝑘𝑟, 𝛿𝑠𝑟 and 𝛿𝑢𝑟 are state variables, of which the values can be acquired given a trip chain. The trip chain generation 

method will be discussed later in Section 4.3. 

In the RMP, the objective function given by Eq. (20) represents the total operation costs. Constraints 

(21) guarantee that the station capacity should be satisfied. Constraints (22) denote that each trip can be 

served only once. Constraints (23) ensure the charging station capacity should be satisfied. Constraints (24) 

ensure that the number of vehicles required is no more than the fleet size. Constraints (25) stand for the 

attribute of decision variables. 

To generate the dual variables corresponding to constraints, the linear relaxation of RMP can be 

repeatedly solved by the column generation algorithm with only a subset of trip chains. In this way, the 

binary variable 𝑧𝑟 becomes a continuous variable ranging from 0 to 1.  

4.3 The column generation sub-problem (pricing problem) 

For the minimization problem, only the columns with negative reduced costs contribute to improving 

the solutions. In other words, when the reduced costs of all feasible columns are larger than 0, any newly 

added column cannot improve the results, and the problem has been solved to optimality. The purpose of 

the column generation sub-problem (pricing problem) is to generate columns with negative reduced costs 

and feed them to the RMP. Let dual variables 𝛼𝑘 , 𝛽𝑠 , 𝛾𝑢 , 𝜋(𝑘 ∈ 𝐾, 𝑠 ∈ 𝑆, 𝑢 ∈ 𝑇)  correspond to 

constraints (21)-(24), respectively, then the reduced cost of trip chain 𝑟 ∈ 𝑅 is: 

 𝑐𝑟 − (∑ 𝛿𝑘𝑟𝑘∈𝐾 𝛼𝑘 +∑ 𝛿𝑠𝑟s∈𝑆 𝛽𝑠 +∑ 𝛿𝑢𝑟𝑢∈𝑇 𝛾𝑢 + 𝜋)  (26) 

 The trip chain cost 𝑐𝑟 can be formulated by the arcs of the time-expanded network: 

 𝑐𝑟 = ∑ ∑ 𝑐𝑖𝑗𝑘𝑥𝑖𝑗𝑘(𝑖,𝑗)∈𝐴𝑘𝑘∈𝐾   

 = ∑ ∑ 𝑐𝑖𝑗𝑘𝑥𝑖𝑗𝑘(𝑖,𝑗)∈𝐴𝑘 ,𝑖∈𝛩𝑘𝑘∈𝐾 + ∑ ∑ 𝑐𝑖𝑗𝑘𝑥𝑖𝑗𝑘(𝑖,𝑗)∈𝐴𝑘 ,𝑖∈𝑆𝑘∈𝐾 + ∑ ∑ 𝑐𝑖𝑗𝑘𝑥𝑖𝑗𝑘(𝑖,𝑗)∈𝐴𝑘,𝑖∈𝑇𝑘∈𝐾  
(27) 
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where the trip chain incidence coefficients 𝛿𝑘𝑟, 𝛿𝑠𝑟, and 𝛿𝑢𝑟 are equivalent to the following forms as a 

function of the variable 𝑥𝑖𝑗𝑘 : 

 𝛿𝑘𝑟 = ∑ 𝑥𝑖𝑗𝑘(𝑖,𝑗)∈𝐴𝑘 ,𝑖=𝛩𝑘   (28) 

 𝛿𝑠𝑟 = ∑ ∑ 𝑥𝑖𝑗𝑘(𝑖,𝑗)∈𝐴𝑘 ,𝑖=𝑠𝑘   (29) 

 𝛿𝑢𝑟 = ∑ ∑ 𝑥𝑖𝑗𝑘(𝑖,𝑗)∈𝐴𝑘 ,𝑖=𝑢𝑘   (30) 

   Substituting Eqs. (27)-(30) into Eq. (26) yields the reduced cost of trip chain 𝑟 ∈ 𝑅 in the form of the 

time-expanded network: 

 ∑ ∑ (𝑐𝑖𝑗𝑘 − 𝛼𝑘)𝑥𝑖𝑗𝑘(𝑖,𝑗)∈𝐴𝑘,𝑖∈𝛩𝑘𝑘∈𝐾 + ∑ ∑ (𝑐𝑖𝑗𝑘 − 𝛽𝑖)𝑥𝑖𝑗𝑘(𝑖,𝑗)∈𝐴𝑘 ,𝑖∈𝑆𝑘∈𝐾  +∑ ∑ (𝑐𝑖𝑗𝑘 − 𝛾𝑖)𝑥𝑖𝑗𝑘(𝑖,𝑗)∈𝐴𝑘,𝑖∈𝑇𝑘∈𝐾 − 𝜋 
(31) 

   Therefore, the reduced cost of arc (𝑖, 𝑗) corresponding to depot 𝑘 can be formulated as the piecewise 

function:  

 c𝑖𝑗𝑘̅̅ ̅ = { 𝑐𝑖𝑗𝑘 − 𝛼𝑘 , ∀𝑗 ∈ 𝛩𝑘         ∀𝑘 ∈ 𝐾𝑐𝑖𝑗𝑘 − 𝛽𝑗 , ∀𝑗 ∈ 𝑆           ∀𝑘 ∈ 𝐾𝑐𝑖𝑗𝑘 − 𝛾𝑗 , ∀𝑗 ∈ 𝑇            ∀𝑘 ∈ 𝐾 (32) 

The pricing sub-problem can be formulated based on the arc-specific reduced cost. The purpose is to 

optimally find a path with minimum reduced cost, i.e., the shortest path. Since the constraint on travel 

distance range is enforced, the pricing problem becomes an elementary shortest path problem with 

resource constraints (ESPRC), which can be formulated as follows: 

(SUB_COST) 

  𝑚𝑖𝑛  ∑ ∑ 𝑐𝑖𝑗𝑘̅̅ ̅𝑥𝑖𝑗𝑘(𝑖,𝑗)∈𝐴𝑘𝑘∈𝐾 − 𝜋 (33) 

s.t.   

  ∑ ∑ 𝑥𝑖𝑗𝑘𝑖:(𝑖,𝑗)∈𝐴𝑘𝑘∈𝐾 = 1      ∀𝑖 ∈ Θ𝑘 (34) 

 Eqs: (6)-(10)  

 Eqs: (15)-(16)  

 In the pricing problem, the decision variables are 𝑥𝑖𝑗𝑘  and 𝑔𝑖𝑘, where 𝑥𝑖𝑗𝑘  and 𝑔𝑖𝑘 are respectively 

binary variables and continuous decision variables, whose specifics have been described in Section 3.2. 

Objective (33) is to minimize the reduced cost of trip chains. Constraints (34) ensure that exactly one of 

the trip chains starts from an origin depot.  

4.4 Multi-label correcting method for solving ESPRC 

With multiple layers in the time-expanded network, the shortest path from depot 𝜃𝑘 to 𝜃𝑘′  can be 

calculated independently for each layer 𝑘 ∈ 𝐾, and can be accomplished by parallel computing. Once the 

shortest path of each layer is found, the optimal solution of the sub-problem can be determined by taking 

the path with the minimum cost among all layers. Due to the presence of possible negative reduced cost 𝑐𝑖𝑗𝑘̅̅ ̅, arcs with negative weights may exist in the network. As such, the label-setting method is inappropriate 

to solve the ESPRC, and the multi-label method should work in a label-correcting way, whose specifics are 

described as follows: 
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4.4.1 Label definition 

The premise for the label-correcting method is to define problem-specific labels. Let 𝓅𝑖𝑚 denote the 𝑚-th path from source (origin depot) 𝜃𝑘 to node 𝑖. A label ℓ𝑖𝑚 with two sources (𝑐𝑖𝑚 , 𝑔𝑖𝑚) is associated 

with 𝓅𝑖𝑚 . 𝑐𝑖𝑚  represents the total cost of the 𝑚-th path from source 𝜃𝑘  to node 𝑖, that is, 𝑐𝑖𝑚 =∑ 𝑐𝑖𝑗𝑘̅̅ ̅(𝑖,𝑗)∈𝓅𝑖𝑚 . 𝑔𝑖𝑚 represents the accumulated distance traveled from source 𝜃𝑘 to node 𝑖 of 𝑚-th path. 

4.4.2 Label extension 

The label ℓ𝑖𝑚  is maintained by using forward dynamic programming. In the label-correcting 

algorithm, label ℓ𝑖𝑚 of node 𝑖 is extended to label ℓ𝑗𝑚′
 of node 𝑗 along arc (𝑖, 𝑗) on path 𝓅𝑖𝑚. The 

label extension rule is described as follows: 

 𝑐𝑗𝑚 = 𝑐𝑖𝑚 + 𝑐𝑖𝑗𝑘̅̅ ̅  (35) 

 𝑔𝑗𝑚 = {0                         ∀𝑗 ∈ 𝑇 𝑔𝑖𝑚 + 𝑑𝑖𝑗𝑘           𝑜𝑡ℎ𝑒𝑟𝑠   (36) 

The extension is performed only when the following maximum travel distance constraint is met: 

 𝑔𝑖𝑚 + 𝑑𝑖𝑗𝑘 ≤ 𝐺  (37) 

Note that the accumulated travel distance should be reset if node 𝑗 is a charging node. 

4.4.3 Label domination 

The efficiency of the label-correcting algorithm depends on the number of labels. When a label 

belongs to neither an optimal nor a feasible solution, the label and the corresponding path will be 

eliminated using label domination rules to expedite the computation time. Label ℓ𝑖𝑚 dominates ℓ𝑖𝑚′
 if 

and only if 

 𝑐𝑖𝑚 ≤ 𝑐𝑖𝑚′
  (38) 

 𝑔𝑖𝑚 ≤ 𝑔𝑖𝑚′
 (39) 

If label ℓ𝑖𝑚′
 is dominated by label ℓ𝑖𝑚, then label ℓ𝑖𝑚′

 and the corresponding path 𝓅𝑖𝑚′
do not 

belong to an optimal solution. This is because each feasible extension to 𝓅𝑖𝑚′
 can also apply to 𝓅𝑖𝑚 in a 

more cost-effective way. Hence, ℓ𝑖𝑚′
 and 𝓅𝑖𝑚′

 will be eliminated. 

With the aforementioned components, the principle of the label-setting method can be described as 

follows. First, initialization is implemented before the commencement of the label-correcting method. Here, 

the label of source 𝜃𝑘 is set as (0,0), which indicates that the cost at the origin depot and accumulated 

travel distance are both 0. In the label-correcting method, the node indices of updated labels are recorded, 

and one of the arcs originating from a node is selected before the next iteration. Here, the first-in-first-out 

principle is adopted, and thus the ‘QUEUE’ is used to store nodes. To handle a node, all the labels of the 

node are compared pairwise, and the redundant and inefficient labels are eliminated by domination rules. 

Subsequently, the label extension of the node is performed when the constraints (37) are satisfied. At last, 

when the QUEUE is empty, the optimal path and associated solution are obtained by a backtracking 

method. The pseudocode is provided in Algorithm 1: 
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Algorithm 1 Pseudocode of label-correcting method for ESPRC 

1 Initialize ℓ𝑖1 ← (0,0), for each 𝑖 ∈ 𝜃𝑘 

2 QUEUE = [𝜃𝑘]  

3 While 𝑖 = pop(QUEUE)  % pop( ) withdraws the first element of the QUEUE  

4 {ℓ𝑖1, ℓ𝑖2,… , ℓ𝑖𝑚} ← LABEL_dominance({ℓ𝑖1, ℓ𝑖2,… , ℓ𝑖𝑚′})    

5 For each arc (𝑖, 𝑗)       

6 For each path 𝑚 in node 𝑖   

7 If 𝑔𝑖𝑚 + 𝑑𝑖𝑗𝑘 ≤ 𝐺           % label extension ℓ𝑗𝑚  ← {(𝑐𝑖𝑚 + 𝑐𝑖𝑗𝑘̅̅ ̅, 0)                    ∀𝑗 ∈ 𝑇(𝑐𝑖𝑚 + 𝑐𝑖𝑗𝑘̅̅ ̅, 𝑔𝑖𝑚 + 𝑑𝑖𝑗𝑘 )     𝑜𝑡ℎ𝑒𝑟𝑠  

End 

8 End  

9 If label extension is performed 

10 QUEUE.add(𝑗)  

11 End 

12 End 

13 End 

14 Backtrace( )     

4.5 Branching 

To ensure integral optimal solutions, column generation is integrated into a branch-and-bound search 

framework and actuated at each node of the search tree, which results in a branch-and-price algorithm. 

When the optimal solution of the RMP is not integral once the column generation completes, the 

branch-and-bound process is conducted.  

When developing the branch-and-price approach, the branching rule will have a great influence on the 

tree size and resulting algorithmic performance. To obtain an integral optimal solution in the MDEVSP, an 

alternative is to branch on the column variable 𝑧𝑟 (trip chains) of the master problem. However, it will be 

difficult to branch on the selection scheme of 𝑧𝑟 in a straightforward manner, since in this way the 

sub-problem structure would be destroyed, and the tree size will become cumbersome to solve. In practice, 

when the decision variable of a column is fixed to be 0, a similar column may be generated in the 

sub-problem, resulting in low branching efficiency. To reduce the size of the search tree, we adopt the 

branching rule on the connection between trip nodes, instead of branching on decision variables directly. 

In doing so, when the solution of the linear relaxation of RMP is integer infeasible, the solution of the 

set partitioning formulation �̃�𝑟 can be directly converted to that of the time-expanded network �̃�𝑖𝑗𝑘 . More 

specifically, for each arc (𝑖, 𝑗) ∈ 𝐴𝑘, let 𝛿𝑘𝑟 = 1, 𝛿𝑖𝑟 = 1, 𝛿𝑗𝑟 = 1 if arc (𝑖, 𝑗) ∈ 𝐴𝑘 is traveled in trip chain 𝑟 ∈ 𝑅 on the time-expanded network. Then, the value of 𝑥𝑖𝑗𝑘  equals to the summation of �̃�𝑟 of all trip 

chains going through arc (𝑖, 𝑗) ∈ 𝐴𝑘, that is, 

 𝑥𝑖𝑗𝑘 = ∑ 𝛿𝑘𝑟𝑟∈𝑅 𝛿𝑖𝑟𝛿𝑗𝑟�̃�𝑟     ∀(𝑖, 𝑗) ∈ 𝐴𝑘 ;  𝑘 ∈ 𝐾 (40) 

Thereafter, we can branch on the variables that are not fixed. Note that a fixed variable either equals 0 

or 1, depending on the branching information. As a result, two sub-problems can be obtained, with 
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branching information relating to �̃�𝑖𝑗𝑘 = 0  (called 0-branch) and �̃�𝑖𝑗𝑘 = 1 (called 1-branch). For the 

0-branch, the associated arc (𝑖, 𝑗) ∈ 𝐴𝑘 can be simply disregarded from the time-expanded network. For 

the 1-branch, the attributes of node 𝑖 and 𝑗 are first identified. If node 𝑖 is a trip, then the arcs in the set 𝐴𝑖+ = {(𝑖, ℎ) ∈ 𝐴𝑘|ℎ ≠ 𝑗} are disregarded; if node 𝑗 is a trip, then the arcs in the set 𝐴𝑗− = {(ℎ, 𝑗) ∈𝐴𝑘|ℎ ≠ 𝑖} are disregarded. Finally, if these disregarded arcs are included in the column, then this column 

should be removed from the master problem, where the details of column management are referred to the 

trip chain pool strategy (Section 4.7). With such a branching strategy, the branching information can be 

easily represented by the time-expanded network. 

There is a global upper bound recording the best integral solution for the branch-and-bound tree. The 

integral solution results from heuristics or the nodes of RMP with integral solution. To obtain an integral 

solution quickly, the depth-first search rule is adopted. The node with �̃�𝑖𝑗𝑘 = 1 is always selected when 

about to select a node on the same level.  

4.6 Heuristics 

As shown in the section above, the upper bound can be updated only when the solution of the linear 

relaxation of RMP is integral feasible. This raises a critical issue for the standard branch-and-price method 

in that, with the increase of problem size, it becomes more difficult to achieve an integral solution, since 

the linear relaxation of RMP is more likely to become integral infeasible. Although an exact algorithm can 

solve the problem to global optimality, it can only cope with a limited scale. In comparison, heuristics can 

achieve near-optimal solutions in a more time-efficient way. In this part, we devise a new heuristic 

algorithm that can be handled on the time-expanded network, such that the generated solution meets the 

branching condition in the underlying network. The principle is to reset arc costs continuously and obtain a 

trip chain by solving the shortest problem of the time-expanded network, whose solution approach is the 

same as that of the sub-problem (label-correcting method). After adding the generated trip chain onto the 

set of trip chains, some trips may be covered more than once resulting in infeasibility. Then, we remove 

the over-coverings until all the trips are covered only once. 

As such, it is crucial to set appropriate arc costs. The fundamental idea for arc cost setting is that: i) the 

value is close to the fractional solution; ii) each trip chain covers as many trips as possible; and iii) the trip 

chain cost (and deadheading cost) should be as low as possible. 

4.6.1 Heuristic for initial solution generation 

The root node should be provided with an initial solution before the commencement of the algorithm. 

A good initial solution can maintain the master problem feasible and reduce the number of iterations of 

column generation. Generally speaking, the fixed transportation cost constitutes a large proportion of the 

total cost. Therefore, a good initial solution should require as few vehicles as possible, such that each 

vehicle can cover as many trips as possible. Taken together, the purpose of initial solution generation is 

that each vehicle covers as many trips as possible, while reducing the cost and satisfying the capacity and 

fleet size constraints. Based on this principle, the main steps for the initialization heuristic are described as 

follows: 
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Step 1 Construct the time-expanded network. The cost of arc (𝑖, 𝑗) in the layer for depot 𝑘 is set as 𝜇 +𝜈 ∙ 𝑐𝑖𝑗𝑘 , where 𝜈 is a small value (here 𝜈 = 0.002). If node 𝑗 is a service trip node, then 𝜇 = −1, and 𝜇 = 0 otherwise. The fundamental idea of adding 𝜇 is to cover as many trips as possible. 

Step 2 Obtain a trip chain by solving the shortest path in the underlying network. Then, the over-coverings 

are removed from the network, including the over-covered nodes, depot, and charging nodes with over 

capacity. 

Step 3 If all the trips are covered, the algorithm is terminated. Otherwise, go to Step 2. 

Remark 2: The trip chain generated by the heuristic satisfies trip connection and maximum running range 

constraints, while not necessarily satisfying the constraints of the master problem. There are two possible 

reasons for this. First, depot capacity constraints are set too strictly. In Step 2, the depots with excess 

capacity will be disregarded, and an extreme case may exist where all depots are removed and the shortest 

path cannot be found, although its probability may be very small. In this extreme case, the heuristic will be 

terminated in advance. Second, fleet size constraints are set too strictly. Although the trip chain generated 

by the heuristic can satisfy trip connection and depot/charging station capacity constraints, the fleet size 

constraints may be violated, such that the master problem is infeasible. Therefore, we add a costly artificial 

trip chain satisfying all constraints to guarantee the feasibility of the master problem. Specifically, for this 

trip chain such that 𝛿𝑠𝑟 = 1, ∀𝑠 ∈ 𝑆, the corresponding cost is set as a large value (here it is 10,000,000).  

4.6.2 Upper bounding heuristic 

The solution of the sub-problem at each node of the search tree is not necessarily integral feasible. To 

obtain an integral solution quickly, here we devise heuristics to convert the fractional values into integral 

ones. This also facilitates providing the upper bound and reducing the tree size of branch-and-bound search. 

The fractional solution �̃�𝑟 obtained from the RMP (19)-(24) can be converted into the arc-based fractional 

solution �̃�𝑖𝑗𝑘  through Eq. (39). In principle, this fractional solution should be close to its nearest integer 

value. However, the solution resulting from traditional rounding operations (i.e., rounding up, rounding 

down, and rounding off) could easily violate the equation constraints such as (5) and (6). Moreover, similar 

to the initial solution generation, the constructed trip chain should cover as many trips as possible, while 

reducing the cost and satisfying the capacity and fleet size constraints. Based on these considerations, we 

propose a variable fixing method, and the main steps are provided as follows: 

Step 1 Select the trip chain having not ever been used with the largest fractional value. 

Step 2 Construct the time-expanded network. The cost of arc (𝑖, 𝑗) in the layer for depot 𝑘 is set as 𝜆 +𝜇 + 𝜈 ∙ 𝑐𝑖𝑗𝑘  (the values of 𝜇 and 𝜈 are in line with Section 4.6.1). If node 𝑗 is a node covered by the trip 

chain, then 𝜆 = −10, and 𝜆 = 0 otherwise. The fundamental idea of adding 𝜆 is to make the fixed trip 

chain ‘resemble’ the original one. 

Step 3 Obtain a trip chain by solving the shortest path of the time-expanded network. Then, the 

over-coverings are removed from the network, including the over-covered nodes, depot, and charging 

nodes with over capacity. The resulting trip chain satisfies the maximum running range constraint without 

over-coverings. 
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Step 4 If all the trips are covered, the algorithm is terminated. Otherwise, go to Step 1. 

Remark 3: The trip chain generated by the heuristic may not satisfy the constraints of the master problem. 

The reasons are similar to those discussed in Remark 2. In this case, the upper bounding heuristic can be 

simply skipped. 

4.7 Acceleration technique: trip chain pool strategy 

   In the branch-and-bound tree search, column generation will be frequently undertaken at each node, 

which results in a great computational burden. If we can make use of the available information at the 

parent node, the redundant calculation can be avoided and the problem solving for the child nodes can be 

accelerated. Motivated by this fact, we devise an acceleration strategy, called trip chain pool 𝑅𝑝𝑜𝑜𝑙 , to 

collect all the trip chains generated by nodes of the search tree. Let the current node be 𝑝, then the initial 

trip chains 𝑅𝑝 of the master problem of node 𝑝 can be obtained from 𝑅𝑝𝑜𝑜𝑙  by removing those trip 

chains with branching infeasibility. 

 𝑅𝑝 = 𝑅𝑝𝑜𝑜𝑙\{𝑟: 𝑟 ∈ 𝑅𝑝𝑜𝑜𝑙 , with 𝑟 being branching infeasible for node 𝑝} (41) 

Typically, for the root node of search tree 𝑟𝑜𝑜𝑡, 𝑅𝑝𝑜𝑜𝑙 = ∅, 𝑅𝑟𝑜𝑜𝑡  is comprised of two components: 

i) trip chains generated by heuristics (Section 4.6.1); and ii) an artificial trip chain with a large cost. 

After solving the problem for node 𝑝, the trip chains by column generation and the trip chain pool are 

merged, resulting in a new trip chain pool: 

 𝑅𝑝𝑜𝑜𝑙 = 𝑅𝑝𝑜𝑜𝑙 ∪ 𝑅𝑝 (42) 

 

5. Computational experiments and application 

In this section, we first test the bi-objective optimization model and tailored branch-and-price 

algorithm in two ways: we use a benchmark network to evaluate the algorithm under different sizes. Then, 

we apply the proposed method to the real-world bus network in Guangzhou, China. For all experiments, 

the optimization problems are solved on an Intel(R) Core(TM) i7-8700 CPU @ 3.20 GHz core processor, 

20GB RAM, and the system is Windows 10, using MATLAB R2018b and the CPLEX 12.9.0 solver with 

standard tuning. 

5.1 Numerical test 

5.1.1 Benchmark instances  

We randomly generated data for testing using the method as proposed by Adler and Mirchandani, 

(2017). We considered the scenarios with |𝑆| trips, 𝑙 charging stations, and |𝐾| depots. To this end, we 

first randomly generated a set of relief points 𝑣 from a 60*60 grid (𝑣 ∈ (√|𝑆|, 2√|𝑆|), where 𝑣 is an 

integer. The relief points served as a set of potential starting and ending locations for the service trips as 

well as potential locations for the depot and charging stations. Among these relief points, we randomly 

selected |𝑆| trips, 𝑙 charging stations, the starting point, and the ending point of the |𝐾| depots. Note 

that the depots, the charging stations, the starting/ending points of the trips can share the same relief point, 

whereas the starting point and ending point of the trips cannot. 



23 

 

As an illustration, suppose there are 5 depots and 4 charging stations to be generated. As shown in Fig. 

5(a), a total of 23 relief points are first generated. 5 depots and 4 charging stations are then randomly 

selected from these relief points, and the results are shown in Fig. 5(b). The coordinates of depots are 

(26,23),(33,36),(43,29),(56,12),(58,41), and the coordinates of charging stations are 

(4,23),(12,2),(43,29),(57,39), where the relief point (43,29) acts as both a depot and a charging station. 

 
(a)                                         (b) 

Fig. 5 Instance generation: (a) relief points; (b) depots and charging stations 

For each trip 𝑠 ∈ 𝑆, we assume that its travel distance 𝑑𝑖𝑠𝑡(𝑠𝑙𝑠 , 𝑒𝑙𝑠) is the Euclidean distance 

between two points, with start time 𝑠𝑡𝑠 being a value chosen from [420,480] with a probability of 15%, 

(480,1020] with a probability of 70%, and (1020,1080] with a probability of 15%. The trip travel time is 

randomly chosen from (𝑑𝑖𝑠𝑡(𝑠𝑙𝑠 , 𝑒𝑙𝑠) + 5, 𝑑𝑖𝑠𝑡(𝑠𝑙𝑠 , 𝑒𝑙𝑠) + 40). 
In the MDEVSP, deadheading trips are often needed to connect trips for interlining services or to 

recharge buses. We also assume that the travel distance and travel time for deadheading are equal to the 

Euclidean distance between two points. The depot capacity is an integer randomly chosen from (3 +|𝑆|/(3.5|𝐾|), 3 + |𝑆|/(2.5|𝐾|)), the charging station capacity is an integer randomly chosen from (3 +|𝑆|/(3.5𝑙), 3 + |𝑆|/(2.5𝑙)), and the fleet size is an integer randomly chosen from (𝑑𝑖𝑠𝑡(𝑠𝑙𝑠 , 𝑒𝑙𝑠) +5, 𝑑𝑖𝑠𝑡(𝑠𝑙𝑠 , 𝑒𝑙𝑠) + 40). 
For the operational setting of electric buses, following the literature (An, 2020), the maximum running 

range 𝐺 is set as 250 km. This setting is in accordance with the BYD K7 bus with a vehicle capacity of 58 

pax and charging time of 60 min. The operation cost of an electric bus is adapted from Li (2014), where 

the fixed transportation cost 𝑐𝑣 is taken as 100 USD per vehicle, and the variable transportation cost 𝑐𝑑 

is taken as 0.4 USD/km. The waiting time cost 𝑐𝑤 is 0.1 USD/min, and the fixed charging cost 𝑐𝑓  is 5 

USD per time. The charging power is taken as 200 kW. The time-of-use electricity price in Guangzhou is 

adopted, as shown in Fig. 1(a). The differential price can be divided into different periods, with the low 

tariff from 24:00 to 08:00 and the high tariff from 14:00 to 17:00 and from 19:00 to 22:00. 

5.1.2 Solution comparison under different instance sizes 

In order to test the algorithm under different instance sizes, we use various combinations of numbers 

of trips, depots, and charging stations. Specifically, we set the number of service trips |𝑆| as 50, 100, 200, 

and 400, the number of depots |𝐾| as 2, 5, and 8, and the number of charging stations as 2, 4, 6, and 8. As 
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a result, there are totally 4 × 3 × 4 = 48 possible combinations. For all these instances, the maximum 

number of visited nodes is set as 200. The maximum computational time is set as 12 h for the cases of 50, 

100, and 200 trips |𝑆|, and 24 h for the cases of 400 trips |𝑆| and 2 depots |𝐾|, and 48 h for the cases of 

400 trips |𝑆| and 5, 8 depots |𝐾|. The branch-and-price algorithm is terminated when either of the above 

two criteria is satisfied. The computational results of the first objective are shown in Table 1. 

Table 1 Computational results of the problem for the first objective 

|𝑆| |𝐾| 𝑙 CPLEX Tailored branch-and-price 

The 

number of 

variables 

Lower 

bound 

(USD) 

Obj (USD) Gap (%) CPU(s) 

The number  

of nodes 

visited 

Lower 

bound 

(USD) 

Obj 

(USD) 
Gap (%) CPU(s) 

50 

2 

2 7684 2883.69 2884.75 0.04% 144 61 2884.75 2884.75 0.00% 165 

4 11072 2632.69 2638.66 0.23% 77 200 2636.91 2638.66 0.07% 771 

6 14780 2814.02 2815.77 0.06% 563 200 2813.61 2815.77 0.08% 1286 

8 18284 2704.25 2704.25 0.00% 2 35 2704.23 2704.23 0.00% 367 

5 

2 19430 2882.46 2883.92 0.05% 53 200 2883.07 2883.92 0.03% 1232 

4 27520 2603.13 2603.30 0.01% 10 71 2603.13 2603.13 0.00% 1053 

6 37250 2730.50 2730.71 0.01% 28 1 2730.71 2730.71 0.00% 401 

8 45680 3049.91 3054.20 0.14% 87 200 3053.70 3059.74 0.20% 3215 

8 

2 30736 2616.18 2616.18 0.00% 26 1 2616.18 2616.18 0.00% 282 

4 43808 2573.23 2574.31 0.04% 1410 1 2574.31 2574.31 0.00% 437 

6 60224 2017.34 2023.09 0.28% 43200 200 2021.78 2023.09 0.06% 5468 

8 71776 2873.32 2914.65 1.42% 43200 200 2895.23 2904.12 0.31% 5004 

100 

2 

2 22492 6445.54 6446.34 0.01% 1146 163 6446.34 6446.34 0.00% 2176 

4 29824 5584.53 5596.37 0.21% 43200 200 5590.76 5592.23 0.03% 2991 

6 36972 5886.23 5886.84 0.01% 29748 200 5886.67 5887.60 0.02% 4717 

8 44728 3885.65 3885.65 0.00% 47 149 3885.65 3885.65 0.00% 7315 

5 

2 55450 5142.64 5191.02 0.93% 43200 200 5169.68 5178.68 0.17% 6682 

4 74750 5444.28 5445.26 0.02% 18049 200 5444.48 5452.08 0.14% 9738 

6 90950 6590.12 6590.67 0.01% 131 200 6590.31 6590.67 0.01% 12977 

8 108980 4665.88 4665.88 0.00% 164 153 4665.88 4665.88 0.00% 16713 

8 

2 91776 5023.41 5024.01 0.01% 21397 200 5023.51 5024.03 0.01% 12196 

4 116544 6113.47 6137.26 0.39% 43200 200 6120.90 6126.31 0.09% 15756 

6 146464 5183.19 5183.19 0.00% 258 1 5183.19 5183.19 0.00% 3499 

8 174704 5007.17 5007.43 0.01% 417 200 5007.43 5007.43 0.00% 22984 

200 
2 

2 76624 10865.16 10988.47 1.12% 43200 200 10886.38 10937.29 0.47% 16810 

4 89920 9838.20 10636.13 7.50% 43200 200 9924.27 9944.60 0.20% 27765 

6 101068 11517.03 11526.68 0.08% 43200 200 11524.93 11526.74 0.02% 23892 

8 117872 10733.87 10734.54 0.01% 399 200 10733.87 10733.87 0.00% 36063 

5 2 187820 10089.45 15789.55 36.10% 43200 165 10105.91 11405.94 12.86% 43200 
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4 220400 10572.91 15455.33 31.59% 43200 113 10586.09 11247.25 6.25% 43200 

6 256980 - - - 43200 90 9738.95 10686.76 9.73% 43200 

8 290620 - - - 43200 84 9796.68 10765.79 9.89% 43200 

8 

2 307760 9933.76 10205.96 2.67% 43200 69 9938.45 10744.68 8.11% 43200 

4 352000 - - - 43200 71 9832.51 10726.74 9.09% 43200 

6 407968 - - - 43200 38 10744.17 11733.65 9.21% 43200 

8 474192 9062.20 9100.03 0.42% 43200 27 9062.20 9974.93 10.07% 43200 

400 

2 

2 270152 - - - 86400 136 19455.33 21483.23 10.42% 86400 

4 296492 - - - 86400 152 21027.27 23068.37 9.71% 86400 

6 330240 - - - 86400 67 19323.98 21151.25 9.46% 86400 

8 356140 - - - 86400 67 18903.31 20757.35 9.81% 86400 

5 

2 674790 - - - 172800 45 20482.27 22343.92 9.09% 172800 

4 741430 - - - 172800 38 20919.62 23152.58 10.67% 172800 

6 821590 - - - 172800 45 20146.15 21933.04 8.87% 172800 

8 891120 - - - 172800 16 20455.71 22416.49 9.59% 172800 

8 

2 1072944 - - - 172800 1 - 22650.28 - 172800 

4 1204336 - - - 172800 1 - 19730.04 - 172800 

6 1291536 - - - 172800 1 - 23376.07 - 172800 

8 1436960 19419.86 26182.67 25.83% 172800 1 - 20882.61 - 172800 

In Table 1, the first three columns denote the number of service trips, the number of depots, and the 

number of charging stations, respectively. The fourth to eighth columns denote the results calculated by 

CPLEX, where the fourth column denotes the number of variables of the bi-objective integer programming 

model; the fifth column denotes the lower bound; the sixth column denotes the optimal integral solution 

found; the seventh column denotes the gap between the optimal solution found and the lower bound, 

calculated as 𝐺𝑎𝑝 = 𝑂𝑏𝑗−𝑙𝑜𝑤𝑒𝑟 𝑏𝑜𝑢𝑛𝑑𝑙𝑜𝑤𝑒𝑟 𝑏𝑜𝑢𝑛𝑑 × 100%; the eighth column denotes the CPU time for the program 

calculation. The ninth to thirteenth columns are the results of the tailored branch-and-price method, where 

the ninth column denotes the number of visited nodes, and the implications of the tenth to thirteenth 

columns are identical to the fifth to eighth columns. The symbol ‘-’ from the fifth to seventh columns 

represents a difficult instance where CPLEX fails to find a feasible solution within a given duration. The 

symbol ‘-’ in the tenth and twelfth columns indicates that the calculation of the master problem at the root 

node has not been completed, such that the lower bound and the gap are not obtained. Nevertheless, thanks 

to the heuristics at the root node, our tailored branch-and-price method can still obtain a feasible solution. 

As we can see, as the network size increases, the number of nodes to be explored in the search tree 

does not necessarily increase. However, the computational time of the branch-and-price method increases 

significantly with the network size and the instances with 400 trips cannot be solved to optimality within 

24 hours. This is because of the large number of columns to be generated and more time spent in solving 

the pricing problem. The solution quality, which is represented by the gap, appears to be most sensitive to 

the number of depots. For example, for the instance with 200 trips, as the number of depots increases from 

2 to 5, the average gap increases significantly from almost 0 to higher than 6% and 31% for the 
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branch-and-price method and CPLEX, respectively. This suggests that to ensure the solution quality for the 

MDEVSP, one should pay more attention to the number of bus routes. 

The optimal solution can be obtained by CPLEX quickly for small-size instances. However, when the 

number of variables exceeds 20,000, it is difficult for CPLEX to find the optimal solution or even a 

feasible solution. In comparison, although the tailored branch-and-price method obtains the optimal 

solution slower than CPLEX in small-size instances, it can output a feasible solution in large-size instances, 

with the average gap value below 10%. Nevertheless, in cases with more than 1 million variables, both 

CPLEX and the branch-and-price method have difficulty in finding feasible solutions. The gap increases 

with the number of trips, whereas the gaps by the branch-and-price method are lower than those by 

CPLEX in most scenarios. More importantly, the lower bounds obtained by the branch-and-price method 

are generally better than those obtained by CPLEX. 

For the large-size instances with 400 trips and 8 depots, it is difficult for the branch-and-price method 

to complete solving the root nodes (and thus obtain the gaps and lower bounds) within limited 

computational time. Nevertheless, the tailored branch-and-price method can still find the initial integral 

solutions by the heuristics. Although the heuristic algorithms are deterministic (i.e., the results will not 

change under different runs given the same input), the performance of the tailored branch-and-price 

method under large-size scenarios may become unstable and more sensitive to the input (the layout of 

depots and charging stations). In other words, the solution quality will largely depend on the input data 

under large-size scenarios. Besides, the layout of depots and charging stations are randomly generated. 

This may explain why the results with 4 charging stations yield a substantially better total cost than any of 

the other scenarios with a higher number of charging stations. 

5.1.3 Impact of the length of the time window 

While the model assumes that the length of each charging time window equals the period necessary to 

fulfill a full charge in the time-expanded network for simplicity, in practice the charging time might not 

perfectly match those time windows. We now investigate how the length of the time window affects the 

system performance. To this end, each charging node is further discretized into a set of equidistant time 

steps. Let 𝑝𝑘(𝑡) denote the 𝑘-th time step of charging node 𝑡. The impact of charging time on the station 

capacity and charging load is handled by 𝑝1(𝑡), 𝑝2(𝑡),… , 𝑝𝑈(𝑡). As a result, the constraints (13) and (14) 

are modified as follows: 

  ∑ ∑ 𝑥𝑖𝑗𝑘𝑖:(𝑖,𝑗)∈𝐴𝑘𝑘∈𝐾 +∑ ∑ 𝑥𝑖𝑝1(𝑗)𝑘𝑖:(𝑖,𝑗)∈𝐴𝑘𝑘∈𝐾 +⋯+∑ ∑ 𝑥𝑖𝑝𝑈(𝑗)𝑘𝑖:(𝑖,𝑗)∈𝐴𝑘𝑘∈𝐾 ≤ 𝑉𝑇𝑗     ∀𝑗 ∈ 𝑇 (43) 

  ∑ ∑ 𝑥𝑖𝑗𝑘𝑖:(𝑖,𝑗)∈𝐴𝑘𝑘∈𝐾 + ∑ ∑ 𝑥𝑖𝑝1(𝑗)𝑘𝑖:(𝑖,𝑗)∈𝐴𝑘𝑘∈𝐾 +⋯+∑ ∑ 𝑥𝑖𝑝𝑈(𝑗)𝑘𝑖:(𝑖,𝑗)∈𝐴𝑘𝑘∈𝐾 ≤ 𝐿     ∀𝑗 ∈ 𝑇 (44) 

To evaluate the length of the time window on the solutions, we set the length of the time window 

from 10 min to 60 min with an interval of 10 min, where 60 min is the baseline in this example. To conduct 

a fair comparison, the gaps for all instances are set as 1%, indicating that the program will be terminated 

when the gap is immediately lower than 1%. 3 instances with 200 trips are selected for testing. All the 

instances are run by CPLEX, and the results are summarized in Table 2. 

Table 2 Comparison of solutions under different lengths of time windows 
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|𝑆| |𝐾| 𝑙 Time window (min) The number 

of variables 

Lower bound 

(USD) 

Obj (USD) Gap (%) CPU(s) 

200 2 2 

10 141556 10865.86 10974.38 0.99% 262221 

20 102632 10865.52 10971.12 0.96% 268865 

30 89640 10866.12 10969.65 0.94% 258015 

40 83128 10865.80 10972.69 0.97% 137857 

50 79196 10865.23 10974.30 0.99% 114557 

60 76624 10866.35 10973.41 0.98% 387847 

200 2 8 

10 375444 10733.87 10811.12 0.71% 506 

20 220896 10733.87 10760.04 0.24% 546 

30 169348 10733.87 10821.11 0.81% 129 

40 143492 10733.87 10810.21 0.71% 1661 

50 128104 10733.87 10737.25 0.03% 255 

60 117872 10733.87 10839.08 0.97% 1152 

200 8 2 

10 571024 9933.67 10027.99 0.94% 2606 

20 413120 9933.76 10020.75 0.87% 164060 

30 360480 9933.76 10027.99 0.36% 307316 

40 334304 9933.76 10033.95 1.00% 344009 

50 318464 9933.76 10029.52 0.95% 508658 

60 307760 10865.86 10974.38 0.67% 410848 

We can see in Table 2 that, as the length of the time window increases, the number of variables 

decreases, while the effect on the lower bounds and optimal solutions are minimal. Mathematically, the 

feasible solutions under the time window of 20 min are included in those of 10 min. However, the 

experiment shows that the solutions under the time window of 10 min are not necessarily the best. This is 

because the model has not been sufficiently solved to optimality given the terminated gap. 

Notwithstanding that, the lower bounds under different values of time windows are quite close and the 

corresponding gaps are all lower than 1%. This suggests that the impact of the length of the time window 

on the model solutions is limited. Therefore, our model is scalable to incorporate the possibility of 

opportunistic charging without requiring the vehicle to spend the full charge time. 

In addition, for this example, the CPU time is not necessarily proportional to the number of variables. 

These results are closely associated with the mechanism of an off-the-shelf solver. The possible reason is 

that for some typical instances the program could find the lower bound more readily. 

5.1.4 Impact of the second objective 

We now investigate the effect of the second objective, i.e., peak load minimization, by using a 

lexicographic method. To be representative, the results for a large-size instance with 400 trips are used as 

the initial solution for the second objective. We call CPLEX with the computer configuration as described 

above. To obtain a better solution, we set the frequency of RINS as 20, where RINS is a powerful but 
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expensive test for finding high-quality feasible solutions embedded in the off-the-shelf solver. The 

maximum computation time is set as 48 h, and the results are provided in Table 3. Note that the peak load 

is represented by the number of electric buses being charged concurrently. Naturally, a larger number of 

electric buses being charged simultaneously indicates a higher peak load for the power grid. 

Table 3 Bi-objective results by using a lexicographic method 

|𝑆| |𝐾| 𝑙 First objective  Second objective 

Total cost 

(USD) 

Peak load Fleet size The number 

of nodes 

visited 

Total cost 

(USD) 

Peak load Fleet size 

400 

2 

2 21483.23 7 104  4435 21482.43 4 104 

4 23068.37 4 116  4671 23066.09 3 116 

6 21151.25 4 109  663 21140.44 1 109 

8 20757.35 3 108  2945 20748.16 1 104 

5 

2 22343.92 5 117  0 22338.94 0 118 

4 23152.58 3 112  20 23152.58 3 112 

6 21933.04 3 112  15 21933.04 3 112 

8 22416.49 5 117  8 22416.49 5 117 

8 

2 22650.28 4 127  2 22650.28 4 127 

4 19730.04 3 101  0 19730.04 3 101 

6 23376.07 4 125  0 23376.07 4 125 

8 20882.61 2 111  0 20882.61 2 111 

As we can see that, after the reschedule by the second objective, the peak load of charging demand has 

been considerably reduced without a significant increase in fleet size. Commendably, the total cost has also 

been reduced slightly, which indicates a win-win situation. The reduction of peak load is quite evident 

when the number of depots is relatively small (i.e., 2 and 5). The possible reason is that the number of 

variables will be reduced with a smaller number of depots, such that a better solution can be found with 

less computational time. This suggests that the effect of the second objective is closely related to the 

instance size and computation capacity. If the instance size is small, the optimization of the first objective 

is sufficient, and the result from the second objective could be unchanged since there is no room for 

optimization. If the instance size is medium, the optimization of the first objective would be insufficient, 

such that the second objective works since there is still room for optimization. If the instance size is too 

large, the optimization of the first objective would be insufficient, such that the optimization of the second 

objective cannot be processed and the result from the second objective is also unchanged. For the results in 

Table 3, the size of the first five instances is medium, and the gaps for the first objective solutions are 

9-11%, such that there is still room for optimization for the second objective. However, for the last seven 

instances, the number of variables exceeds 700,000. When the instance size is larger, the computation time 

at each node will become longer, such that a smaller number of nodes can be visited within a limited time, 

and it is more difficult to find a better solution. As shown in Table 3, the number of nodes visited for the 

first four instances exceeds 500, while the number of nodes visited for the last seven instances is less than 

20. Typically, for the instance with |𝐾| = 5 and 𝑙 = 2, the number of nodes visited is 0 and the peak load 

decreases to 0, which is because the heuristic of root nodes in CPLEX has found the optimal solution. The 
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number of nodes visited is 0 for the last three instances, which is because CPLEX has not completed root 

node processing. 

We note also that for the instance with |𝐾| = 5 and 𝑙 = 2, the fleet size has been slightly increased 

(from 117 to 118). The reason is that there exist cost trade-offs between the charging cost and additional 

transportation cost. The number of charging stations for this instance is the smallest (only 2) among all the 

instances. Since a recharging activity requires an additional deadheading trip, the variable transportation 

cost for recharging activities may be relatively large compared to other instances. In this instance, the peak 

load is reduced to 0 at the expense of a greater fleet size, which implies that the charging cost is not 

sufficient to overweigh the additional transportation cost. 

 

(a)                                         (b) 

Fig. 6 Temporal distribution of recharging activities over time of day under (a) 400 trips, 2 depots, and 
2 charging stations; (b) 400 trips, 5 depots, and 2 charging stations 

 

Fig. 6 depicts the temporal distribution of recharging activities over time of day for two typical 

instances corresponding to Table 3. For the first instance with 400 trips, 2 depots and 2 charging stations 

(Fig. 6(a)), after rescheduling by the second objective, the peak load during 12:00-14:00 has diminished. 

For the second instance with 400 trips, 5 depots and 2 charging stations (Fig. 6(b)), the overall charging 

demand has diminished.  

 
(a)                                       (b) 

Fig. 7 Analysis of relative gap for a typical instance: (a) Total cost and peak load; (b) Pareto solutions 

As the lexicographic method is another form of the epsilon-constrained method by adding the relative 
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gap, the impact of the relative gap on the solutions deserves some discussion. The instance with 400 trips, 

2 depots, and 2 charging stations is selected for analysis, and the results are shown in Fig. 7. As shown in 

Fig. 7(a), as the relative gap increases, the constraints on the cost will be relaxed, resulting in the higher 

total cost and lower peak load. The combinations of total cost and peak load for each relative gap yield the 

solutions in Fig. 7(b). As we can see, there are a few weak-dominated solutions with identical peak load 

but different costs. This is because adding a relative gap to the constraint cannot guarantee to exclude the 

inferior solutions with the same peak load but higher cost. Another possible reason is that the second 

objective cannot guarantee to be solved to global optimality. Nevertheless, the Pareto solutions can be 

obtained by collecting the non-dominated solutions, as shown by the solid line in Fig. 7(b).  

5.2 Case studies 

5.2.1 Case description 

    In this section, we report on the applicability of our model and algorithm via a real-world bus network, 

Guangzhou Higher Education Mega Center, and compare the performance of MDEVSP with that of the 

state-of-the-practice. Guangzhou Higher Education Mega Center is located in Xiaoguwei Street, Panyu 

District, Guangzhou City, with an area of 34.4 square kilometers on both sides of the Zhujiang River. 

There are more than 20 bus lines in Guangzhou Higher Education Mega Center. We select four island lines 

to test our model (Loop 1, Loop 2, Pan No.201, and Pan No.202). The four lines have a total of five depots: 

the Guangzhou National Archives Hall, the Outer Ring W Rd Station, the Guangzhou Daxuecheng 

Stadium, the Suishicun Station, the Guangdong Science Center Station. An electric bus charging station is 

located at the Guangzhou National Archives Hall. The map of bus lines is shown in Fig. 8. 

 

Fig. 8 The map of bus lines 

In the MDEVSP, the information of deadheading time and trip information is required. The lengths of 

the bus lines are measured using the Baidu map, and the one-way trip time is calculated assuming an 
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average bus operating speed of 20 km/h. Table A.1 lists the resulted deadheading distance and travel time 

between stations. The overall service time is 6:30-22:30, and there are a total of 379 trips a day. The peak 

periods are between 7:00 to 9:00 in the morning and 16:00 to 18:00 in the afternoon, and the low peak 

period is after 21:00 in the evening. The information of each bus line is given in Table A.2. With the 

headway and trip time information provided in Table A.2, the corresponding bus trip information (i.e., trip 

duration) is provided in Table A.3. We assume that the depot capacity and charging station capacity are 30 

vehicles per depot, and the fleet size is 100 vehicles. 

In this area, the vehicle type used is the BYD K& having a design running range of 260 km and a 

vehicle capacity of 44 pax. However, in practice, the design running range cannot be fully utilized due to 

possible road gradients, traffic congestion, and air-conditioning. Moreover, to prolong the battery life, the 

running range would be deliberately reduced by the public transport operator to avoid deep discharge. In 

view of this, we set the running range of the vehicles as 130 km. The fast charging time is set as 30 

minutes, which can be achieved for the fast-charging type charging device, such as BYD EVA080KG. The 

working voltage is AC342V-440V (three-phase), and the input/output power is less than 200 kW. In 

addition, the fixed transportation cost is taken as 285.714 USD/vehicle (2000 RMB/vehicle). The variable 

transportation cost is taken as 0.429 USD/km (3RMB/km). The waiting time cost is taken as 0.014 

USD/min (0.1 RMB/min), and the fixed charging cost is taken as 7.143 USD per time (50 RMB per time). 

In this section, we consider two simpler approaches with and without TOU pricing considerations as 

the benchmark against MDEVSP. When the TOU pricing is not considered, in practice the operator would 

not choose to recharge unless necessary, and buses are usually recharged only when the remaining running 

range is insufficient to complete the next trip task. In this circumstance, the vehicle trip chains can be 

constructed using the first-in-first-out (FIFO) principle, which is widely implemented in 

state-of-the-practice. More specifically, a bus first arriving at a depot will first dispatch to the other ending 

point of the route based on the timetable. However, such a FIFO rule only applies to a single bus route and 

cannot be applied to the multi-route scenario, since in the MDVSP it is difficult to evaluate the remaining 

running range in the provision of different route lengths and deadheading trip mileage. Therefore, the 

single-line vehicle schedule, where each bus line operates independently using the FIFO rule, is adopted as 

a benchmark. Each bus route is assigned to its nearest charging station. The overall performance is 

achieved by aggregating those of each line. Note that the FIFO rule may be adapted by the deficit function 

approach with deadheading trips, under which circumstance the fleet size may be reduced at the expense of 

additional deadheading trip costs (Ceder, 2007). The deficit function is however beyond the scope of this 

study as it is also difficult to evaluate the remaining running range in the provision of deadheading trip 

mileage. 

To consider the recharging event, the traditional FIFO principle proposed by Ceder (2007) is 

strengthened by a safety running range that is sufficient to return to the depot or charging station. That is, 

for any trip node 𝑖 ∈ 𝑆, the following conditions hold simultaneously: 
 𝑔𝑖 +𝑚𝑖𝑛𝑒∈𝐸 𝐷𝐻(𝑖, 𝑒) ≤ 𝐷𝑀𝐴𝑋 (45) 

 𝑔𝑖 + 𝐷𝐻(𝑖, 𝜃′) ≤ 𝐷𝑀𝐴𝑋 (46) 
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where condition (45) denotes that the remaining running range is sufficient to return to the nearest charging 

station, and condition (46) denotes that the remaining running range is sufficient to return to the depot. The 

pseudocode of the trip-connection method of the extended FIFO rule is described in Algorithm 2. 

Algorithm 2 Pseudocode of the extended FIFO rule 

1 For each trip node 𝑖, find trip node 𝑗 according to the FIFO rule. 

2 Connect trip node 𝑖 to trip node 𝑗 only if the conditions for safety running range (Conditions (45) and 

(46)) are met; otherwise, go to Step 3. 

3 
Select the charging station with a distance of 𝑚𝑖𝑛𝑒∈𝐸 𝐷𝐻(𝑖, 𝑒), and the nearest charging node to the 

current time. 

4 If trip tasks still exist after the recharging activity, then continue to find the next trip node based on the 

FIFO rule; otherwise, go to Step 5. 

5 Return to the depot after serving trip node 𝑗.  

Given that the aforementioned extended FIFO rule is not designed to respond to TOU pricing, we also 

consider another benchmark with awareness of TOU pricing by the enhancement of the extended FIFO 

rule (FIFO-TOU). The FIFO-TOU rule identifies the safety running range in the same way as the extended 

FIFO rule (Conditions (45) and (46)), but allows the operator to prioritize recharging buses during the 

low-tariff period. Specifically, when a bus needs to recharge, the low-tariff period is prioritized; if the trip 

chain fails to connect after the recharging activity during the low-tariff period, the bus will be recharged 

during the high-tariff period. By modifying Algorithm 2, the pseudocode of the trip-connection method of 

the FIFO-TOU rule is described in Algorithm 3. 

Algorithm 3 Pseudocode of the extended FIFO-TOU rule 

1 For each trip node 𝑖, find trip node 𝑗 according to the FIFO rule. 

2 Connect trip node 𝑖 to trip node 𝑗 only if the conditions for safety running range (Conditions (45) and 

(46)) are met; otherwise, go to Step 3. 

3 
Select the charging station with a distance of 𝑚𝑖𝑛𝑒∈𝐸 𝐷𝐻(𝑖, 𝑒), and the nearest charging node during the 

low-tariff period to the current time. 

4 If trip tasks still exist after the recharging activity, then continue to find the next trip node based on the 

FIFO rule; otherwise, go to Step 5. 

5 
Select the charging station with a distance of 𝑚𝑖𝑛𝑒∈𝐸 𝐷𝐻(𝑖, 𝑒), and the nearest charging node during the 

high-tariff period to the current time. 

6 If trip tasks still exist after the recharging activity, then continue to find the next trip node based on the 

FIFO rule; otherwise, go to Step 7. 

7 Return to the depot after serving trip node 𝑗.  

5.2.2 Results and discussion 

As a result, under the extended FIFO rule, the required fleet size is 39 vehicles and the total cost is 

13884.2 USD. Under the FIFO-TOU rule, the required fleet size is 43 vehicles and the total cost is 14974.7 
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USD. Under the MDEVSP, the branch-and-price algorithm has visited a total of 88 nodes with a gap value 

of 6.14%, and the resulting fleet size is 28 vehicles with a total cost of 10866 USD. For this example, the 

branch-and-price method far outperforms the benchmarks in both total cost and fleet size. 
 

Table 4 Optimal vehicle scheduling scheme by the branch-and-price algorithm 

Vehicle 

No. 
Trip chain 

Travel 

time 

(min) 

Waiting 

time 

(min) 

Trip 

distance 

(km) 

Deadh-

eading 

(km) 

Charging 

cost 

(USD) 

1 

A-2-DH-20-43-71-DH-89-104-Charge-129-DH-148-16

5-177-216-244-268-287-316-Charge-344-359-374-377

-A 

745 151 249.4 13.4 36.59 

2 
A-3-DH-26-49-76-97-DH-121-DH-145-174-Charge-21

3-227-248-271-292-319-334-DH-350-369-A 
736 134 243.6 10.8 20.99 

3 
A-18-39-56-DH-86-118-DH-144-Charge-181-196-DH-

228-256-279-312-329-352-A 
608 192 201.8 11.5 15.60 

4 
A-19-47-74-105-136-DH-158-173-DH-191-Charge-23

0-255-276-293-DH-327-345-A 
628 152 207.6 10.8 20.99 

5 A-188-Charge-263-DH-306-A 150 143 50.5 10.2 20.99 

6 
B-5-32-55-82-99-122-143-161-Charge-199-220-247-2

70-295-320-337-358-B 
764 64 253.2 3.6 20.81 

7 
B-10-31-48-75-DH-111-125-DH-153-176-Charge-222-

249-277-304-322-343-360-B 
677 159 224.8 12.5 20.99 

8 
B-11-34-DH-64-137-152-Charge-189-212-231-262-28

5-B 
449 199 148.8 3.6 15.60 

9 
B-17-40-65-90-113-130-151-Charge-197-214-241-264

-291-314-335-366-B 
717 111 237.6 3.6 15.60 

10 
B-24-41-62-DH-84-115-138-159-Charge-221-246-269

-294-DH-324-DH-354-B 
572 224 190.4 17.0 20.99 

11 
C-1-16-DH-37-60-87-103-116-140-169-Charge-206-D

H-237-260-296-331-DH-351-365-375-378-C 
727 241 244.9 21.7 20.99 

12 
C-4-25-DH-52-DH-81-91-106-Charge-149-162-193-22

5-253-272-299-338-DH-364-C 
613 224 207.3 19.3 15.60 

13 
C-6-28-50-78-100-124-146-Charge-183-198-219-DH-

245-267-290-315-339-361-C 
659 181 218.6 11.0 15.60 

14 
C-8-38-70-88-102-119-154-178-200-235-Charge-298-

325-DH-342-357-367-376-C 
638 262 213.1 14.7 15.78 

15 
C-12-36-59-80-DH-101-DH-142-Charge-194-211-223-

251-274-302-317-333-346-371-C 
651 186 218.6 15.8 15.60 

16 
C-13-35-68-95-DH-112-127-Charge-156-172-202-238

-265-288-DH-313-DH-330-362-C 
614 211 206.0 16.5 15.60 

17 
C-14-45-67-94-123-147-171-Charge-217-239-257-DH

-286-311-321-336-DH-355-373-C 
638 196 213.0 14.6 20.99 

18 
C-22-DH-46-63-83-98-114-Charge-164-180-192-234-

280-308-DH-328-DH-348-DH-368-C 
606 219 204.3 20.0 15.60 

19 
C-27-51-77-DH-107-128-Charge-167-DH-187-203-23

2-258-DH-284-DH-307-C 
538 117 181.7 21.6 15.60 

20 
C-30-57-132-Charge-170-DH-204-240-261-00278-305

-C 
393 263 134.0 20.8 15.60 

21 C-54-DH-120-166-184-205-DH-233-273-297-C 379 242 127.0 12.1 0.00 

22 C-61-182-207-DH-254-DH-303-C 240 358 80.3 8.8 0.00 

23 
D-21-44-73-85-109-133-DH-150-Charge-175-190-DH
-208-DH-229-DH-259-283-309-341-353-D 

638 144 213.1 14.7 15.60 

24 D-58-DH-134-DH-168-DH-201-DH-224-250-281-D 346 228 118.2 22.4 0.00 

25 
E-7-DH-33-DH-72-DH-92-DH-135-Charge-160-DH-1

86-DH-218-242-266-289-E 
502 160 171.1 28.9 15.60 

26 
E-9-29-53-79-96-110-126-141-157-Charge-195-210-2

26-252-275-300-318-332-349-363-Charge-379-E 
757 160 252.7 12.9 31.38 
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27 
E-15-42-69-108-DH-131-155-179-Charge-215-243-28

2-310-323-347-370-E 
591 258 198.5 15.7 20.99 

28 
E-23-66-DH-93-117-139-163-185-209-236-Charge-30

1-326-340-356-372-E 
562 253 187.0 9.6 15.78 

Table 4 presents the optimal vehicle scheduling scheme by the branch-and-price method. The first 

column represents the vehicle numbers. The trip chains for the electric buses are given in the second 

column, where the letters A-E represent the bus terminus Guangzhou National Archives Hall, Outer Ring 

W Rd Station, Guangzhou Daxuecheng Stadium, Suishicun Station, and Guangdong Science Center 

Station, respectively; and ‘DH’ and ‘Charge’ denote the deadheading trip and recharging activity, 

respectively; and the trip numbers are in accordance with Table A.3. Given these trip chains, the total travel 

time, waiting time, overall trip distance, deadheading trip distance, and charging cost can be calculated 

readily. 

 

(a) System costs 

 

Extended

FIFO
MDEVSP FIFO-TOU

Waiting time cost 90.4 77.6 116.0

Fixed transportation cost 11142.9 8000.0 12285.7

Charging cost 445.3 475.4 362.3

Variable transportation

cost
2205.6 2313.0 2210.7
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(b) Recharging activity arrangement 

Fig. 9 Performance of extended FIFO, FIFO-TOU and MDEVSP 

Fig. 9 shows the system costs and the distribution of recharging activities for the extended FIFO rule, 

FIFO-TOU rule, and the MDEVSP calculated by the branch-and-price algorithm. As shown in Fig. 9(a), 

the waiting time cost has been reduced considerably by our model. This is due to the coordinated fleet 

management and resulting less idle time. According to the fixed transportation cost, the fleet size has been 

saved by using our model at the expense of a larger number of recharging activities and deadheading trips. 

Compared to the extended FIFO rule, the number of recharging activities increases in the MDEVSP 

calculated by the branch-and-price algorithm (27 vs. 22 activities), whereas a larger number of recharging 

activities are distributed in the low-tariff period. Therefore, the charging cost increases slightly for the 

MDEVSP. This suggests that the TOU pricing scheme tends to shift recharging activities from the 

high-tariff period to the low-tariff period, which reduces the peak load for power grids. Although the 

number of recharging activities during the high-tariff period and the charging cost are the lowest under the 

FIFO-TOU rule, the fixed transportation cost (and thus fleet size), waiting time cost, and total cost are the 

highest. This is because, in the provision of TOU awareness, a number of buses would be forced to wait at 

the charging stations or depots to avoid recharging activities during the high-tariff period (see Fig. 10), 

such that a number of trip tasks during the high-tariff period are skipped to avoid high-tariff recharging 

activities, and vehicles should be added to execute these skipped trip tasks. 

 

Fig. 10 Recharging periods and electricity tariff distributions  

As the charging schedule is integrated into the vehicle scheduling problem, it is interesting to examine 

how the recharging activities are distributed over the time of day and the associated charging loads. Fig. 10 

shows the electricity tariff distribution (TOU pricing), recharging periods, and the corresponding charging 

load. As we can see, under the extended FIFO rule, most of the recharging activities are performed during 

the high-tariff period. The recharging periods differ among different lines. For the bus number Loop 1, the 

recharging period ranges from 13:00 to 14:00 and from 20:00 to 21:00. The recharging periods of Pan 202 

and Loop 2 primarily range from 14:00 to 15:00, while that of Pan 201 distributes around 16:00. Under the 

FIFO-TOU rule, the recharging period ranges from 13:00 to 14:00, from 17:00 to 17:30, and from 20:00 to 



36 

 

21:00. Only 3 buses are recharged at the low-tariff period (13:00-14:00) and the high-tariff period 

(20:00-21:00), respectively. Most of the recharging activities (totally 15) are performed immediately after 

the high-tariff period (17:00-17:30), which indicates that these buses are waiting at the charging stations or 

depots to avoid recharging activities during the high-tariff period. The charging load of MDEVSP is 

calculated by the branch-and-price algorithm. One can see that the peak load under the FIFO-TOU rule is 

the highest, being approximately two and three times that of extended FIFO and MDEVSP, respectively. 

This suggests that the FIFO-TOU could induce centralized charging demand that is not desirable in 

practice. Compared to the two benchmark scenarios, the charging demand under the MDEVSP is spread 

around a wider range of low-tariff periods, along with a smooth hump. Although the charging cost has 

increased respectively by 6.8% and 31.2 % compared to that of the extended FIFO rule and FIFO-TOU 

rule (see Fig. 9), the peak load has been dramatically reduced by 40% and 200%, respectively, which 

reveals a promising application result.  

 

6. Concluding remarks 

Vehicle scheduling is an important part of public transport planning. With electric buses being 

introduced by more and more cities around the world, there is an increased need for developing a modeling 

and solution framework for the electric vehicle scheduling problem that takes into account the electric bus 

charging demand and the power grid characteristics. This paper introduces a multi-objective multi-depot 

electric vehicle scheduling problem explicitly considering the TOU pricing and peak load risk. The 

objectives are to minimize the total operation cost and the peak charging load. We mathematically model 

this problem on a time-expanded network and reformulate the multi-objective optimization model by a 

practical lexicographic method. In particular, we propose an exact tailored branch-and-price method to 

solve the problem. Particularly, the heuristics and a trip chain pool strategy are embedded into the 

branch-and-price method to expedite the computation time. 

The proposed model and solution approach are tested by a benchmark and a real-world bus network in 

Guangzhou, China. Results demonstrate the superiority of our method over the off-the-shelf solver with 

respect to solution quality and computation time. More importantly, our model can achieve operation cost 

savings and peak load leveling. In future research, more exogenous factors can be included in our 

modeling framework. For example, while this paper concentrates on MDEVSP with a single vehicle type, 

future research may concern the schedule of mixed fleets comprised of both conventional diesel and 

electric buses. Another line of future research is to investigate further the scalability of the exact method. 

 

Appendix A 

Table A.1 Deadheading distances/time (km/min) between stations 

 
Guangzhou National 

Archives Hall 

Outer Ring 

W Rd 

Station 

Guangzhou 

Daxuecheng 

Stadium 

Suishicun 

Station 

Guangdong 

Science 

Center 

Charging 

Station 
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Station 

Guangzhou 

National 

Archives Hall 

0 1.8/6 3.4/8 4.7/14 3.2/9 0 

Outer Ring W 

Rd Station 
1.8/6 0 3.8/10 6.5/16 3.9/11 1.8/6 

Guangzhou 

Daxuecheng 

Stadium 

3.4/8 3.8/10 0 3.1/8 5.9/14 3.4/8 

Suishicun 

Station 
4.7/14 6.5/16 3.1/8 0 6.1/12 4.7/14 

Guangdong 

Science 

Center Station 

3.2/9 3.9/11 5.9/14 6.1/12 0 3.1/9 

Charging 

Station 
0 1.8/6 3.4/8 4.7/14 3.2/9 0 

 

Table A.2 Bus line information 

Line Direction Origin depot 
Destination 

depot 

Line 

length(km) 

Trip 

time(min) 

Time of 

day 
Headway(min) 

Loop 

1 
- 

Guangzhou 

National 

Archives Hall 

Guangzhou 

National 

Archives Hall 

12 36 6:30-22:30 

8 (High peak) 

12 (Flat peak)  

15 (Low peak)  

Loop 

2 
- 

Outer Ring W 

Rd Station 

Outer Ring W 

Rd Station 
15.6 47 7:00-21:00 10  

Pan 

201 

Up 

Guangzhou 

Daxuecheng 

Stadium 

Suishicun 

Station 
13.5 41 7:00-21:00 

15 (High peak)  

20 (Flat peak)  

Down 
Suishicun 

Station 

Guangzhou 

Daxuecheng 

Stadium 

13.5 41 7:00-21:00 
10 (High peak)  

15 (Flat peak) 

Pan 

202 

Up 

Guangzhou 

Daxuecheng 

Stadium 

Guangdong 

Science 

Center Station 

11.2 34 7:00-21:00 
15 (High peak) 

20 (Flat peak) 

Down 

Guangdong 

Science Center 

Station 

Guangzhou 

Daxuecheng 

Stadium 

12.7 38 7:00-21:00 
15 (High peak) 

20 (Flat peak) 
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Table A.3 Bus trip information 

Trip No. Bus line Trip duration Direction Trip No. Bus line Trip duration Direction 

1 Loop 1 6:30-7:06 - 203 Pan 202 14:40-15:24 Down 

2 Loop 1 6:42-7:18 - 204 Loop 1 … - 

3 Loop 1 6:54-7:30 - … … 21:45-22:21 … 

4 Loop 1 7:00-7:36 - 376 Loop 1 22:00-22:36 - 

… … … … 377 Loop 1 22:15-22:51 - 

201 Pan 201 14:40-15:21 Down 378 Loop 1 22:30-23:06 - 

202 Pan 202 14:40-15:14 Up 379 Loop 1 14:40-15:24 - 

 

Acknowledgements 

This work is jointly supported by the Science and Technology Program of Guangzhou, China (Project 

No. 201904010202), National Science Foundation of China (Project No. 72071079, 61703165, 71890972, 

71890970), and the Science and Technology Program of Guangdong Province (Project No. 

2020A1414010010), and the UK-PACK project EUM151. 

 

References 
Argote-Cabanero J., Daganzo, C.F., Lynn, J.W., 2015. Dynamic control of complex transit systems. 

Transportation Research Part B, 81, 146-160. 
Adler J.D., Mirchandani P.B., 2017. The vehicle scheduling problem for fleets with alternative-fuel 

vehicles. Transportation Science, 51(2), 441-456. 
Ayre, J., 2018. New BYD ADL Electric Bus Fleet Deployed In London-Route 153 Now Fully 

Electric.https://cleantechnica.com/2018/02/13/new-byd-adl-electricbus-fleet-deployed-london-route-15
3-now-electric/. (Accessed March 15, 2019). 

An K., 2020. Battery electric bus infrastructure planning under demand uncertainty. Transportation 
Research Part C, 111, 572-587. 

Barnhart C., Johnson E. L., Nemhauser G. L., Savelsbergh M. W. P., Vance P. H., 1998. Branch-and-price: 
Column generation for solving huge integer programs. Operations Research, 46(3), 316-329. 

Bi Z., Keoleian G., Ersal T., 2018. Wireless charger deployment for an electric bus network: A 
multi-objective life cycle optimization. Applied Energy, 225, 1090-1101. 

Boyer V., Ibarra-Rojas O.J., Ríos-Solís Y., 2018. Vehicle and crew scheduling for flexible bus 
transportation systems. Transportation Research Part B, 112, 216-229. 

Ceder A., 2007. Public transit planning and operation: theory, modelling and practice, Elsevier. 
Carosi S., Frangioni A., Galli L., Girardi L., Vallese G., 2019. A matheuristic for integrated timetabing and 

vehicle scheduling. Transportation Research Part B, 127, 99-124. 
Deb K., Multi-objective optimization using evolutionary algorithms: John Wiley & Sons, 2001. 
Deb, K., Pratap, A., Agarwal, S., Meyarivan, T., 2002. A fast and elitist multiobjective genetic algorithm: 

NSGA-II. IEEE transactions on evolutionary computation, 6(2), 182-197. 
Desfontaines L., Desulniers G., 2018. Multiple depot vehicle scheduling with controlled trip shifting. 

Transportation Research Part B, 113, 34-53. 
Ehrgott, M., 2005. Multicriteria Optimization, second ed. Springer, Berlin, pp. 323. 
Hadjar A., Marcotte O., Soumis F., 2006. A branch-and-cut algorithm for the multiple depot vehicle 



39 

 

scheduling problem. Operations Research, 54(1), 130-149. 
He F., Yang J., Li M., 2018. Vehicle scheduling under stochastic trip times: An approximate dynamic 

programming approach. Transportation Research Part C, 96, 144-159. 
He Y., Song Z., Liu Z., 2019. Fast-charging station deployment for battery electric bus systems considering 

electricity demand charges. Sustainable Cities and Society, 48,101530. 
He Y., Liu Z., Song Z., 2020. Optimal charging scheduling and management for a fast-charging battery 

electric bus system. Transportation Research Part E, 142(23), 102056. 
Huisman D., Wagelmans A.P.M., 2006. A solution approach for dynamic vehicle and crew scheduling. 

European Journal of Operational Research, 172, 453-471. 
Janovec M., Koháni M. Exact approach to the electric bus fleet scheduling. Transportation Research 

Procedia, 2019, 40, 1380-1387. 
Kliewer N., Mellouli T., Suhl L., 2006. A time-space network based exact optimization model for 

multi-depot bus scheduling. European Journal of Operational Research, 175, 1616-1627. 
Kooten N.M.E., Akker J. M., Hoogeveen J.A. Scheduling electric vehicles. Public Transport, 2017, 

9:155-176. 
Kulkarni S., Krishnamoorthy M., Ranade A., Ernst A.T., Patil R., 2018. A new formulation and a column 

generation-based heuristic for the multiple depot vehicle scheduling problem. Transportation Research 
Part B, 118, 457-487. 

Laskaris G., Seredynski M., Viti F., 2020. Enhancing bus holding control using cooperative ITS. IEEE 
Transactions on Intelligent Transportation Systems, 21(4), 1767-1778. 

Li J., 2014. Transit bus scheduling with limited energy. Transportation Science, 48(4), 521-539. 
Li L., Hong K.L., Xiao F., 2019. Mixed bus fleet scheduling under range and refueling constraints. 

Transportation Research Part C, 104, 443-462. 
Liu T., Ceder A., 2020. Battery-electric transit vehicle scheduling with optimal number of stationary 

chargers. Transportation Research Part C, 114, 118-139. 
Lin Y., Zhang K., Shen Z., Ye B., Miao L., 2019. Multistage large-scale charging station planning for 

electric buses considering transportation network and power grid. Transportation Research Part C, 107, 
423-443. 

Liu Z.C., Song Z.Q., 2017. Robust planning of dynamic wireless charging infrastructure for battery electric 
buses. Transportation Research Part C, 83, 77-103. 

Mavrotas G., 2009. Effective implementation of the e-constraint method in Multi-Objective Mathematical 
Programming problems. Applied Mathematics and Computation, 213, 455-465. 

Muller, T.H.J., Furth, P.G., 2000. Integrating Bus Service Planning with Analysis, Operational Control, and 
Performance Monitoring. In: Proceeding of Intelligent Transportation Society of America Annual 
Meeting. Boston, Mass. 

Petersen H., Larsen A., Madsen O., Petersen B., Ropke S., 2013. The simultaneous vehicle scheduling and 
passenger service problem. Transportation Science, 47(4), 603-616. 

Perumal S.S.G., Dollevoet T., Huisman D., Lusby R.M., Larsen J., Riis M. Solution Approaches for 
Vehicle and Crew Scheduling with Electric Buses. Econometric institute research papers, Erasmus 
University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute, January, 2020. 

Rogge M., Hurk E., Larsen A., Sauer D., 2018. Electric bus fleet size and mix problem with optimization 
of charging infrastructure. Applied Energy, 211, 282-295. 

Shen Y., Xu J., Li J., 2016. A probabilistic model for vehicle scheduling based on stochastic trip times. 
Transportation Research Part B, 85, 19-31.  



40 

 

Shen Z., Feng B., Mao C., Ran L., 2019. Optimization models for electric vehicle service operations: A 
literature review. Transportation Research Part B, 128, 462-477. 

Tang X., Lin X., He F., 2019. Robust scheduling strategies of electric buses under stochastic traffic 
conditions. Transportation Research Part C, 105, 163-182. 

Uçar E., Birbil S˙I., Muter ˙I., 2017. Managing disruptions in the multi-depot vehicle scheduling problem. 
Transportation Research Part B, 105, 249-269. 

Wang Y., Huang Y., Xu J., Barclay N. Optimal recharging scheduling for urban electric buses: A case study 
in Davis. Transportation Research Part E, 2017, 100, 115-132. 

Wen M., Linde E., Ropke S., Mirchandani P., Larsen A., 2016. An adaptive large neighborhood search 
heuristic for the Electric Vehicle Scheduling Problem. Computers & Operations Research, 76:73-83. 

Wei R., Liu X., Ou Y., Fayyaz S.K., 2018. Optimizing the spatio-temporal deployment of battery electric 
bus system. Journal of Transport Geography, 68, 160-168. 

Wu W., Liu R., Jin W., 2016. Designing robust schedule coordination scheme for transit networks with 
safety control margins. Transportation Research Part B, 93, 495-519. 

Wu W., Liu R., Jin W., 2017. Modelling bus bunching and holding control with vehicle overtaking and 
distributed passenger boarding behaviour. Transportation Research Part B, 104, 175-197. 

Wu W., Liu R., Jin W., Ma C., 2019. Simulation-based robust optimization of limited-stop bus service with 
vehicle overtaking and dynamics: A response surface methodology. Transportation Research Part E, 
130, 61-81. 

Wu W., Lin Y., Liu R., Li Y., Zhang Y., Ma C., 2020. Online EV charge scheduling based on time-of-use 
pricing and peak load minimization: Properties and efficient algorithms. IEEE Transactions on 
Intelligent Transportation Systems, doi: 10.1109/TITS.2020.3014088. 

Yang C., Lou W., Yao J., Xie S., 2018. On charging scheduling optimization for a wirelessly charged 
electric bus system. IEEE Transactions on Intelligent Transportation Systems, 19(6), 1814-1826. 

Yao E., Liu T., Lu T., Yang Y., 2020. Optimization of electric vehicle scheduling with multiple vehicle 
types in public transport. Sustainable Cities and Society, 52, 101862. 

Zeighami V., Soumis F., 2019. Combining Benders’ decomposition and column generation for integrated 
crew pairing and personalized crew assignment problems. Transportation Science, 53(5), 1479-1499. 


