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Abstract. Structural health monitoring (SHM) is often approached from a statistical pattern recognition or ma-

chine learning perspective with the aim of inferring the health state of a structure using data derived from a

network of sensors placed upon it. In this paper, two SHM sensor placement optimisation (SPO) strategies that

offer robustness to environmental effects are developed and evaluated. The two strategies both involve construct-

ing an objective function (OF) based upon an established damage classification technique and an optimisation

of sensor locations using a genetic algorithm (GA). The key difference between the two strategies explored here

is in whether any sources of benign variation are deemed to be observable or not. The relative performances of

both strategies are demonstrated using experimental data gathered from a glider wing tested in an environmental

chamber, with the structure tested in different health states across a series of controlled temperatures.

1 Introduction

Sensor placement optimisation (SPO) is the technique by

which the number and location of sensors is optimised for

a specific objective to reduce the cost of a structural health

monitoring (SHM) system without compromising on the ef-

fect of monitoring. For this technique, the objective function

(OF) should first be designed to evaluate the effectiveness

of the data collected from sensors in a given arrangement.

Currently, the commonly used OFs are mainly focussed on

maximising the performance of modal identification and pa-

rameter estimation schemes (Barthorpe and Worden, 2020;

Papadimitriou, 2004; Huan and Marzouk, 2013). However,

to improve the ability of an SHM system to identify the

structural state, it is necessary to conduct some research on

OFs for SPO that are linked directly to structural health-state

identification.

One critical aspect of health-state identification is the ap-

proach taken to do the damage identification, and specifically

whether it makes use of supervised or unsupervised learning.

In Worden and Burrows (2001), the authors adopted the nor-

malised mean-square error between the desired results and

estimated results from a neural network as a measure of fit-

ness. The sensor layout with the minimum normalised mean-

square error was treated as the optimal result. The paper by

Samanta et al. (2003) proposed to use the true and false pos-

itive rates in the case of a support vector machine (SVM)

model used to select the optimal positions using a genetic al-

gorithm (GA). Eshghi et al. (2019) used the detectability of

different health states as a criterion to design a sensor net-

work optimally, and a surrogate model was applied to reduce

the computational burden. In addition to these non-Bayesian

OFs, an approach that utilises an OF based on minimising

Bayes risk has also been proposed (Flynn and Todd, 2010).

It can be seen that the OF should be adjusted to meet the

requirements of a specific project including the type of ap-

proach that should be adopted.

Damage is typically indicated via changes in the material

properties and at structural boundaries (Farrar and Worden,

2012); these can be revealed via dynamic response proper-

ties of a structure, thus realising quantitative global dam-

age detection. However, there are often confounding effects,

caused by variations in the environmental and operational

conditions, which can mask the changes from actual dam-

age. Therefore, a critical step in a damage detection method
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is to attempt to identify features which are sensitive to varia-

tions in material and geometric properties of the structure but

robust to environmental disturbances.

Currently, there are four commonly used methods to fil-

ter out the environmental effects, including principal com-

ponent analysis, factor analysis, transformed Mahalanobis

squared distance (MSD) based on independent variables and

co-integration (Deraemaeker and Worden, 2018; Cross et al.,

2012). The first three methods are linear techniques in which

a linear subspace of a feature space can be identified to ac-

count for the environmental conditions (Deraemaeker and

Worden, 2018). The remaining subspace of the feature vec-

tors then makes the major contribution to the damage sensi-

tivity. The co-integration technique can help to find common

trends among the behaviour of non-stationary signals (Cross

et al., 2012) and remove then. When the co-integration be-

tween signals does not hold, it indicates that damage may

have occurred in the structure. Time series data need to be

recorded for the application of this method. Thus, different

methods of eliminating environmental effects can be selected

based on the characteristics of the accessible data.

This paper develops two strategies for considering envi-

ronmental variations in the optimum design of the sensor de-

ployment in an SHM system. This technique aims at max-

imising the damage detection ability of an SHM system by

proposing an objective function using a supervised-learning

algorithm, namely an SVM. A genetic algorithm is used to

search for the optimal sensor deployment with the proposed

objective function. To demonstrate the whole process more

concretely, a set of data and the corresponding temperature

conditions are taken as an example to establish a general

framework to consider a certain environmental effect in SPO.

The structure of this paper is as follows: Sect. 2 demon-

strates the process of constructing temperature-insensitive

features objectively for a frequency response function (FRF)

data set. Section 3 describes the establishment of the objec-

tive function. Section 4 introduces the experiment providing

data for the case study in this paper, with the results for the

case study discussed in Sect. 5. Finally, conclusions are pre-

sented in Sect. 6.

2 Feature derivation

Frequency domain data can be employed to reveal changes

in vibration characteristics, such as the mass and stiffness, of

a structure. To generate a robust feature using frequency do-

main data, according to the literature (Manson et al., 2003),

a frequency range (FR) with a specific resolution can be se-

lected to generate features by using distance calculation tech-

niques to compute the discordance between an observation

and an observation set, such as Euclidean squared distance

(ESD) and MSD.

In this paper, a feature-bagging method is used to objec-

tively derive effective features within a specific FR for FRFs

from each sensor. In general terms, a feature-bagging pro-

cess is an average of all basic features derived from sampled

data sets (Murphy, 2012). Here, it is applied by averaging

the distance features calculated from M sample data sets of

spectral lines from a relatively large FR. After obtaining a

committee model with M feature values, the average value

of these features D2
A for an observation from one sensor can

be calculated as

D2
A =

1

M

M
∑

m=1

D2
m, (1)

where D2
m is the feature (squared distance) value correspond-

ing to the mth sampled set of spectral lines.

To generate M sample data sets of spectral lines, bootstrap

sampling is applied among the selected FR to sample spec-

tral lines with repetition. The sampling size n should be set

based on the specific data set. The number of sets M can be

set based on the total number of spectral lines in the initial

frequency range divided by the sampling size. Further detail

including pseudo-codes for the MSD-based feature deriva-

tion heuristic may be found in Bull et al. (2019).

Furthermore, consideration of temperature variation will

be included in the process of feature derivation. In Sect. 2.1

and 2.2, two approaches are proposed to generate M features

by utilising data measured at different temperatures. In order

to focus on the effect of temperature, in this paper, the influ-

ence of noise is assumed to be negligible. Therefore, high-

averaged data are adopted in both approaches.

2.1 A normalised approach for labelled measurements

For the laboratory-based studies, if the temperature of a

structure can be controlled and recorded, then both the nor-

mal condition data and damage data will be labelled with

the corresponding temperature. Thus, features for the nor-

mal condition data and damage data at each temperature can

be calculated respectively. These labels can be used to nor-

malise the temperature on features. On this basis, a distance

calculation approach can be taken to calculate features. The

noise effect on the high-averaged data can be ignored, so it is

assumed acceptable to use only the mean value of the high-

averaged data set to represent the data set itself. As there is

thus no uncertainty associated with the feature values, the

feature comparisons are between crisp numbers at equal tem-

peratures, and it is sufficient to use the ESD as the compari-

son metric between feature vectors.

Following the methodology given in Eq. (2), the ESD

statistic DE is calculated as

D2
E =

n
∑

i=1

(xi − µi)
2, (2)

where xi is the amplitude value of the ith spectral line, µi

is the averaged amplitude value of a spectral line set corre-

sponding to a frequency from an observation set, and n is the
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dimension of a sample, i.e. the number of spectral lines in a

sample.

Note that the ESD-based features here represent

temperature-insensitive features obtained by the aver-

aging approach and represent an idealised baseline for

comparisons. This option is possible here because of the pre-

cise temperature control and recording in the experiments.

In general, high levels of noise or limited measurements for

averaging will result in uncertainties in the features which

should be taken into account. If sufficient measurements

are available to estimate the covariance, the MSD can

be used to quantify the discordancy. In practice, for the

monitoring of in situ structures, the ambient temperature

will be uncontrollable and may not be recorded.

2.2 A linear approach for unlabelled measurements

In situations when temperature measurements are not avail-

able for feature vectors, the influence of temperature still has

to be removed from comparisons. Linear techniques to fil-

ter/project out such environmental effects exist, are simple

to apply in practice and are computationally efficient (Der-

aemaeker and Worden, 2018). Furthermore, feature vectors

provided by bootstrap sampling over a large FR are high-

dimensional enough to make possible the existence of a lin-

ear subspace that can account for the confounding effects.

Such a linear approach, based on the MSD is explored in this

paper; it can naturally eliminate temperature effects as long

as the normal condition data include measurements under

an appropriate range of temperature conditions. The MSD

is given by

D2
M = (x − µ)⊤S−1(x − µ), (3)

where x is a vector referring to an observation, µ is the

mean value for a set of observations, and S is the corre-

sponding covariance matrix; ⊤ indicates transpose. Note that

the MSD-based features in this paper are used to represent

temperature-insensitive features obtained following the ap-

plication of the linear projection approach of Deraemaeker

and Worden (2018).

3 Optimisation objective function

To construct an OF having a direct relationship with the

damage detection ability of an SHM system, a relationship

between an OF and a classifier distinguishing healthy-state

data and damaged-state data needs to be established. For the

purposes of simplicity and computational efficiency, the re-

search here is limited to a linear classifier. The supervised-

learning algorithm, used here to build a linear classifier, is

the support vector machine (SVM) technique (Vapnik, 2013).

The initial reason for the selection of this classification algo-

rithm is that an SVM makes no assumption about the prior

distribution of data, which is difficult to know exactly in prac-

tice.

Figure 1. The maximum-margin hyperplane for an SVM used as

the optimal objective.

In order to illustrate the concepts of sensor placement op-

timisation in this paper, the detection problem itself is delib-

erately simplified by considering large “damage” cases. Fur-

thermore, averaged features are used in order to minimise

the effects of measurement noise. In this situation, the health

states of the structure are strictly separable in the feature

space. This is a useful property as it allows a minimal ver-

sion of the SVM tailored to separable classes and amenable

to linear decision boundaries. This does not represent a re-

striction on the sensor optimisation problem, as the cases of

smaller damage or curved decision boundaries are both ad-

dressable with appropriately adapted versions of the SVM

(Vapnik, 2013).

The inputs for a linear SVM training can be represented

by

T = {(x1,y1), (x2,y2), . . ., (xN ,yN )}, (4a)

xi ∈ χ = Rn i = 1,2, . . .,N, (4b)

yi ∈ γ = {+1,−1}, (4c)

where N is the number of training examples, xi is the ith fea-

ture vector, (xi,yi) is the ith training sample, and yi is either

1 or −1 which indicates the class to which the xi belongs.

A separating hyperplane can be described by

w · x + b = 0, (5)

where w is the normal vector to a hyperplane. The parame-

ter b/||w|| determines the offset of the hyperplane from the

origin along the normal vector w, which is shown in Fig. 1.

Finding the best hyperplane means maximising the small-

est signed distance. The smallest signed distance from a sam-

ple point (xi,yi) to a hyperplane can be calculated by

γi = yi

(

w

||w||
· xi +

b

||w||

)

, (6a)

γ = min
i=1,...,N

γi . (6b)

Maximising γ is the optimisation problem.

max
w,b

γ (7a)
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Figure 2. Photograph of the experiment setting in the testing cham-

ber.

s.t. yi

(

w

||w||
· xi +

b

||w||

)

≥ γ, i = 1,2. . .N (7b)

This constraint means the signed distance from any fea-

ture vector in the training set to the max-margin hyperplane

is at least equal to γ . An important consequence of this con-

straint is that the max-margin hyperplane is completely de-

termined by those feature vectors that lie nearest to it. These

feature vectors are called support vectors. However, chang-

ing the values of w and b proportionally will not change the

hyperplane. Therefore, when the ratio of w and b is constant,

w can be selected according to the demand. For the conve-

nience of calculation, the ||w|| can be set to 1/γ . In this case,

Eq. (7) can be rewritten as

max
w,b

1

||w||
, (8a)

s.t. yi(w · xi + b) − 1 ≥ 0, i = 1,2. . .N. (8b)

Therefore, as shown in Fig. 1, a maximum margin width

is equal to

Dmargin =
2

||w||
. (9)

For different input data sets, the SVM will provide dif-

ferent best hyperplanes that match different maximum mar-

gin widths. Because there are no hyperparameters to be opti-

mised in this process, the OF can be evaluated quickly. It is

beneficial to search out the best sensor combination from a

large number of sensor candidates.

In this research, the combination of sensor locations which

provides feature vectors that make the healthy-state data and

the damaged-state data most separated will be selected as the

optimum, i.e. the sensor deployment with the largest max-

margin obtained by an SVM. To find the optimal deploy-

ment of sensors, an integer GA is adopted here, which can

search out the globally optimal result with variables that are

integer-valued. Linear constraints are used to make sure that

non-repetitive sensors exist in an optimal sensor deployment.

These constraints refer to the fact that the difference between

Figure 3. Labelled positions of experiment sets on the gilder wing.

Figure 4. An example of temperature effect on frequency response:

normal condition FRFs collected at seven different temperatures

from sensor 17.

any two selected sensor indices should not be less than 1,

which can be expressed as follows:

ki − ki+1 ≥ 1, i = 1, . . .,K − 1, (10)

where ki is the index of a selected sensor, and K is the num-

ber of selected sensors.

4 Experiment set-up and design

The structure under investigation is a glider wing (shown in

Fig. 2). Figure 3 is a schematic showing the 36 candidate sen-

sors used with their labelled positions drawn to scale. These

sensors are evenly distributed on the wing structure to pro-

vide the candidate sensor position combinations. To simulate

a reversible damage scenario rather than inflict permanent

damage on the wing, the damage was introduced by adding

mass blocks at discrete points. The first mass block (M1) was

added between sensors 4 and 5 and had a mass of 860 g. The

second mass block (M2) was added between sensors 6 and 7

with a mass of 900 g. As mentioned earlier, these represent

quite considerable damage in order to produce separated fea-

ture clusters. The locations for both mass blocks are shown

in Fig. 3. Three damage cases are considered: mass addition

at locations M1, M2 and M1M2.

The wing was excited at a point between sensor 22 and

sensor 23, as shown in Fig. 3, by the ETS solutions VT100

electrodynamic shaker. A Gaussian white-noise excitation

Wind Energ. Sci., 6, 1107–1116, 2021 https://doi.org/10.5194/wes-6-1107-2021
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Table 1. Optimal sensor combination designed for the M1 case detection and corresponding max-margin widths.

No. ESD Max-margin width MSD Max-margin

of sensors width

1 5 0.6634 4 0.4202

2 4, 5 0.9597 4, 5 0.5859

3 4, 5, 6 1.0511 4, 5, 16 0.6156

4 4, 5, 6, 11 1.1030 4, 5, 16, 25 0.6210

5 4, 5, 6, 9, 11 1.1411 4, 5, 6, 16, 25 0.6367

Table 2. Optimal sensor combination designed for the M2 case detection and corresponding max-margin widths.

No. ESD Max-margin width MSD Max-margin

of sensors width

1 6 0.8819 11 0.3549

2 6, 7 1.2582 9, 19 0.5775

3 6, 7, 11 1.4548 9, 11, 20 0.7082

4 6, 7, 9, 10 1.6012 9, 11, 19, 36 0.8467

5 6, 7, 9, 10, 11 1.7229 9, 11, 19, 20, 36 0.9283

Figure 5. An example of the adopted frequency range: FRFs be-

tween 50 Hz and 250 Hz collected at 15 ◦C from sensor 17 for four

condition cases.

was generated within the Siemens LMS acquisition system

and amplified using the ETS solutions LA500 power am-

plifier. The FRFs were measured using PCB resonant piezo-

electric accelerometers and sampled using a 64-channel ac-

quisition system controlled by LMS software. Each FRF is

an averaged value of eight measurements to make the ob-

tained FRFs smoother. The frequency range over which the

FRFs were taken is 0–4096 Hz. The frequency resolution is

0.25 Hz.

Seven different temperatures in the chamber were con-

trolled and recorded, ranging from 0 to 30 ◦C at intervals of

5 ◦C. Two measurements of the FRF matrix were recorded

for the structure under the normal condition at each con-

trolled temperature, with only one measurement for the struc-

ture under damaged condition at each temperature. Figures 4

and 5 show the FRFs from one sensor – number 17 – which

indicate that the effects of temperature and damage on FRF

are almost the same order of magnitude. Therefore, involving

the temperature in the SHM system design process is neces-

sary.

The feature-bagging method was conducted to generate

features using measurements with or without temperature la-

bels in this case study. The sampling size n should be less

than the number of observations for the normal condition to

avoid a singular covariance matrix in the MSD calculation.

Because there are two observations for each normal condi-

tion state at each controlled temperature and data for seven

temperatures were recorded, the total number of observations

for the normal condition is 14. Therefore, the sampling size n

was set to 10, and the covariance determinants were checked

to avoid the singular matrix. The number of samples M was

set to be equal to or slightly larger than d/n, where d is the

dimension of the original FR.

By plotting FRFs for the structure in different healthy

states, a FR from 50 to 250 Hz is selected to generate the

sample data sets of spectral lines. Here, FRFs for the struc-

ture with the temperature at 15 ◦C are used as an example.

As can be seen in Fig. 5, this frequency range is effective

because it is sensitive to all damage cases; i.e. it is easy to

distinguish the FRFs for these three damage cases from the

FRF of the normal condition case. The resolution of the FRFs

is 0.25 Hz, so the dimension of the original FR space is 801.

Thus, the number of samples can be set to 90 here.

The same sampling size and number of samples are taken

for the derivation of the ESD- and MSD-based features,

which is beneficial for comparing the optimal results when

different features are extracted from the same data set. In ad-

dition, only one discordance measure is calculated for one

observation from each sensor. The selection of a single fea-

https://doi.org/10.5194/wes-6-1107-2021 Wind Energ. Sci., 6, 1107–1116, 2021
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Table 3. Optimal sensor combination designed for the M1M2 case detection and corresponding max-margin widths.

No. ESD Max-margin width MSD Max-margin

of sensors width

1 5 0.7534 4 0.4859

2 4, 5 1.0436 4, 19 0.6395

3 4, 5, 11 1.2666 4,11,19 0.7438

4 4, 5, 6, 11 1.4115 4, 5, 11, 19 0.8344

5 4, 5, 6, 7, 11 1.5431 4, 5, 11, 19, 36 0.9070

Figure 6. Feature-bagging results based on ESD (a) and MSD (b) for the normal condition. Seven controlled temperatures T 0–T 30 and

the maximum value among the features for seven different temperatures are shown by colour markers. ESD-based features refer to features

obtained by the normalised approach with temperature labels. MSD-based features refer to features obtained by the linear approach without

temperature labels.

ture for each sensor based on a relatively large frequency

range is attractive as it leaves aside the feature selection task.

Because the measured data in this test are high-averaged

and the size of introduced damage is large, the normal con-

dition data and damaged state data used for training an SVM

classifier are linearly separable (as discussed earlier). There-

fore, the proposed OF constructed by a linear SVM for a

linearly separable case can be applied here. The misclassi-

fication rate is also calculated to check the separability. It is

obvious that if there is a sensor combination providing a non-

zero misclassification rate, it should be abandoned directly.

Although three damage cases are considered with mass ad-

ditions at locations M1, M2 and M1M2, only binary classifi-

cation is considered here to distinguish the normal condition

case and the three damage cases collectively. In this way, the

relationship between the damage position and the sensor de-

ployment can be studied. If more than two structural states

need to be considered in the optimisation process, a multiple-

classification algorithm can be used to classify the data, and

an appropriate criterion should be adopted as the optimisa-

tion objective according to the requirements of the project.

The details of the specific learning algorithm which delivers

the objective function values do not affect the general frame-

work proposed.

5 Results and discussion

5.1 Feature-bagging results and analysis

In order to improve the efficiency of the calculation, it is nec-

essary to normalise the feature vectors before training a clas-

sifier by mapping the min and max values of all given dimen-

sions to 0 and 1. The feature-bagging results of ESD-based

features and MSD-based features for the normal condition

case and three damage cases from 36 sensors at seven differ-

ent temperatures are shown in Figs. 6 to 9.

By analysing the positions of sensors providing compar-

atively large discordance values in different damage cases,

it is apparent that data collected from sensors close to the

added mass blocks are sensitive to this damage, as may have

been expected. For example, two of the largest discordance

values calculated via the ESD or MSD for damage case 1

come from sensors 4 and 5, adjacent to the mass block M1.

Furthermore, by a comparison of Figs. 6 and 7 to 9, it can

be seen that the influence of temperature on the two types of

features extracted from a subset of sensors is much smaller

than the influence of the damage. This observation suggests

that both feature extraction techniques can help to provide ef-

fective features robust to temperature variations but sensitive

to the damage.

Furthermore, from Figs. 7 to 9, it can be seen that a sensor

at a fixed location on the gilder wing has a different sen-

sitivity to the occurrence of the same damage at different

Wind Energ. Sci., 6, 1107–1116, 2021 https://doi.org/10.5194/wes-6-1107-2021



T. Wang et al.: SPO robust to environmental variations 1113

Figure 7. Feature-bagging results based on ESD (a) and MSD (b) for the damage case with M1 added. Seven controlled temperatures

T 0–T 30 and the minimum value among the features for seven different temperatures are shown by colour markers.

Figure 8. Feature-bagging results based on ESD (a) and MSD (b) for the damage case with M2 added.

temperatures. A reasonable explanation is that at different

temperatures, the physical parameters of various structural

components (such as stiffness and cross-sectional area) will

change. This variation results in the same part of the struc-

ture responding differently to the same damage at different

temperatures. Thus, the effect of one type of damage on dif-

ferent locations of the structure at a certain temperature can-

not be applied after the temperature of the structure changes.

In addition, because the minimum-feature values consist of

features for different temperatures, it is impossible to set one

temperature as the most unfavourable temperature for dam-

age detection. Therefore, it is necessary to involve the tem-

perature when analysing the structural response and training

a classifier.

5.2 Optimal results based on SVM models

The GA is used to optimise sensor sets containing between

one and five sensors for detecting three different damage

cases separately by using ESD- or MSD-based features. The

resulting optimal combinations are listed in Tables 1–3. It

can be seen that sensor locations selected by the SVM opti-

misation technique using ESD-based features are mainly dis-

tributed on the leading edge of the glider wing, while the re-

sults for the MSD-based features show that optimal sensors

are much more scattered on the structure.

By comparing the selected sensor locations in Tables 1 to

3 with the minimum values of features shown in Figs. 7 to

9, an expected phenomenon is observed: generally, locations

corresponding to the larger minimum-feature values are se-

lected as the optimal sensor locations. However, it can also

be seen that the distribution of feature vectors from one sen-

sor for different temperatures can also affect the results of the

SVM optimisation technique.

To demonstrate this visually, data from two sensors (9 and

19) selected by the SVM optimisation technique with MSD-

based features adopted to detect damage case 2 in Table 2 and

two sensors (9 and 11) providing the two largest minimum-

feature values for the same damage case in Fig. 8b are used

to build two classifiers and calculate the maximum margin

widths. The results are shown in Figs. 10 and 11. The max-

margin width calculated by the data from sensors 9 and 19

is 0.58, which is larger than the margin width (0.56) corre-

sponding to sensors 9 and 11.

To explore the relationship between the max-margin width

corresponding to the optimal sensor combination and the

number of selected sensors, the results for the M1 case are

taken as an example and demonstrated in Fig. 12. Here the

relative position of the line for SPO with temperature labels

https://doi.org/10.5194/wes-6-1107-2021 Wind Energ. Sci., 6, 1107–1116, 2021
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Figure 9. Feature-bagging results based on ESD (a) and MSD (b) for the damage case with M1 and M2 added.

Figure 10. Distribution of MSD-based features from two optimal sensors selected by the SVM optimisation technique. △ refers to the

normal condition and ∗ refers to the damaged state.

Figure 11. Distribution of MSD-based features from two sensors

providing the two largest minimum-feature values.

is higher than those without temperature labels. A similar

phenomenon also occurs for the M2 case and M1M2 cases;

this indicates that the linear method without using the tem-

perature labels employed to eliminate the influence of tem-

perature will sacrifice sensitivity to damage to a certain ex-

tent. This observation is also in line with the expectation that

more information can provide better results.

However, one obvious advantage of the linear method is

that it is not necessary to strictly control the temperature of

a structure to a specific degree, which can be a tricky and/or

Figure 12. Optimal max-margin widths and corresponding number

of selected sensors for the M1 case detection.

expensive process even in the limited number of cases when

it is feasible. Additionally, the number of measurements can

be greatly reduced if the normal condition data for all tem-

peratures are used to provide a non-singular covariance used

in the distance calculation. This condition helps to reduce the

cost and time of data collection. Therefore, there is a trade-

off between the cost and feasibility associated with temper-

ature control and label collection, as well as the lack of sen-

sitivity associated with the linear method to address the con-

founding effects conveniently.
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A method that may warrant investigation is to partition a

large temperature range into several segments, with the lin-

ear approach applied within each segment and the normalised

approach used to combine the feature values for each temper-

ature segment with the SVM optimisation technique to pro-

cess SPO.

6 Conclusions

This paper illustrates two SPO techniques designed for dam-

age detection while taking into account temperature effects;

the key contributions are (1) to investigate two approaches

for extracting damage-sensitive features in the presence of ei-

ther recorded or unrecorded temperature variations and (2) to

investigate appropriate optimisation functions for evaluating

the resulting sensor combinations.

A case study of a glider wing shows that, compared to

the normalised method using the temperature label, the lin-

ear method that did not require temperature labels provided

features that were less sensitive to damage. However, it is

cheaper and more convenient to extract temperature-robust

features in practical engineering. Meanwhile, the proposed

optimisation criterion – maximum margin width – is an effec-

tive criterion considering the damage detection ability of the

designed SHM system, provided that the health-state classes

are separable in the feature space. If this condition is not sat-

isfied, the criterion should be extended to soft-margin SVM

classifiers.

Further work has been considered. A further experiment

will be conducted on this glider wing to collect more mea-

surements in one case. A smaller size of the introduced dam-

age will be selected to provide a more challenging data set

(i.e. not separable). Then a test data set can be obtained to

provide an unbiased evaluation of a damage detection sys-

tem fit on the training data set. In addition, for the situation

when the source of damage is unknown, that is, only data for

the healthy state are available, this part of the work will be

carried out in a follow-up study.
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