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Abstract  9 

In recent years, experimental research on the mechanisms of food digestion in the 10 

gastrointestinal tract has strengthened our knowledge on the effect of food on human health. 11 

A number of mathematical models have been proposed to rationalize our understanding on 12 

the related mechanisms. One common suggestion is that in silico models could be 13 

interconnected and used in the future to predict the effect of food systems (liquid or solid, 14 

inner microstructure, state of nutrients…) on various metabolic responses. This paper aims 15 

to provide a brief overview of the latest developments in this young but promising field of 16 

research.  17 
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Introduction           19 

The increase in diet-related diseases has fuelled the need to improve our knowledge on the 20 

fate of foods, or meals, in the gastrointestinal (GI) tract. Over the past 15 years, research in 21 

this field has provided new insights into why and how the structure of the food we eat can 22 

affect the kinetics and extent of nutrient absorption [1,2]. As with pharmaceuticals, the dose 23 

and timing of nutrient arrival in the blood stream during digestion has important metabolic 24 

consequences. Examples include both deleterious and beneficial repercussions, as for 25 

instance the increased risk of type-2 diabetes for diets with high glycaemic index [3], or the 26 

stimulation of protein muscle synthesis above a threshold of leucine in the peripheral blood 27 

[4]. To advance further in our understanding of the relationship between foods, or diets, with 28 

the overall functioning of the human gastrointestinal (GI) tract and post-absorptive processes, 29 

systems modelling of digestion appears as a promising means. Such an approach can be used 30 

to tackle the diversity of the mechanisms that take place during digestion, and could be very 31 

valuable for predictive purposes. This has already happened in the pharmaceutical area, in 32 

which the concept of “in silico clinical trials” has emerged as a new tool in the drug regulatory 33 

process [5,6]. This paper therefore questions the possibility of advancing towards 34 

establishing models of food digestion and nutrient absorption that could help predict the 35 

metabolic responses to foods and meals. It starts by describing some attempts that have been 36 

proposed in the past, before reviewing the latest developments and the remaining challenges 37 

related to this field of research.  38 

Physiologically based kinetic (PBK) modelling of food digestion: Where do we stand?  39 

Predictive models of food’s GI transit, hydrolysis and absorption can be built with classical 40 

engineering approaches, in which the digestive system is split into a number of anatomical 41 

compartments (e.g. one or several gastric and intestinal sub-compartments, peripheral blood, 42 

etc.) and into a series of unit operations to model the physicochemical processes that take 43 

place [7]. In the pharmaceutical area, this strategy has led to a number of physiologically 44 

based kinetic (PBK) models to predict the absorption of orally administered pharmaceuticals 45 

[5], or for safety assessment of chemicals: cosmetics, food additives, pesticides, etc. [8]. 46 

Thanks to their capability to predict the overall internal exposure to a chemical and on its 47 

ability to elicit a biological response, these models are becoming more and more essential 48 

before in vivo experiments can be undertaken. 49 
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The same principles can be applied to relate some nutritional considerations (e.g. extent and 50 

kinetics of nutrient absorption) with food or meal digestion. PBK models of the GI transit 51 

and absorption of meals, from stomach to colon with consideration of all kinds of 52 

macronutrients, were proposed for pigs quite a long time ago [9,10]. The latest version of this 53 

model [10] seemed to accurately predict the digestibility of the main food components, lipid 54 

excepted, as well as the absorption profile of the studied nutrients (glucose, amino acids, and 55 

volatile fatty acids) over a large variety of diets. The same strategy could thus be adapted for 56 

human physiology. One lack, however, is that they do not directly account for the physical 57 

properties of ingested foods or meals. Hence, these are not directly suitable to predict food 58 

structure effects. In another study, a PBK model dedicated to dairy protein digestion and 59 

absorption in mini-pigs showed that the great differences in the kinetics of amino acid 60 

absorption experimentally observed for differently structured dairy matrices of identical 61 

composition could be fairly reproduced by considering contrasting gastric behaviours and 62 

emptying kinetics [11]. By distinguishing the fraction of gastric content that is ready to be 63 

emptied into the small intestine from the one that is not ready yet (e.g. large food particles), 64 

this model provided a first attempt to integrate food structure considerations into PBK models 65 

of food digestion.  66 

These examples are interesting in that they can be used to predict the dose and timing of 67 

nutrient arrival in the blood stream in response to a given food or a meal, and could be easily 68 

connected with nutritional models that aim to predict the metabolic fate and consequences of 69 

absorbed amino-acids [12], lipid products [13], or sugars [14] in the fed state. However, to 70 

build a PBK model of food transit and absorption that becomes truly relevant for predictive 71 

purposes, there remains a clear need to more directly relate the properties of the foods or 72 

meals with: (i) the kinetics of enzymatic hydrolysis, and (ii) the GI transit, in particular the 73 

gastric emptying kinetics. As further reviewed, a number of models are now becoming 74 

available to tackle these issues. 75 

How to account for key properties of macronutrients in the modelling of enzymatic 76 

hydrolysis and GI transit?  77 

Current developments in the modelling of enzymatic hydrolysis mostly originate from the 78 

ongoing efforts to take into account the key properties of the main nutrients (i.e. proteins, 79 

lipids and starch). In this field, we may shed light on the results recently obtained from 80 

approaches that consider multiple species within each type of macronutrient, rather than 81 

trying to model an average behaviour. For instance, a model accounting for the fatty acid 82 
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composition of an oil-in-water emulsion, and for rate constants that are specific for each fatty 83 

acid residue, not only allowed a better fitting of the in vitro disappearance of triacylglycerols 84 

but also proved very efficient in predicting the individual bioaccessibility profiles of each 85 

oil’s fatty acid [15]. Another multi-response model has been successfully applied to the 86 

hydrolysis profiles of the main lipid categories (triglycerides, monoglycerides, and free fatty 87 

acids) for a total of 28 different data sets of emulsion intestinal in vitro digestions [16]. 88 

Comparable approaches have also been proposed to model the hydrolysis kinetics of proteins 89 

[17,18], and starch [19–21], where consideration is made that different rates of hydrolysis 90 

can be assumed for different subclasses of the considered substrate, i.e. more or less resistant 91 

and/or accessible fractions. These examples are of particular interest because they provide a 92 

direct means of incorporating both compositional and structural information in enzymatic 93 

hydrolysis models, with non-empirical relations between the model parameters and the food 94 

properties. Since they all rely on the same principles and are relatively simple to build or 95 

modify, these approaches could thus be assembled and interconnected to enable predictive 96 

modelling of the release kinetics of all kinds of nutrient from food material(s). The large body 97 

of experimental data already existing in the literature could be used to identify the most 98 

appropriate model structures and tune their parameterization. 99 

Gastric emptying is another key determinant of the overall nutrient absorption kinetics. It is 100 

well known that this process is, in first approximation, governed by a feedback mechanism 101 

controlling the flux of calories delivered to the proximal small intestine. Indeed, it was shown 102 

more than 40 years ago that gastric emptying of meals can be fairly predicted from the meal’s 103 

initial volume and caloric density [22]. More recently, Moxon and co-workers proposed a 104 

gastric emptying model for nutrient liquid meals that include a nutrient feedback mechanism, 105 

and which further takes into account the variations of the chyme viscosity upon gastric 106 

secretions and emptying [23]. Overall, this model closely simulated in vivo gastric emptying 107 

patterns of liquid meals varying by both their nutrient content and viscosity. Although the 108 

predictive capability of this model needs to be validated further, it certainly constitutes a 109 

much more elegant basis than mass action laws or empirical equations to predict the gastric 110 

emptying of liquid meals in PBK models of food digestion. Overall, almost all pieces seem 111 

now available to develop PBK models that could predict the main nutritional responses to 112 

liquid foods. 113 

Three-dimensional computational models of food breakdown and mixing  114 
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Food is not simply a soup of nutrients. It has structure that is complex and multiscale, 115 

requiring phenomena occurring at a larger scale to be taken into account for solid foods. The 116 

comminution of food and mixing with GI fluids are primarily important at the oral and gastric 117 

stages, where food pieces are larger and less diluted by the digestive secretions. Food 118 

fragment size and structure may not only impact enzymatic hydrolysis but also gastric 119 

emptying, which largely controls the overall kinetics of nutrient uptake [24]. It is thus 120 

important to develop models that could predict food fragmentation and mixing in the upper 121 

part of the GI tract. These mechanisms are generally simulated using computational solid 122 

mechanics and fluid dynamics.  123 

During the oral phase, solid foods are broken down and lubricated with saliva. Food oral 124 

processing therefore governs the size distribution of food particles that reach the stomach, 125 

which are typically up to several millimetres in size. To enhance our understanding of the 126 

relationship between food structure and oral breakdown during mastication, latest results 127 

from both finite element [25] and meshfree [26,27] three-dimensional (3D) methods are 128 

rather encouraging. When combined with experimental data from model food materials, they 129 

enabled fair predictions of crack initiation and propagation [25], and of food fragment sizes 130 

produced during chewing [26]. This latter model, proposed by Harrison and co-workers, used 131 

smoothed particle hydrodynamics (SPH) to predict the mechanical behaviour and breakdown 132 

of two agar gels during mastication. It is particularly interesting in that several chewing 133 

cycles are considered and the predicted fracture damage and particle size distributions are 134 

directly related to the measured properties of their food materials. These computational 135 

models still remain in their early stages but seem extendable to a variety of food structures 136 

with different rheological properties. In the future, it is therefore possible that these 137 

approaches could be used to predict fragment sizes of oral boli from known or measured food 138 

properties and anatomical considerations. 139 

At the gastric stage, pioneer 3D computational models of the entire stomach date from the 140 

early 2010s, by Ferrua and Singh [28,29] and Imai et al. [30]. These models considered the 141 

case of a closed pylorus to investigate gastric mixing of liquid meals of different viscosity. 142 

More recently, Harrison and co-workers have also developed a SPH based model to simulate 143 

gastric mixing and emptying of aqueous solutions when the pylorus remains fully open [31], 144 

and the team of Imai has just investigated how the coordination between pyloric closure and 145 

antral contraction affects the emptying of liquid contents [32]. By considering gastric 146 

emptying, these new models represent an important step forward in improving our 147 
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understanding of gastric digestion. However, despite their great merits, current gastric 148 

computational models do not yet account for secretions and enzymatic reaction(s) and have 149 

only focused on liquids, with no or few discrete solid particles. Several important 150 

developments thus remain to be performed before a comprehensive multiphysics model of 151 

the stomach can be used to predict the gastric breakdown, mixing and emptying of solid foods 152 

[33].  153 

Peristatic and segmentation contractions in the small intestine have also been simulated with 154 

computational fluid dynamics to predict the flow and mixing at different length scales [34–155 

37]. These studies have notably shown that the transport of nutrients from the intestinal lumen 156 

to the wall can be significantly reduced when the apparent viscosity of digesta is high [34], 157 

and that the motion of villi at the gut wall can significantly enhance the mixing in the 158 

proximity of epithelium cells [35–37]. Overall, these works have provided important insights 159 

to better understand the rate limiting steps of nutrient absorption, and on the possible effect 160 

of the mechanical properties of food. 161 

Computational modelling of food breakdown and mixing in the GI tract has already provided 162 

important findings. If more work remains to be performed, in particular at the oral and gastric 163 

stages, this field of research is still young and ongoing developments in numerical methods 164 

rapidly improve the accuracy and speed of complex simulation scenarios. It is therefore 165 

expectable that these approaches will become more and more accurate and reliable in the 166 

forthcoming years. 167 

Alternative approaches to predict the breakdown and transit of solid foods   168 

In relation to the objective of predicting the main metabolic responses to a food or a meal 169 

from in silico modelling, it may not always be necessary to simulate the 3D-spatiotemporal 170 

evolution of the GI content. Predictions of food transit in one spatial dimension (i.e. along 171 

the GI tract) should be adequate for most nutritional considerations. From a systems 172 

modelling perspective, as in PBK models, this strategy also facilitates model computations 173 

and interconnections.  174 

A number of research groups continue to use and adapt models developed in the fields of 175 

engineering and biophysics to predict the behaviour of food in gastric conditions [7]. Recent 176 

examples include modelling work on mass transfer and absorption in the intestine [38], or on 177 

the physical-chemistry of gastric digestion of solid foods to predict: their swelling [39], their 178 
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softening [40], their breakdown into particles [41], their acid and moisture uptake and 179 

buffering capacity [42–44]. Recently, a more integrative approach has also been proposed by 180 

Sicard and co-workers to model of the gastric digestion of meat proteins [45]. They built a 181 

reaction-diffusion model that accounts for a number of mechanisms: pepsin and proton 182 

diffusion in bolus particles, pepsin activity as a function of pH, the buffering capacity of 183 

meat, and indirectly for the movement of particles with secretion via a mass transfer 184 

coefficient at the meat particle–gastric fluid interface. As discussed by the authors, the current 185 

version of their model still has room for improvement, in particular by computing the 186 

progressive reduction of the particle size in relation to gastric emptying kinetics. Because the 187 

structure of this model has a very general character, this work appears suitable to be 188 

transposed to other types of solid foods, meanwhile it could also be integrated into PBK 189 

models of food digestion and absorption. In the future, further developments might enable 190 

prediction of the gastric digestion and emptying of solid foods from physical considerations 191 

in place of the classically employed empirical equations. This represents the main modelling 192 

challenge to overcome before predictive models of solid food digestion and absorption could 193 

become a reality.  194 

The essential role of experimental data  195 

Another bottleneck in establishing a comprehensive model of food digestion is the need to 196 

rely on relevant experimental data and knowledge. Because in vitro experiments use well-197 

controlled conditions, they provide a very good framework to test some modelling 198 

assumptions, in particular with regards to the effects of food composition and structure on 199 

enzymatic and disintegration kinetics. Recent reviews have also discuss the ability and limits 200 

of both static [46] and dynamic [47] in vitro experiments to reproduce in vivo observations. 201 

Nonetheless, in vitro experiments do not reflect the reality of in vivo digestion, which is 202 

regulated by both neural and hormonal feedback mechanisms.  203 

Hence, to develop in silico models of food digestion that become physiologically relevant, 204 

there is a clear need to rely on in vivo data, and more particularly on human data whenever 205 

possible. However, most of the previously described models rely on a small sample of the 206 

physiology literature. Since there is no in vivo database that modellers could use to build and 207 

evaluate their models, one of the main challenges they face is to find, extract and assess the 208 

relevant quantities from articles across various scientific fields. This is complicated by the 209 

fact that modellers do not always have a background in animal or human digestion 210 

physiology, meanwhile experts in physiology and metabolism are not necessarily aware of 211 
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the needs and constraints of modelling. To advance, the communities of experimentalists and 212 

modellers will have to collaborate more closely to identify and gather relevant experimental 213 

data sets and knowledge for model development and evaluation. In this context, modelling 214 

should also serve as a knowledge-based system, in which our understanding of the 215 

mechanisms and of their relationships is organized and can be incrementally improved and 216 

complete.  217 

Conclusion  218 

Modelling the digestive processes is challenging and research in this area is currently very 219 

active. The scope of existing models spread from molecular mechanisms up to systems view 220 

approaches with increasing efforts to relate food properties to key mechanisms of food 221 

digestion. Previously proposed PBK models of food digestion and absorption could largely 222 

benefit from recent advances in the modelling of food structure effects on digestion, from the 223 

enzymatic hydrolysis of macronutrients up to the impact of food macrostructure. All the 224 

pieces seem now available to start building in silico models that could predict the main 225 

metabolic responses to liquid foods and meals, although more work remains to be done for 226 

the case of solid foods.  227 

  228 
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