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Abstract

This paper puts Search Frictions models under novel empirical scrutiny. To capture changing

dynamics, we fit a Bayesian time-varying parameter VAR to US labour market data from

1965–2016. Using a DSGE model with Search Frictions, we identify several structural shocks,

including a shock to worker bargaining power that we name a wage shock. We argue that the

wage shock is a key driver of cyclical variation, explaining a higher proportion the variation

of these variables than productivity, demand or job separation shocks. We also document

stark differences between empirical and theoretical impulse response functions that cast

doubt on the core transmission mechanism of search and matching models.
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1 Introduction

Macroeconomic models of the labour market look to explain cyclical, long-run, and secular

relationships among key variables; namely unemployment, job vacancies and wages. Search

Frictions models are the workhorse of modern labour economics (e.g. Diamond, 1982; Mortensen

and Pissarides, 1994; Pissarides, 2000). This framework examines the incentives of firms to post

vacancies, how unemployed workers find a job match, and the resulting wage of a successful

job match. They provide an explanation for the underlying structural dynamics of the labour

market, and historically, are successful in assessing the welfare implications of labour market

policies. Their success stems from their ability to match key empirical regularities in the data,

such as the negative link between unemployment and vacancies.

In this paper, we subject the Search Frictions framework of labour markets to novel empirical

scrutiny. We have three main findings. First, we find evidence of important parameter change;

this results in changes in impulse responses for key variables that are difficult to explain using

standard theoretical models. Second, we find that a shock to the bargaining power of workers,

which to date the literature overlooks, is an important driving force for the business cycle. Third,

we argue that the key transmission mechanism implicit in the Search Frictions framework of

the labour market, i.e. a strong response of vacancies to shocks, leading to volatile movements

in unemployment across the business cycle, does not receive empirical support.

One of the main drawbacks of the Search Frictions framework is the presumption that

structural relationships are constant over time. A growing empirical literature using models

accounting for parameter and volatility variation within labour markets casts doubt on this

(see e.g. Benati and Lubik (2014); Mumtaz and Zanetti (2015); Guglielminetti and Pouragh-

dam (2017))1. We extend on this literature by fitting a time-varying parameter VAR with

stochastic volatility (TVP VAR) comprising of US data on productivity, real wages, vacancies,

unemployment and inflation from 1965Q1–2016Q4

Following Benati (2014), we identify a non-stationary structural productivity shock that

maximises the long-horizon covariance between productivity and real wages. We identify other

strcutural shocks through robust sign restrictions, by applying the procedure of Canova and

Paustian (2011) to a Dynamic Stochastic General Equilibrium model with Search Frictions

(DSGE-SF) similar to Mumtaz and Zanetti (2012). Using this approach, we identify structural

job destruction, demand and wage bargaining shocks. We use estimates from our structural

TVP VAR to evaluate central features of Search Frictions models of the labour market. We

question the focus in the literature on productivity shocks as the primary source of cyclical

variation in vacancies and unemployment. We present forecast error variance decompositions

from our TVP VAR which show that wage shocks explain a higher proportion of the variation

in the vacancy rate and the unemployment rate than productivity shocks, demand shocks, and

job separation shocks, throughout our estimation sample. In particular, we observe peaks in

the percent share of forecast error variance attributable to wage shocks consistent with business

1Benati and Lubik (2014) find variation in the position and slope of the Beveridge Curve over time. Mumtaz
and Zanetti (2015) find substantial time-variation in the response of key variables to study the response of key
labour market variables to technology shocks. Guglielminetti and Pouraghdam (2017) find marked differences in
the job creation process over time.
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cycle troughs while the proportion of variance associated with productivity shocks remains

relatively stable throughout the sample.

In our next exercise, we examine the core transmission mechanisms of the Search Frictions

approach by calibrating a DSGE-SF model to match, on average over the impulse horizon,

estimates of the impulse response functions for unemployment with respect to job separations

shocks, wage shocks, and demand shocks. If the model is correct, impulse response functions for

vacancies and wages from our model calibrations should also match the corresponding empirical

impulse response functions. We find that they do not. Specifically in order to match the

empirical response of the unemployment rate to shocks, the DSGE-SF model requires a large

reduction in vacancies to generate a response of unemployment consistent with the data. In the

case of demand and wage shocks, we do not observe this vacancy surge in the data. In addition,

the DSGE-SF model suppresses the response of the wage to shocks in order to stimulate vacancy

creation. However, the empirical response of wages to separations shocks is always much larger

than the simulated response. Meanwhile the empirical response of wages to demand and wage

shocks are much larger than the simulated response in the latter part of our sample. Taken

together, these results cast further doubt on the empirical validity of Search Frictions models

of the labour market2.

The structure of the remainder of this paper is as follows. Section 2 describes data and

outlines the econometric model; Section 3 presents reduced form results. In Section 4, we outline

our identification strategy, describe the DSGE-SF model we use to derive sign restrictions and

present our structural estimates. Section 5 presents evidence on FEVD decompositions and on

the fit between empirical and simulated impulse responses and draws conclusions from these.

Section 6 concludes and outlines areas for future research.

2 Data Description and Econometric Model

We use quarterly US data from 1954Q3 to 2016Q4 on productivity, real wages, the vacancy

rate, the unemployment rate, and inflation. Our sample is driven by data availability as vacancy

data from Barnichon (2010a) ends in December 2016. Our measures of US productivity and real

wages are Nonfarm Business Sector: Real Output Per Hour of all Persons, and Nonfarm Business

Sector: Real Compensation Per Hour3. The vacancy rate is the Help Wanted Index in Barnichon

(2010a) and the unemployment rate is from the Bureau of Labor Statistics (BLS). For inflation,

we take the Nonfarm Business Sector: Implicit Price Deflator4. We take the natural logarithm

of productivity and real wages, and the vacancy and unemployment rates enter the model with

no transformation, and inflation is the annual percent change in the Nonfarm Business Sector:

Implicit Price Deflator that we compute using annual log-differences5. We plot the data in

2Models with a role for labour market institutions have also been shown to improve the performance of search
frictions models, eg Pissarides (2020), Thomas and Zanetti (2009) and Zanetti (2011)

3Both series are available from the Federal Reserve Bank of St. Louis (FRED) database with codes OPHNFB
and COMPRNFB for productivity and wages respectively.

4Also from the FRED database with code: IPDNBS.
5We work with a VAR in levels of productivity and real wages because economic theory and empirical evidence

suggest they are cointegrated. Estimating a simple bi-variate VAR(2) and conducting Johansen (1992, 1995) tests
provides evidence in favour of cointegration. Note that asymptotically, Sims et al. (1990) show working with a
VAR in levels accounts for any cointegration between the variables with a unit root. In our case, productivity

3



Figure 1.
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Figure 1: US Macroeconomic data from 1954Q3 to 2016Q4
Notes: This figure plots US labour market data from 1954Q3 to 2016Q4. The top left panel plots the
log-levels of productivity, yt, and real wages, wt; the top right panel plots the vacancy rate, vt; the
bottom left panel plots the unemployment rate, ut; and the bottom right panel plots the annual inflation
rate, πt. Grey bars indicate NBER recession dates.

We work with the following TVP VAR model with p = 2 lags and N = 5 variables:

Yt = β0,t + β1,tYt−1 + · · · + βp,tYt−2 + ǫt ≡ X
′

tθt + ǫt (1)

where Yt ≡ [yt, wt, vt, ut, πt]
′

is a vector of endogenous variables. Here yt is the log-level of

labour productivity, wt is the log-level of real wages, vt is the vacancy rate, ut is the unemploy-

ment rate, and πt is the inflation rate. X
′

t contains lagged values of Yt and a constant. Stacking

the VAR’s time-varying parameters in the vector θt, they evolve as a driftless random walk

θt = θt−1 + γt (2)

with γt ≡ [γ1,t, : γ2,t, ..., : γN ·(Np+1),t]
′, where γt ∽ N(0, Qt). We consider two different structures

for Qt. In the first case, we set Qt = Q which we assume is a full matrix containing parameter

innovation variances and covariances. This is the standard Primiceri (2005) model. In the second

case, we assume Qt is diagonal and follows a stochastic volatility process which Baumeister and

Benati (2013) introduce. Formally, collecting these elements in the vector qt ≡ [q1,t, : q2,t, ..., :

qN ·(Np+1),t]
′, they evolve as geometric random walks

ln qi,t = ln qi,t−1 + κt (3)

and wages contain unit roots and our specification accounts for any long-run relationship present between these
variables.
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with κt ∽ N(0, Zq). The innovations in (1) follow ǫt ∽ N(0,Ωt). Ωt is the time–varying

covariance matrix which is factored as

Ωt = A−1
t Ht(A

−1
t )

′

(4)

with At being a lower triangular matrix with ones along the main diagonal, and the elements

below the diagonal contain the contemporaneous relations. Ht is a diagonal matrix containing

the stochastic volatility innovations. Collecting the diagonal elements of Ht and the non-unit

non-zero elements of At in the vectors ht ≡ [h1,t, : h2,t, ..., hN,t]
′, αt ≡ [α21,t, : α31,t, . . . , αNN−1,t]

′

respectively, they evolve as

ln hi,t = ln hi,t−1 + ηt (5)

αt = αt−1 + ζt (6)

where ηt ∽ N(0, Zh), and ζt ∽ N(0, S). The innovations in the model are jointly Normal, and

the structural shocks, ψt are such that ǫt ≡ A−1
t H

1
2
t ψt. Similar to Primiceri (2005), S is a block

diagonal matrix; this implies the non-zero and non-unit elements of At evolve independently.

The specification of the priors of our model are similar to Baumeister and Benati (2013). To

calibrate the initial conditions of the model, we use the point estimates of the coefficients and

covariance matrix from a time-invariant VAR model using the first 10 years of data. There-

fore the estimation sample of our results span 1965Q2–2016Q4. We estimate the model using

Bayesian methods allowing for 20,000 runs of the Gibbs sampler. Upon discarding the initial

10,000 iterations as burn-in, we sample every 10th draw to reduce autocorrelation which leaves

1000 draws from the posterior distribution. Details of our prior specification, and an outline of

the posterior simulation algorithm are in the Online Appendix.

3 Reduced Form Results

As we discuss above, we consider two different structures on the covariance matrix of parameter

innovations within the TVP VAR model. We conduct a model selection exercise of our TVP

VAR specifications, whilst also benchmarking against various alternatives. We use the Bayesian

deviance information criterion (DIC) proposed in Spiegelhalter et al. (2002). The DIC consists

of two terms, one evaluating the fit of the model, and the other a penalty term for model

complexity. Specifically, the DIC is given by

DIC = D̄ + pD (7)

where D̄ = −2E(ln L(Λi)), the measure of fit, is equal to minus two times the expected value

of the log likelihood evaluated over the draws of the MCMC, and pD = D̄ + 2 ln L(E(Λi)),

is the measure of model complexity; with ln L(E(Λi)) being the log likelihood evaluated at

the posterior mean of parameter draws. The lower the DIC, the better the model fit. For

time-varying coefficient VARs with stochastic volatility, the DIC is estimated using a particle

filter to deal with the non-linear interaction of the stochastic volatilities (Mumtaz and Sunder-
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Plassmann, 2013). The simpler models we include in this exercise are a conventional Bayesian

VAR and a time-varying coefficient VAR with constant covariance matrix6.

Table 1: Bayesian DIC Statistics for Competing VAR Models
Notes: This table reports the DIC statistics from a battery of competing Bayesian VAR models. We also
report: i) the measure of fit, D̄ = −2E(ln L(Λi)), which is minus two times the expected value of the log
likelihood evaluated over the draws of the MCMC; and ii) the penalty term, pD = D̄ + 2 ln L(E(Λi)),
which is the log likelihood evaluation at the posterior mean of parameter draws. The row highlighted in
bold font indicates the model with the lowest DIC, and therefore the model that best fits the data.

Model DIC D̄ pD

TVP VAR (Baumeister and Benati, 2013) -2248.83 -2647.06 398.23
TVP VAR (Primiceri, 2005) -4161.71 -4450.18 288.46
TVP VAR with constant covariance matrix -1631.49 -1784.77 153.28
Linear BVAR -1737.83 -1790.99 53.16

Table 1 reports the estimated DIC statistics, measures of fit D̄, and penalty terms pD, for

competing models. Overall, we can see that the TVP VAR model of Primiceri (2005) provides

the lowest DIC relative to the TVP VAR of Baumeister and Benati (2013) and restricted

variants. This model also provides the highest value of D̄ which means that even though there

is a relatively high value of pD, the DIC statistic remains far lower than alternatives we consider.

Therefore we proceed by reporting results using the TVP VAR model of Primiceri (2005)7.

The upper panel of Figure 2 plots the posterior median and 80% highest posterior den-

sity intervals for the logarithmic determinant of the time-varying covariance matrices. As in

Guglielminetti and Pouraghdam (2017), this proxies total prediction variation in the model, and

tracks the amount of ‘noise hitting the system’. This increases gradually from the mid-1960s

before peaking during the mid 1970s recession. It then falls gradually from the early 1980s that

corresponds with the Volcker disinflation and Great Moderation. Since the burst of the dot-com

bubble in 2001, total prediction variation is on a gradual upward trend.

Now looking at the lower panel of Figure 2, we see similar behaviour from the stochastic

volatilities. In particular, productivity, unemployment and inflation follow a similar downward

trend from the mid 1970s. The volatilities of productivity and the unemployment rate flatten off

but still exhibit declines to the end of the sample, meanwhile the volatility of inflation increases

following the 2001 recession. The volatility of the vacancy rate appears to exhibit peaks during

recessions throughout the sample apart from the 2008 recession. Finally, the volatility of real

wages increases throughout the sample. We can see that there is a gradual upward trend until

6These models use standard priors in the literature. In particular, BVARs use a Minnesota prior on the
coefficients, models with constant covariance matrices have inverse-Wishart priors (see e.g. Koop and Korobilis
(2010)), and those with time-varying parameters use analogous priors to the time-varying coefficient VAR models
as outlined in the Appendix. Note also, we choose restricted variants of the TVP VAR as we do not wish to
presume that periods of economic boom and recession can be represented by just two (or possibly three) sets of
parameters; like regime-switching models impose. Finally we do not consider BVARs with stochastic volatility
or a full time-varying covariance matrix as the purpose of our study is to track changing relationships within
the labour market allowing for both changes in coefficients, as well as volatilities and covariances. Note the
DIC statistics do indicate these models better fit the data, and this is down to a lower penalty term, pD, and a
marginally higher value of D̄.

7Available on request are results from the TVP VAR following Baumeister and Benati (2013), note they are
qualitatively similar to those we show in the main text.
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the 2001 recession, then until the end of the sample the volatility of wages surges rapidly relative

to the beginning of the sample8.

In Figure 3, we report the time-varying pairwise correlations between our variables. As

we can see, the model reproduces the switch from negative to positive correlation between

productivity and the unemployment rate during the early 1980s (Barnichon, 2010b). Note that

we also see a switch from positive to negative correlation (from posterior median estimates)

between productivity and the vacancy rate following the recession in the early 1990s. The

model implies a positive correlation between productivity and wages, and a negative correlation

between productivity and inflation.

The posterior median and 80% posterior credible intervals of the correlation between wages

and vacancies fluctuate around zero throughout the sample with gradual increases from 2001

until the end of the sample. We can also see that the correlation between real wages and

unemployment is never significant. The correlation between real wages and inflation is negative

until around 1998 with marginal significance before trending upwards and losing significance.

The overall lack of statistically credible correlation between real wages and the other labour

market variables suggests that labour market conditions may not have had a strong impact

on the real wage. It also suggests that the increase in wage volatility since 1980s has been

independent of the other variables and so the Search Frictions framework may be unable to

explain this increased volatility.

The Beveridge Curve correlation between vacancies and unemployment is negative through-

out the sample with this negative relationship being significant until around 2006. We can also

see that the magnitude varies substantially with the strongest links appearing around the mid

1960s to the mid 1980s. Then the correlation rises and fluctuates around -0.5 until 2006. During

the 2008 recession the Beveridge Curve correlation hits zero, before gradually declining until

the end of the sample. The gradual rise in correlation from the mid-1980s could suggest that

the impact of productivity shocks for labour market dynamics are becoming less important.

Our results suggest that the correlations between vacancies and inflation and between unem-

ployment and inflation are marginal throughout the sample. The correlation between vacancies

and inflation is negative until the early 1990s before turning positive from posterior median es-

timates. We see the opposite change in sign happen for the correlation between unemployment

and inflation. It is positive until the early 1980s before turning negative thereafter.

4 Structural Analysis

In this section we present results from structural anaysis of our model. Our identification

strategy follows Canova and Paustian (2011) and Mumtaz and Zanetti (2015). We simulate

a theoretical model using a range of alternative calibrations, based on randomly sampling pa-

rameter values within a specified range, constructing a distribution of impulse responses of our

endogenous variables to a variety of shocks. We identify structural shocks for which the sign

8Other studies also examine the stochastic volatilities of labour market variables. However, they have with
different specifications of the VAR. Our estimate of overall model volatility and the volatility of vacancies is
similar to Guglielminetti and Pouraghdam (2017). The stochastic volatility of unemployment from our model is
more stable than Mumtaz and Zanetti (2015); and prior work does not consider productivity and real wages.
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Figure 2: Total Prediction Variation, ln|Ωt|T |, and Stochastic Volatilities of US Labour
Market Variables from 1964Q3 to 2016Q4
Notes: The upper panel plots the posterior median, and 80% posterior credible intervals of logarithmic
determinant of the time-varying reduced-form covariance matrices, ln|Ωt|T |, from 1964Q3–2016Q4. The
lower panel plots the posterior median, and 80% posterior credible intervals of the reduced-from stochastic
volatility innovations of productivity, yt (top left panel); real wages, wt (top middle panel); the vacancy
rate, vt (top right panel); the unemployment rate, ut (bottom left panel); and inflation, πt (bottom
middle panel) from 1964Q3–2016Q4. Grey bars indicate NBER recession dates.
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Figure 3: Reduced-form correlations from 1964Q3 to 2016Q4
Notes: This figure plots the posterior median, and 80% posterior credible intervals of the reduced-
from model implied correlations of variables within the TVP VAR model from 1962Q1–2016Q4. ρ̂it,jt

denotes the model implied correlation of variable i and j at time t respectively. yt, wt vt, ut, πt denote
productivity, real wages, the vacancy rate, the unemployment rate, and inflation, respectively. Grey bars
indicate NBER recession dates.
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of the impulse responses on impact is unambiguous across this distribution. In this way, we

ensure that our identifying sign restrictions are credible, robust to alternative calibrations of

the structural parameters. Our identifying restrictions are based on a standard New Keynesian

DSGE model without capital but with search frictions in the labour market, similar to Mumtaz

and Zanetti (2012) and others.

Table 2: Contemporaneous Impact of Short-run Shocks on Labour Market Variables
Notes: Panel a) of this table shows the theoretical model that we simulate. Panel b) shows the range of
parameter values from which we sample in our simulations

a) Model Summary

Nt + ut = 1 (T.1)

Nt = (1 − τt)Nt−1 + ht−1 (T.2)

θt =
vt

ut

(T.3)

ht = muα
t v

(1−α)
t (T.4)

qt = mθ−α
t (T.5)

ft = qtθt (T.6)

Yt = AtNt (T.7)

λt =
κ

qt

− βEt
κ(1 − τt+1)

qt+1
(T.8)

wt = (1 − zt)b+ zt(At + κθt) (T.9)

mct =
wt + λt

At

(T.10)

P ∗
t

Pt

=
η

1 − η
(1 − βω)Et

∞∑

k=0

(βω)kmct+k (T.11)

Y
−η

t = βeǫD

t EtY
−η

t+1

(1 + it)

1 + πt+1
(T.12)

(1 + it) = (1 + πt)
ρπ (T.13)

b) Credible Calibration Ranges

Parameter Interpretation Range

β Discount Factor 0.996
α Elasticity of Matching wrt Unemployment 0.3 − 0.7
m Efficiency of Job Matching 0.3 − 1.5
b Opportunity Cost of Employment 0.4 − 0.8
τ Rate of Job Destruction 0.087 − 0.104
z Worker Relative Bargaining Power 0.1 − 0.8
θp Probability Prices Are Fixed 0.− 0.9
ρπ Monetary Policy Response to Inflation 1.35 − 2.0
η Intertemporal Elasticity of Substitution 1
κ Cost of Vacancy Posting 0.2

We summarise the model and structural parameters in the upper panel of Table 2. Equa-

tions (T.1)–(T.6) outline the structure of the labour market. Equation T.1 defines the sum of

10



employment (N) and unemployment (u) as the labour force, which is normalised to 1. Equation

T.2 outlines employment dynamics and relates employment to hires (h). Equation T.3 defines

labour market tightness (θ) as the ratio of vacancies (v) to unemployment. T.4 contains a

standard constant returns matching function, while T.5 and T.6 define the vacancy filling rate

(q) and the job finding rate (f) respectively. Equation T.7 contains the production function.

T.8 defines the marginal cost of hiring labour. Equation T.9 gives the wage, where we have

assumed simple Nash bargaining. Equation T.10 defines marginal cost, while T.11 relates price

to marginal cost. Equation T.12 is the Euler equation; a summary of these values are in the

lower panel of Table 2.

We analyse the impact of four structural shocks. We include a demand shock, ǫDt . We also

include a shock to worker relative bargaining power, assuming zt = zeǫz

t , where ǫzt is a bargaining

power shock. And there is a shock to the rate of job destruction, assuming τt = τeǫτ

t , where ǫτt

is a job separations shock. We use impulse response functions to these shocks to impose impact

sign restrictions on our structural model. We also include a permanent productivity shock,

assuming At = eǫP

t , where ǫPt is a non-stationary random walk. We do not identify the supply

shock through sign restrictions, as it is identified as those values that maximise the long-run

covariance between productivity and wages. Rather, we include this shock in our simulations

to facilitate our evaluation of the Search Frictions model, below.

We specify ranges of values for parameter calibrations and assume that parameters are

uniformally distributed within this range. We assume that values of α are uniformally dis-

tributed between 0.3 − 0.7; this is somewhat wider than the range of credible values suggested

by Petrongolo and Pissarides (2001). We also consider a wide range of values for matching effi-

ciency, assuming that values of m are uniformally distributed between 0.3 − 1.5. For the rate of

job destruction, Hall and Milgrom (2008) use τ = 0.03, while Pissarides (2009) uses τ = 0.036.

These calibrations are designed for monthly data, whereas we use a quarterly frequency, con-

sistent with our data. We therefore consider values between 0.087 − 0.104. The value of the

opportunity cost of employment is also contentious; Shimer (2005) assumes b = 0.4, Hall and

Milgrom (2008) assume b = 0.71. We assume that b is uniformally distributed between 0.4 and

0.89. For the bargaining power of workers, we consider values between z = 0.1, so workers have

little power to z = 0.8, where workers are able to extract most of the surplus from a job match

in the form of higher wages. We consider a wide range of values for the probability that prices

are fixed, considering values in the range θπ = 0 to θπ = 0.9, encompassing the cases where there

is little nominal rigidity and where prices are highly sticky. For the monetary policy response

to inflation, we consider values between ρπ = 1.35 and ρπ = 2.0, encompassing the different

estimated values for this parameter in the post-1979 period. We use η = 1 and set κ = 0.210

We simulate our model by randomly selecting a set of calibration values from the distribu-

tions we outline above. We calculate the steady-state solution for our model implied by this

calibration and construct impulse responses from a log linear expansion of the model around this

steady-state. We repeat this process 1000 times, building a distribution of impulse responses.

9Hagedorn and Manovskii (2008) assume b = 0.955, combined with a low value for worker bargaining power.
Parameter configurations consistent with this give impulse responses with the same signs as in Table 4.

10In other simulations, we show that different values for this parameter give impulse responses with the signs
reported in Table 4.
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We present these results in Table 3, where + indicates that all values for the impulse response

on impact within the credible range were positive, − indicates that all values for the impulse

response on impact within the credible range were negative, and ? indicates that the credible

range for the impulse response on impact included zero11. Our simulations show that positive

values of the job separations shock lead to increases in unemployment, vacancies and inflation

and a reduction in the wage. Positive values of the bargaining power shock lead to increases

in unemployment and the wage and to reductions in vacancies. The response of inflation on

impact is negative; but the response becomes positive in the following period, indicating that

identification based on the sign of this response may not be secure. Positive values of the

the demand shock lead to increases in inflation, vacancies and wages and to a reduction in

unemployment.

Table 3: Impulse Responses on Impact Based on Simulations
Notes: + indicates that all values for the impulse response on impact within the credible range were
positive, − indicates that all values for the impulse response on impact within the credible range were
negative, and ? indicates that the credible range for the impulse response on impact included zero. Plots
of the impulse responses are shown in the Online Appendix, with further details of our procedure.

wages vacancies unemployment inflation

job destruction - + + +

wage shock + - + ?

demand + + - +

Based on these results12 , we identify four structural shocks within our empirical model as

in Table 4. We identify: a permanent productivity shock, ψProd
t and therefore impose no impact

sign restrictions; a job separation shock, ψJS
t

13; a wage shock that reflects a shock to workers’

bargaining power, ψW
t ; and a demand shock ψD

t .

Table 4: Contemporaneous Impact of Short-run Shocks on Labour Market Variables
Notes: This table shows the contemporaneous sign restrictions imposed on variable x = {yt, vt, ut, wt} to
a permanent productivity shock, ψProd

t which we identify following Benati (2014), this shock maximises
the long-run covariance between productivity and wages; a job separation shock, ψJS

t ; a shock to workers
bargaining power, ψW

t ; and a demand shock, ψD
t , respectively. yt is the log-level of productivity; wt is

the log-level of real wages; vt is the vacancy rate; ut is the unemployment rate; and πt is inflation. x
denotes no restriction.

yt wt vt ut πt

ψProd
t x x x x x

ψJS
t x − + + x

ψW
t x + − + +

ψD
t x + + − +

11Plots of the impulse responses from which Table 3 is derived are contained in the Online Appendix.
12In an extension of our analysis, we also analysed the impact of additional shocks, comprising shocks to (i)

the discount factor; (ii) the efficiency of job matching; (iii) opportunity cost and (iv) vacancy costs. We find that
a shock to the opportunity cost implies the same signs for the impulse responses on impact. In section 5) below
we discuss why we prefer to interprt this shock as one to worker bargaining power. Full details of the extended
model and the results of simulations of this are contained in the online appendix

13The importance of this shock has been highlighted by Fujita and Ramey (2007) and Theodoridis and Zanetti
(2020).
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We now discuss the empirical procedure that allow us to map to the (partial) structural

model from our reduced-form TVP VAR. Our identification scheme combines the procedure

in Benati (2014) with algorithm 1 in Arias et al. (2018). The procedure in Benati (2014)

modifies the maximum fraction of forecast error variance strategy in Uhlig (2004). We use this

algorithm to identify productivity shocks as those that maximise the long-horizon covariance

between productivity and real wages.

For each draw of the posterior distribution at time t, we compute the time varying covariance

matrix Ωt. We then take its eigenvalue-eigenvector decomposition such that Ωt = PtDtP
′
t .

The candidate structural impact matrix, A0,t is given by A0,t = PtD
1
2
t . We then specify an

orthonormal matrix Q which is the product of all available rotation matrices Ri (ϑ,K)

Q =
N∏

K=2

N−K−1∏

i=1

Ri (ϑ,K) (8)

where 2 ≤ K ≤ N is the dimension of the square sub-matrix along the diagonal of Ri (ϑ,K), with

N=5 being the number of variables in the system. We then search over the parameter space

for the specific values in ϑ (i.e. the rotation angles) that maximise the long-horizon covariance

between productivity and real wages. We perform the maximisation using the MATLAB

routine fminsearch.m for random initial conditions. We then compute A∗
0,t = A0,tQ

′. This

provides us with the permanent productivity shock in the first column of A∗
0,t. Now using the

latter steps in algorithm 1 of Arias et al. (2018), we search the remaining columns of A∗
0,t for

those that satisfy the sign restrictions for our job separation and vacancy cost shock and insert

accordingly. If the sign restrictions are not met, we go back to identification of the permanent

productivity shock. Once we have a structural impact matrix from each draw of the posterior

and every time period, we compute impulse response functions and forecast error variance

decompositions assuming parameters remain constant over the impulse (forecast error) horizon.

Figure 4 presents estimates of the volatilities of our structural shocks. The permanent pro-

ductivity shock exhibits a gradual downward trend throughout the estimation sample. However,

we can see that it rises throughout the 1980s until the mid-1990s before declining gradually to-

ward the end of the sample. Turning our attention to the volatility of the job separation shock,

this remains relatively stable in the first half of our sample. Then, from the 1990s until the end

of our sample the volatility is increasing gradually until the end of 2016. The volatility of the

wage shock appears relatively stable throughout the estimation sample with peaks occurring

in conjunction with recessions. Finally concerning demand shocks, we see a clear reduction in

volatility in the early 1980s as with the volatility of the productivity shock. Adding to this, there

is clear evidence of cyclical behaviour with peaks in volatilities coinciding with all recessionary

periods apart from the 2008 recession.

In Figures 5–8, we report impulse response functions of US labour market variables with

respect to one standard deviation: productivity shocks; job separations shocks; wage shocks;

and demand shocks, respectively. The top five plots in each figure present the posterior median

response of variables throughout time on the x-axis, at a 40 quarter horizon on the y-axis, with

the magnitude of the response on the z-axis. The bottom five plots show the posterior median

response of variables 1-quarter following impact. We normalise impulse response functions to
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generate a 1% rise/fall in the unemployment rate as per Canova and Paustian (2011) robust

sign restriction in Table 414.
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Figure 4: Volatility of Structural Shocks from 1965 to 2016
Notes: This figure plots the posterior median and 68% equal-tailed point-wise posterior probability bands
for the volatility of identified structural shocks from 1965Q1–2016Q4. The top-left quadrant reports the
volatility of the permanent productivity shock, the top-right quadrant reports the volatility of the job
separations shocks. The bottom-left and bottom-right quadrants report the volatilities of the wage and
demand shock respectively. Grey bars indicate NBER recession dates.

Considering permanent productivity shocks in Figure 5, we can see that there is considerable

time-variation in the response of labour market variables. Notably, the response of productivity

and wages is stronger from 1965–1995, then both variables become more resilient to these

shocks until the end of the sample. Looking at the response of unemployment and vacancies,

the respective peaks and troughs are strongest during the 1970s, and again throughout the

mid-1990s to early 2000s. The response of inflation changes sign and switches from negative

during the first 10 years of our estimation sample, to positive thereafter.

We now examine the impulse response functions of labour market variables with respect to

shocks we identify pertinent to the labour market. These are job separations shocks in Figure

6 and wage shocks in Figure 7. Five main findings emerge from these graphs. First, there

is marked time-variation in the response of all variables to these shocks. Second, we observe

surges in the response of vacancies and unemployment with respect to job separations shocks

during recessions. However, the response of the vacancy rate declines throughout our sample,

whereas the response of the unemployment rate rises. What we can see is that during the Great

Moderation the response of both variables seems to plateau which indicates a resilience to these

shocks relative to the 1970s and 1980s.

Third, the vacancy rate and the unemployment rate exhibit a relatively high degree of

14We refrain from presenting error bands because they are wide and this makes it difficult to examine variation
in the responses over time. However, we note that the response of real wages and the vacancy rate are significant
for the job separation shock and that real wages, the vacancy rate, unemployment and inflation are significant
for the wage shock. These results are available on request.
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persistence to both labour market shocks. From posterior median estimates the impact of these

shocks lasts around 20 quarters. However, in absolute magnitude the peak in unemployment

surpasses the trough in vacancies in response to a wage shock. Fourth, wages become more

sensitive to both shocks throughout the sample. Looking at the response of real wages to job

separations shocks, we can see that the contraction in wages gets larger from 1965 until the

mid-2000s before declining until the end of the sample. In comparing the response of real wages

to a wage shock in 1965Q1 and 2016Q4, we see that the 1-quarter response doubles. Fifth,

the sensitivity of real wages, vacancies and unemployment in response to wage shocks increase

throughout the sample. This indicates that key labour market variables become more responsive

to this shock.

In Figure 8, we examine the impact of demand shocks. Again, we find time-variation in the

response of labour market variables. In particular, the sensitivity of productivity and wages are

increasing throughout the sample. The 1-quarter response of productivity in 2016 is around

-2%, however we observe a positive response in 1965. Looking at wages, the response in 2016

is double that of 1965. The sensitivity of vacancies to demand shocks is largest during from

1965–1985, and again in the early 2000s. Looking at the response of unemployment we can

see that this becomes more resilient to these shocks throughout the estimation sample. The

response of inflation to demand shocks fluctuates around a 2% rise throughout the sample.

In the Online Appendix, we analyse an extension of our model that includes additional

shocks, to the opportunity cost of employment (b), the cost of posting a vacancy (κ), the

efficiency of job matching (m) and the discount factor (β). As shown in the Appendix, the

impact of an opportunity cost shock is the same as a bargaining power shock. Although, as

discussed below, we feel that the evidence in Figure 9 favours the interpretation of ψW
t as a

bargaining power shock. Shocks to the discount factor have the same impact as a demand

shock, so one might think of ψD
t as a composite shock that also reflects these.

5 Implications

In this section, we posit that our results challenge the current literature using the Search

Frictions model to analyse movements in the labour market across the business cycle. We make

two main arguments. First, we present Forecast Variance Error Decompositions (FEVDs) which

show that wage shocks explain a higher proportion of unemployment and vacancy rate variation

in our sample relative to productivity, demand and job separations shocks. The Search Frictions

literature predominantly focuses on productivity shocks as the main driver of the business cycle,

and to a lesser extent demand and job separation shocks. However, our analysis suggests that

the literature overlooks the key role of wage shocks. Second, we argue that key mechanisms

implicit in the Search Frictions model of the labour market receive little empirical support. In

particular, our estimates of the response of vacancies to wage shocks and demand shocks are

too weak to be consistent with the responses of unemployment to these shocks that we observe

in the data. Adding to this, the responses of wages to wage shocks and demand shocks are too

strong to be consistent with the empirical responses of unemployment.
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Figure 5: Impulse Response Functions with Respect to a Productivity Shock from
1965 to 2016
Notes: The top five plots this figure plot the posterior median impulse response functions of US labour
market data with respect to a one standard deviation productivity shock from 1965Q1 to 2016Q4.
yt, wt, vt, ut, πt denote the response of: the log-level of labour productivity; the log-level of real wages;
the vacancy rate; the unemployment rate; and the inflation rate respectively. Impulse responses span a
40 quarter horizon and normalised such that the shock causes the unemployment rate to fall by 1%. The
bottom five plots report the posterior median responses, at a 1 quarter horizon, of US labour market data
with respect to a one standard deviation productivity shock from 1965Q1 to 2016Q4. yt, wt, vt, ut, πt

denote the response of: the log-level of labour productivity; the log-level of real wages; the vacancy rate;
the unemployment rate; and the inflation rate respectively. Grey bars indicate NBER recession dates.
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Figure 6: Impulse Response Functions with Respect to a Job Separation Shock from
1965 to 2016
Notes: The top five plots this figure plot the posterior median impulse response functions of US labour
market data with respect to a one standard deviation job separations shock from 1965Q1 to 2016Q4.
yt, wt, vt, ut, πt denote the response of: the log-level of labour productivity; the log-level of real wages;
the vacancy rate; the unemployment rate; and the inflation rate respectively. Impulse responses span a
40 quarter horizon and normalised such that the shock causes the unemployment rate to rise by 1%. The
bottom five plots report the posterior median responses, at a 1 quarter horizon, of US labour market data
with respect to a one standard deviation job separation shock from 1965Q1 to 2016Q4. yt, wt, vt, ut, πt

denote the response of: the log-level of labour productivity; the log-level of real wages; the vacancy rate;
the unemployment rate; and the inflation rate respectively. Grey bars indicate NBER recession dates.
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Figure 7: Impulse Response Functions with Respect to a Wage Shock from 1965 to
2016
Notes: The top five plots this figure plot the posterior median impulse response functions of US labour
market data with respect to a one standard deviation wage shock from 1965Q1 to 2016Q4. yt, wt, vt, ut, πt

denote the response of: the log-level of labour productivity; the log-level of real wages; the vacancy rate;
the unemployment rate; and the inflation rate respectively. Impulse responses span a 40 quarter horizon
and normalised such that the shock causes the unemployment rate to rise by 1%. The bottom five plots
report the posterior median responses, at a 1 quarter horizon, of US labour market data with respect
to a one standard deviation wage shock from 1965Q1 to 2016Q4. yt, wt, vt, ut, πt denote the response
of: the log-level of labour productivity; the log-level of real wages; the vacancy rate; the unemployment
rate; and the inflation rate respectively. Grey bars indicate NBER recession dates.
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Figure 8: Impulse Response Functions with Respect to a Demand Shock from 1965
to 2016
Notes: The top five plots this figure plot the posterior median impulse response functions of US
labour market data with respect to a one standard deviation demand shock from 1965Q1 to 2016Q4.
yt, wt, vt, ut, πt denote the response of: the log-level of labour productivity; the log-level of real wages;
the vacancy rate; the unemployment rate; and the inflation rate respectively. Impulse responses span a
40 quarter horizon and normalised such that the shock causes the unemployment rate to rise by 1%. The
bottom five plots report the posterior median responses, at a 1 quarter horizon, of US labour market
data with respect to a one standard deviation demand shock from 1965Q1 to 2016Q4. yt, wt, vt, ut, πt

denote the response of: the log-level of labour productivity; the log-level of real wages; the vacancy rate;
the unemployment rate; and the inflation rate respectively. Grey bars indicate NBER recession dates.
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5.1 Business Cycle Drivers

Considering our first main argument, Figure 9 reports the posterior median estimates of the

percent share of the overall forecast error variance of: productivity, yt; real wages, wt; the

vacancy rate, vt; the unemployment rate, ut; and inflation, πt attributable to productivity

shocks, job separation shocks, wage shocks, and demand shocks at a 40-quarter horizon. As a

consequence of our identification scheme, permanent productivity shocks explain the majority

of variation in labour productivity and real wages. With the exception of the mid 1970s to the

mid-1980s, this shock explains around 80% of the variation in productivity and real wages15.

Wage shocks explain a higher proportion of variation in the vacancy rate and the unemploy-

ment rate than productivity, demand and job separation shocks. This shock explains up to 30%

of the variation in vacancies and up to 38% of the variation in the unemployment rate across the

business cycle; with surges consistent with business cycle troughs. Moreover, the wage shock

also helps to account for the rising volatility of wages documented in Figure 2. The impulse

response functions with respect to a wage shock in Figure 7 shows that the response of wages

to a wage shock has been on an upward trend since the 1970s. Although the importance of the

wage push shock falls towards the end of the sample, this shock always explains a higher propor-

tion of unemployment and vacancy rate variation when comparing to other shocks we identify.

By contrast, productivity shocks explain less than 20% of the variation in unemployment and

vacancies16, with demand and job separation shocks typically explaining less than this. These

findings suggest that analysis of the labour market needs to account for the importance of wage

shocks17

5.2 Questioning the Mechanism

To examine the mechanisms within the Search Frictions model, we compare our empirical

impulse responses with simulated impulse responses from the DSGE-SF model we use to obtain

robust sign restrictions. We calibrate the model so that the simulated impulse responses for

unemployment following wage shocks, demand shocks, and job separation shocks match, as far

as possible, the corresponding empirical impulse response functions; whilst also generating a

steady-state unemployment rate matching the observed rate. If the model is a good description

of the forces generating the data, the simulated responses of vacancies and wages to these shocks

will also match their empirical counterparts. Due to the changes in empirical impulse response

functions over time, we repeat this exercise for two different dates; 1974Q2 and 2008Q4. Notably,

these dates correspond both correspond to business cycle troughs to reflect the dynamics we

document in our empirical results. We summarise the parameter values used in this exercise in

15Also note that our structural shocks explain most of the variance in all variables across our sample, it is
unlikely that a fifth structural shocks would have a strong impact on our results.

16Those findings echo Hall (2017) who argues that the importance of the productivity shock might have been
overestimated.

17As noted above, our identified wage shock is also consistent with a shock to the opportunity cost of employ-
ment (see the online appendix for a more detailed analysis). We prefer to interpret the identified wage shock as
a shock to worker bargaining power for two reasons; (i) the reduced contribution of these shocks to variance of
unemployment and vacancies towards the end of the sample, seen in Figure 9), is consistent with a decline in
unionisation; (ii) the stronger impulse response function of wages with respect to a wage shock in Figure 7 is
consistent with the increase in wage volatility in the US between the late 1980s and early 2000s; this is associated
with de-unionization and a shift towards performance-pay contracts (Champagne and Kurmann (2013))
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Figure 9: Forecast Error Variance Decompositions of Labour Productivity, Real
Wages, the Vacancy rate, the Unemployment rate, and Inflation from 1965 to 2016
Notes: This figure plots the posterior median, of the percent share of variance attributable, at a 40 quarter
horizon, to productivity shocks (Red line); job separation shocks (Green line); wage shocks (Orange Line)
and Demand shocks (Blue line) for: the log-level of productivity, yt; the log-level of real wages, wt; the
vacancy rate, vt; the unemployment rate, ut; and the inflation rate, πt from 1965Q1–2016Q4. Grey bars
indicate NBER recession dates.
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Table 5.

Table 5: Parameter Values for Calibration: The Search Frictions Model
This table reports the values of the calibrations for 1974Q2 and 2008Q4.

Parameter Interpretation 1974Q2 2008Q4

τ Ave separation rate 0.09 0.09
r Discount factor 0.99 0.99
α Elasticity of matching function 0.60 0.60
b Opportunity cost of unemployment 0.71 0.71
γ Vacancy posting cost 0.30 0.30
m Matching coefficient 0.75 0.725
φ Bargaining power 0.25 0.25
θp Probability prices are fixed 0.50 0.50
ρπ Monetary policy response to inflation 1.50 1.50
η Intertemporal elasticity of substitution 1.00 1.00
ρz Persistence of wage push shock 0.90 0.90
σz Volatility of wage push shock 0.09 0.1
ργ Persistence of demand shock 0.70 0.70
σγ Volatility of demand shock 0.02 0.015
ρτ Persistence of job separation shock 0.733 0.733
στ Volatility of job separation shock 0.01 0.01

We plot the empirical and theoretical impulse response functions, over a 20 quarter horizon,

for real wages (first row), the vacancy rate (middle row), and the unemployment rate (bottom

row) in Figure 10. Panels A and B pertain to 1974Q2 and 2008Q4 respectively. The leftmost

columns show responses to job separation shocks, while the middle and rightmost columns

show responses to wage shocks and demand shocks respectively. First considering job separa-

tions shocks, there are clear differences between the estimated and simulated impulse response

functions for real wages and vacancies. We note here the stark difference between empirical and

theoretical impulse response functions of wages. Calibrations of the DSGE-SF model suggest a

small response of wages to job separations shocks, in contrast to the sizeable empirical responses

of real wages.

Turning our attention to wage shocks, we can see that the empirical response of real wages is

far larger than those from our calibrations; particularly in 2008Q4. Note also that the empirical

response of vacancies is smaller than those from our calibrations. The mechanism within the

Search Frictions model requires a large reduction in the vacancy rate to generate large increases

in unemployment. Now looking at the response of labour market variables to demand shocks,

we observe differences between empirical and theoretical responses of real wages and vacancies.

Taken together, these results cast further doubts for the transmission mechanisms inherent

within the Search Frictions framework for the labour market. For wage shocks, the underpin-

ning mechanism requires a large reductions in vacancies in order to generate a large rise in

unemployment. For demand shocks, our calibration of the DSGE-SF model requires a large

surge in vacancy creation to match the empirical reductions in unemployment. However in

order to stimulate vacancy creation, the theoretical model suppresses the response of the real

wage with respect to the demand shock. This is why we observe notably smaller surges in real
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wages from the calibrated impulse response functions. The main message from this exercise is

that the data does not lend support to the transmission mechanisms inherent within Search

Frictions models of the labour market.
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Figure 10: Empirical and Theoretical Impulse Response functions of Key Labour
Market Variables: 1974Q2 and 2008Q4
Notes: This figure plots the posterior median impulse response functions of: real wages, wt; the vacancy
rate, vt; and the unemployment rate, ut with respect to: a job separations shock (Leftmost column); a
Wage Shock (Middle middle); and a demand shock (rightmost column). Panel A reports results from
estimated impulse response functions in 1974Q2 with simulated impulse response functions calibrated
using data from 1974Q2. Panel B shows analogous results, but for 2008Q4.
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6 Concluding Remarks

In this paper, we subject the Search Frictions framework of labour markets to novel empirical

scrutiny. Our empirical analysis uses time-varying parameter VAR models with stochastic

volatility to assess evolving labour market dynamics in the US from 1965 to 2016. Overall,

our analysis provides evidence against two main implications of Search Frictions models of the

labour market. The first is that productivity shocks drive cyclical variation in key labour market

variables. We show that productivity shocks are not the main driver of variation in vacancies

and unemployment in the data; a shock to wages accounts for a larger share of the variance

of these variables. The second is that a large surge in vacancy creation is required to generate

reductions in unemployment that match those observed in the data; and that a suppression in

the response of wages is required to stimulate vacancy creation. Contrary to this, our estimates

show a large response of real wages as well as of vacancies.

Our work suggests possible directions for future research. Our finding that the data support

the importance of shocks to workers’ bargaining power, a shock that the current literature

overlooks, suggests that analysis of a richer menu of shocks may give a more complete view of

the drivers of the business cycle. Our finding that the impact of structural shocks varies over

time implies a greater focus on the causes of structural change. We intend to address these

issues in future work.
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