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Abstract  12 

Digestion and health properties of food do not solely rely on the sum of nutrients but are also influenced 13 

by food structure. Dairy products present an array of structures due to differences in the origin of milk 14 

components and the changes induced by processing. Some dairy structures have been observed to 15 

induce specific effects on digestion rates and physiological responses. However, the underlying 16 

mechanisms are not fully understood. Gastric digestion plays a key role in controlling digestion kinetics. 17 

The main objective of this review is to expose the relevance of gastric phase as the link between dairy 18 

structures and physiological responses. The focus is on human and animal studies, and physiological 19 

relevant in vitro digestion models. Data collected showed that the structure of dairy products have a 20 

profound impact on rate of nutrient bioavailability, absorption and physiological responses, suggesting 21 

gastric digestion as the main driver. Control of gastric digestion can be a tool for delivering specific 22 

rates of nutrient digestion. Therefore, the design of food structure targeting specific gastric behaviour 23 

could be of great interest for particular population needs e.g. rapid nutrient digestion will benefit elderly, 24 

and slow nutrient digestion could help to enhance satiety. 25 

Key words:  26 

dairy foods, food structure, food matrix, gastric digestion, bioaccessibility, bioavailability, 27 

Abbreviations: 28 

AA, amino acid; GI, gastrointestinal; GE, gastric emptying; UHT, Ultra High Temperature; β-Lg, β-29 

Lactoglobulin; MFGM, milk fat globule membrane; TAG, triacylglyceride; CVD, cardiovascular 30 

diseases. 31 
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1.Introduction   33 

Dairy products have been established as excellent foods due to their high nutritional value. However, 34 

several controversies have been arisen from their consumption in relation for instance to their high 35 

contribution of saturated fats, which are linked to cardiovascular diseases (CVD), through the increase 36 

of blood lipids in particular low-density lipoprotein (Griffin, 2017). Nevertheles, there is a paradox in 37 

the fact that increasing evidence has shown the consistent neutral or even benefitial associations 38 

between dairy food consumption and CVD as shown in meta-analysis of prospective cohort studies 39 

(Givens, 2017), and several other diseases (Thorning, et al., 2016). A multinational cohort study in 21 40 

countries from five continents was recently published showing that the consumption of dairy products 41 

(milk, yoghurt and cheese) was associated with lower risk of mortality and CVD (Dehghan, et al., 2018). 42 

This discrepancy is probably due to the generalised approach of evaluating the health benefits of a food 43 

according to its individual components rather than the structure (or matrix). The food matrix is defined 44 

as the arrangement of food constituents and their interactions at multiple spatial length scales (Parada 45 

& Aguilera, 2007), see Figure 1. The structure of food either occurs naturally (i.e. milk) or is created or 46 

destroyed by processing (e.g. yoghurt and cheese) and preparation. Furthermore, specific conditions of 47 

processing (e.g. the pressure of milk homogenisation and ripening time in cheese) will modulate the 48 

physico-chemical properties and the structure of the final product at the different length scales. This 49 

will probably affect the digestion and metabolism of the foods in different ways. Therefore, when 50 

investigating the health effects of dairy products, the whole matrix and its specific structure has to be 51 

considered (Thorning, et al., 2017).  52 

The physico-chemical characteristics of food components and the whole matrix impact how individual 53 

components interact and behave within the gastrointestinal (GI) tract. Research has mainly focussed on 54 

the small intestine digestion in order to control nutrient digestion using different mechanisms such as 55 

the ileal break (Maljaars, et al., 2008) by manipulating interfacial composition of lipid droplets for 56 

instance, that alters the access to enzymes and bile and might slow the release of lipid. 57 
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However, possibly having a more significant impact, the stomach can play a key role in controlling the 58 

rate of nutrient absorption and subsequent physiological responses. A schematic diagram illustrating 59 

this approach is displayed in Figure 2. There are several complex processes occurring in the gastric 60 

compartment: enzymatic (pepsin and gastric lipase), physical (e.g. peristalsis) and chemical (e.g. pH 61 

decrease and ionic composition). 62 

The behaviour of food structures will depend on their physico-chemical properties in the gastric 63 

environment. This might cause restructuring, i.e. change of the initial structure, which will alter the 64 

food’s functional characteristics. Several types of colloidal behaviour might be observed depending on 65 

the stability of the structure. Golding, et al. (2011) showed that colloidal structures can be tailored to 66 

exert different behaviour under the acidic conditions of the stomach. The properties of food structure 67 

adopted in the stomach will profoundly impact gastric disintegration and the rate of gastric emptying 68 

(GE), i.e. gastric contents gradually delivered into the duodenum. Marciani, et al. (2007) showed that 69 

gastric acid-unstable emulsions led to the formation of an intragastric oil layer to be formed on top of 70 

the chyme in the stomach. This accelerated GE of the aqueous phase followed by a slow emptying of 71 

the intragastric oil layer in contrast to the slow GE of gastric acid stable emulsions. Then, due to 72 

differences in the rate of delivery of nutrients to the duodenum, they might be absorbed and metabolised 73 

at different rates, altering hormonal secretion and physiological responses. For instance, the slower GE 74 

of the acid stable emulsion in the study by Marciani, et al. (2007) study led to a greater secretion of 75 

CCK and greater satiety. A slow GE has been also shown to help diabetics by reducing peaks in lipemia 76 

(Rayner, et al., 2001). Therefore, control of GE by intragastric behaviour of digesta can be essential for 77 

ensuring optimal digestion addressed to specific physiological responses. For instance, foods with slow 78 

nutrient digestion might induce fullness for longer, which could be useful for obese/overweight 79 

population. In contrast, fast protein digestion and uptake would be beneficial for elderly individuals and 80 

athletes by enhancing muscle synthesis. This approach should be further studied and exploited to design 81 

healthier food structures in the future.  82 

To achieve this, a deep understanding of the mechanisms of food breakdown in the stomach is critical. 83 

This research should progress further in the light of the development of sophisticated in vivo techniques 84 
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such as magnetic resonance imaging (MRI). Despite the gold standard for investigating nutrient 85 

digestion being the human body, there are several reasons that constrain its use; it is highly variable, 86 

costly, time-consuming and might generate ethical issues. In vitro models are widely used, and they are 87 

mainly classified into static and dynamic. Sophisticated dynamic models can simulate the dynamics of 88 

stomach physiology, but they are also expensive and restrictive. One example is the human gastric 89 

simulator (HGS) developed at the University of California, Davis (Kong & Singh, 2010). In contrast, 90 

static models  are cheap, simple and useful in predicting the overall nutrient hydrolysis and end-points 91 

values of the digestion in vivo (Egger, et al., 2017), however they do not consider the structural changes 92 

and nutrient breakdown kinetics that occur in response to dynamic changes in gastric digestion 93 

conditions. 94 

In an effort to fill the gap between in vitro digestion models, a semi-dynamic method was recently 95 

developed (Mulet-Cabero, et al., 2019; Mulet-Cabero, et al., 2017), which can mimic the main gastric 96 

dynamics of gradual acidification, fluids and enzyme secretion and emptying at low-cost. The 97 

development of a standardised protocol for this semi-dynamic model is ongoing and the method will be 98 

published in 2019 by INFOGEST members. 99 

This literature review therefore aims to illustrate how the physiological responses and patterns of 100 

digestion observed following consumption of dairy products with different structures might be linked 101 

to gastric digestion and the need for its further study. The review will focus on assessing how dairy 102 

structures at several length scales affect nutrient bioaccessibility and bioavailability kinetics leading to 103 

different metabolic effects, in light of gastric digestion. In that view, in vivo studies and in vitro studies 104 

using dynamic and semi-dynamic models are mainly considered. Dairy structures from bovine origin 105 

are only considered, excluding studies where milk from other animal sources was used. The key 106 

conclusions of the main research articles to date have been summarized in Table 1, and these findings 107 

will be discussed in more detail in the following sections. 108 

2.Effect of dairy proteins on digestion and physiological responses 109 
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Milk proteins are classified as high-quality proteins considering human amino acid (AA) requirements 110 

and digestibility. They have high true digestibility and postprandial protein utilization of 95-96% and 111 

74%, respectively (Bos, et al., 1999). Milk proteins can be generally considered as a better source of 112 

protein compared to plant proteins since the later proteins are less digestible and deficient in one or 113 

more essential amino acids (EAAs) and their leucine (Leu) content is 6-8%, compared to 10-13% in 114 

dairy proteins (Gorissen & Witard, 2018). The EAAs, in particular branched chain AAs (BCAAs), are 115 

important since they exert a key role in muscle protein synthesis (Wolfe, 2002). Milk protein ingestion 116 

has been suggested to have benefits on cardiometabolic health (Fekete, et al., 2016). Moreover, milk 117 

proteins have important biological functions, casein micelle carries calcium and phosphate for efficient 118 

absorption. Several peptides from milk proteins have been reported to exert certain functions such as 119 

antihypertensive, opioid-like activity and antithrombotic properties (Fekete, et al., 2015; Jauhiainen & 120 

Korpela, 2007). 121 

2.1.Bioaccessibility of dairy proteins 122 

The nature of dairy proteins in terms of their molecular structure and physico-chemical properties has 123 

a strong impact on gastric and intestinal digestion which subsequently affects the bioaccessibility of 124 

nutrients. The main milk proteins have different physico-chemical properties, which are governed by 125 

their structure. Caseins have a relatively open and flexible conformation forming ordered structures 126 

known as casein micelles and are insoluble at their isolectric point, pH 4.7. In contrast, whey proteins 127 

have globular, compact structure and are soluble under acidic conditions. 128 

At the molecular level, caseins have been reported to be more easily digested than whey proteins during 129 

the simulated gastric phase (Egger, et al., 2017; Macierzanka, et al., 2009). In addition, the same authors 130 

Macierzanka, et al. (2009) showed that the degree of proteolysis in β-Lactoglobulin (β-Lg) was 131 

increased when emulsified with oil, which was due to the partial unfolding of the β-Lg secondary 132 

structure improving accessibility to pepsin. These studies were performed in static conditions in which 133 

the pH of the gastric phase remain constant at pH 3. 134 
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This contrasts with in vivo results showing that caseins are slowly digested and whey proteins are 135 

rapidly digested. In general, it is assumed that caseins coagulate in the gastric conditions whereas whey 136 

proteins remain relatively soluble. The coagulation of caseins could be mainly driven by the action of 137 

pepsin that cleaves the Phe105-Met106 band in k-casein, together with the gradual pH decrease occuring 138 

in the stomach (Figure 3).  139 

Despite the fact that there are several indirect indications suggesting this behaviour occurs, no direct 140 

visual evidence of the restructuring of caseins occurring in the human stomach has been reported so far. 141 

Some studies reported the markedly different GE and digestion kinetics between the main milk proteins 142 

(Mahé, et al., 1991; Mahé, et al., 1996). However, there are contradictory studies in which no 143 

differences in GE for the different milk proteins were found (Calbet & Holst, 2004; Lang, et al., 1998). 144 

In the latter studies, sodium or calcium caseinate was used whereas milk or micellar casein were 145 

digested in those studies where the GE was different. Therefore, the state of the caseins and its 146 

processing history seems to strongly influence its digestion behaviour in the stomach. Caseins in the 147 

micellar state are coagulated by pepsin (Tam & Whitaker, 1972) and low pH (Dalgleish & Corredig, 148 

2012). This contrasts with caseinate, i.e. a mixture of caseins with the calcium phosphate removed, 149 

which does not have the same micellar-type structure and is not coagulated by pepsin. In this review, 150 

studies using caseins in micellar form will be mainly discussed because it is the most relevant structural 151 

form found in natural dairy products. 152 

In that context, Miranda and Pelissier (1981) showed in rats that the rate of GE in skimmed milk was 153 

slower compared with that of a mixture of denatured caseins and the proteolysis in the stomach was 154 

much lower in the skimmed milk reporting that αs1-casein and β-casein were almost undergraded and 155 

κ-casein was converted into para- κ-casein. 156 

The distinct rate and composition of the products delivered to the small intestine after the ingestion of 157 

different milk proteins suggest a different time of residence and behaviour in the stomach. Mahé, et al. 158 

(1996) investigated the digestion kinetics of intrinsically labelled 15N β-Lg and casein drinks, which 159 

were fed to healthy young volunteers. The effluents from the jejunum were collected by a nasal tube 160 

and their protein contents and flow rate were assessed. The jejunal flow rate peaked in the first 20 min 161 
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after β-Lg digestion, which was present mostly in the intact form. In contrast, caseins were more slowly 162 

recovered in the jejunum in a more degraded form. These results were supported by a more recent 163 

human study (Boutrou, et al., 2013) where the authors found that, after casein ingestion, the delivery of 164 

dietary protein in the jejunum was progressive for 6 hours and in the form of medium size-peptides 165 

(750-1,050 Da). In contrast, the ingestion of whey protein induced the release of larger-size peptides 166 

(1,050-1,800 Da) and was completed after 3 hours. The authors suggested that the coagulation of caseins 167 

could lead to a slower rate of emptying compared to a more rapid emptying of the whey proteins in 168 

solution. Therefore, caseins coagula could be more exposed to pepsin hydrolysis leading to the 169 

emptying of more degraded products. 170 

2.2. Absorption and protein metabolic utilization of dairy proteins  171 

The distinct pattern of protein digestion in the GI tract has been reflected in different rates of AA 172 

absorption, which might modulate the postprandial metabolism of whole body protein synthesis, 173 

breakdown and oxidation in the liver. Boirie, et al. (1997) performed a study on young healthy subjects 174 

using intrinsically 13C-Leu labelled whey protein and micellar casein drinks, which were matched for 175 

Leu content but were not isonitrogenous. The postprandial whole-body Leu balance, considered as an 176 

index of protein deposition, was assessed by tracing samples from blood and breath. The plasma AA 177 

appearance, i.e. aminoacidemia, was fast, high and transitory after whey protein drink ingestion, which 178 

led to an increase in whole body protein synthesis (68%) but no support in whole body protein 179 

breakdown. In contrast, the ingestion of a casein drink resulted in a lower, slower and prolonged release 180 

of AAs. This was associated with a markedly higher inhibition of whole protein breakdown (34% for 7 181 

hours), but just slight stimulation of whole protein synthesis (31%) compared to whey protein drink. 182 

However, the Leu balance was positive for the casein drink over 7 hours, promoting protein deposition 183 

whereas no effect was provided from whey protein drink. The authors classified, in relation to that 184 

postprandial behaviour, whey proteins and casein as ‘fast’ and ‘slow’ digested proteins respectively, 185 

which has been widely considered in the literature. Similarly, Lacroix, Bos, et al. (2006) showed in 186 

healthy volunteers that the aminoacidemia for the first hour in whey proteins ingestion was rapid and 187 
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high followed by a decrease reaching values below the baseline of total plasma AAs after 3 hours, which 188 

resulted in hypoaminoacidemia.  189 

Whey proteins have a higher Leu content than caseins, therefore, one might think that this compositional 190 

difference, not their protein digestion kinetics, might induce different dietary nitrogen postprandial 191 

metabolism. This was addressed in a study by Dangin, et al. (2001). Casein and whey protein drinks 192 

were matched in AA composition and nitrogen contents but designed to have different digestion rates. 193 

The fast-digested drinks were whey protein and casein hydrolysate, and the slow-digested drinks were 194 

caseins and whey proteins consumed at repeated times during digestion. In accordance with the previous 195 

studies illustrated, they showed that fast-digested drinks induced rapid, pronounced and transient 196 

increase of aminoacidemia, which led to high and immediate stimulation of protein synthesis. In 197 

contrast, slow-digested drinks induced moderated and prolonged aminoacidemia resulting in the 198 

inhibition of protein breakdown. Similarly, Bos, et al. (2003) demonstrated that the availability of AAs 199 

by digestion kinetics was the main driver for protein metabolism by using milk protein compared to soy 200 

protein.  201 

The inclusion of other nutrients in the protein matrix might affect protein utilization. Gaudichon, et al. 202 

(1999), investigated whether the addition of sucrose or milk fat affected the net postprandial protein 203 

utilization of milk protein. Sucrose, but not fat, significantly reduced the postprandial transfer of [15N]-204 

milk nitrogen to urea, which could be mainly due to a delayed GE of the meal because of the higher 205 

energy density. Nevertheless, the total amount of dietary nitrogen recovered over an eight-hour period 206 

after meal ingestion was not different. The absence of any effect in the presence of fat was unexpected 207 

because the energy density was similar to that of the sucrose meal and the authors suggested that lipid 208 

may have separated and formed a layer on top of the meal in the stomach and emptied after the aqueous 209 

phase of the meal. However, having similar behaviour to the control milk protein sample, fat could be 210 

entrapped in the coagula possibly formed in the stomach. 211 

Mariotti, et al. (2015) investigated the effect of caseins and whey proteins in triaglycerides (TAG) 212 

response in a mixed high-fat meal using a crossover design in healthy overweight men. The authors 213 

showed that caseins, compared to whey proteins, markedly reduced postprandial TAG and formation 214 
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of plasma chylomicrons, which was suggested to be caused by low solubility and phase separation of 215 

casein in gastric conditions. This contrasts with other studies showing whey proteins to be more efficient 216 

in lowering effects on blood lipids (Mortensen, et al., 2009; Pal, et al., 2010). Therefore, there is a gap 217 

in understanding the influence of other nutrients included in the food matrix on metabolic effects, which 218 

should be studied considering the digestive kinetics and gastric behaviour. 219 

2.3. Dairy proteins and skeletal muscle mass 220 

Muscle mass maintenance is regulated by the balance between muscle protein breakdown (catabolism) 221 

and synthesis (anabolism) rates, which has been dependent on physical activity and food intake. The 222 

postprandial muscle protein synthetic response to feeding is regulated on factors including dietary 223 

protein amount, source and digestion, AA absorption and uptake by muscle and intramyocellular 224 

signalling (Gorissen, et al., 2015). Muscle protein synthesis (MPS) is of particular interest to athletes, 225 

active people and the elderly. Ageing can result in a diminished muscle protein synthetic response after 226 

protein intake, which is often accompanied with the progressive decline of skeletal muscle mass, known 227 

as sarcopenia. Some studies have shown that faster digestion of whey proteins resulted in an 228 

enhancement of MPS responses in elderly men (Burd, et al., 2012; Dangin, et al., 2003; Pennings, et 229 

al., 2011; West, et al., 2011), in elderly men after resistance exercise (Burd, et al., 2012) and also in 230 

young men at rest and after resistance exercise (Tang, et al., 2009). In general, it has been shown that 231 

the specific pattern in plasma aminoacidemia after the consumption of whey proteins, i.e. rapid and 232 

pronounced AA peak, was the main driver. Moreover, a strong correlation was reported between plasma 233 

Leu levels and muscle protein accretion (Pennings, et al., 2011). The stimulation of MPS is driven 234 

primarily by essential AAs (Volpi, et al., 2003), from which Leu has been reported as the main signal 235 

(Drummond & Rasmussen, 2008). Therefore, a direct comparison between the effects of the absorption 236 

rates of these two proteins related to MPS is conflicted by their differing AA contents. In healthy men 237 

after resistance exercise, whey proteins ingested as a single bolus was compared to the same amount of 238 

protein but taken in repeated small drinks, which aimed to simulate slower digested protein (West, et 239 

al., 2011). The authors showed that whey proteins consumed as a bolus caused a rapid and greater 240 

increase in aminoacidemia, which was reflected in a greater stimulation in MPS response at an early 241 
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stage (1-3 hours) compared to the whey protein consumed repeated times (3-5 hours). They concluded 242 

that the pattern of aminoacidemia, not the net AA exposure, was the main driver for the effect in skeletal 243 

muscle. These results were supported by other studies using casein and casein hydrolysate (Pennings, 244 

et al., 2011). 245 

The ingestion of other macronutrients together with dairy proteins is another factor to consider in 246 

relation to MPS (Churchward-Venne, et al., 2015; Gorissen, et al., 2014). Co-ingestion of carbohydrates 247 

with casein resulted in no differences in muscle synthetic response in both young and elderly men 248 

(Gorissen, et al., 2014). However, this resulted in a delay of protein digestion and absorption, attributed 249 

to the decrease of GE rate. In contrast, other studies showed a greater AA uptake into peripheral tissues 250 

in resting subjects when milk proteins were combined with lipid and sucrose (Mariotti, et al., 2000). 251 

Elliot, et al. (2006) showed that milk ingested as a whole food stimulated net MPS following resistance 252 

exercise, suggesting that its consumption would be suitable during recovery. Interestingly, the uptake 253 

of AAs, based on Thr and Phe, was greater for whole milk compared to fat-free milk. However, the 254 

reason of this outcome was not clear for the authors suggesting that the extra energy could help the 255 

nitrogen balance process. Therefore, further work should be performed in investigating the role of lipid 256 

in AA uptake. 257 

2.4.Dairy proteins and satiety 258 

The ingestion of protein stimulates the release of gut hormones involved in appetite and food intake 259 

regulation, such as CCK, GLP-1, PYY and insulin (Anderson & Moore, 2004). Whey proteins might 260 

be considered to have a greater effect on satiety compared to caseins since a higher content of BCAAs 261 

can greatly stimulate insulin secretion (Nilsson, et al., 2004). However there is no consistent evidence 262 

supporting one milk protein to be more satiating than the other (Bendtsen, et al., 2013). Hall, et al. 263 

(2003) investigated in healthy lean volunteers the appetite responses of whey proteins and casein drinks 264 

containing both lipid and carbohydrate with their total energy matched. The authors found that a whey-265 

based drink was satiating for 180 min after ingestion according to the appetite subjective score and was 266 

more efficient at decreasing energy intake in an ad libitum lunch, served 90 min after ingestion, than a 267 

casein drink. The secretion of the most important hormones in the role of satiety, i.e. CCK and GLP-1, 268 
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increased by 60% and 65% respectively after whey proteins ingestion compared to caseins. Similarly, 269 

Veldhorst, et al. (2009) reported a decrease in appetite after, in particular, 20 min of consumption of 15 270 

g of whey proteins (as a part of a standard breakfast) compared to casein or soy protein, which was in 271 

accordance to the higher concentration of GLP-1 and insulin observed following whey protein 272 

consumption. Accordingly, Luhovyy, et al. (2007) showed that whey proteins greatly suppressed food 273 

intake more quickly, i.e. at 90 min compared to the latter time of 150 min observed in casein after meal 274 

consumption. In contrast, casein consumption was reported to induce a greater satiety promoting effect 275 

than whey proteins in a study by Acheson, et al. (2011), in which subjective appetite sensations were 276 

measured for 330 min. This was supported by Alfenas, et al. (2010) with normal weight subjects, in 277 

which casein consumption led to a daily lower energy intake with 7-day supplementation compared to 278 

whey protein. Calbet and Holst (2004) did not find significant differences in the hormonal secretion of 279 

GLP-1 and PYY when the casein and whey proteins were compared with their hydrolysates. The 280 

variability of results can be explained by the protein source, quantity and time of measurements used in 281 

the studies. Overall, it seems that fast digested protein could have a greater satiety promoting power in 282 

the short term in contrast to the long-term effect shown by the slow digested protein of casein. Then the 283 

different digestion and subsequent AA absorption rate of casein and whey proteins might affect the 284 

secretion of GI hormones and subsequent satiety and food intake. 285 

The ingestion of milk as a whole was more effective in increasing satiation and reducing subsequent 286 

food intake than consuming the isocaloric drinks containing casein or whey proteins alone (Lorenzen, 287 

et al., 2012), which could be as the result of a greater increase of CCK and GLP-1 (Diepvens, et al., 288 

2008). Moreover, milk consumption has been reported to promote satiety and decrease food intake 289 

when compared to other drinks such as fruit juice (Dove, et al., 2009). 290 

2.5. Conclusions 291 

In this section, we showed evidence of how the single milk proteins affect the physiological functions 292 

differently after their digestion. Casein and whey proteins have been categorised as ‘slow’ and ‘fast’ 293 

protein respectively, according to their plasma AA appearance rate. Several studies have shown that the 294 

different aminoacidemia patterns, rather than protein composition, have a profound effect on protein 295 
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metabolism, in particular protein synthetic response of skeletal muscle. Despite the fact that it is widely 296 

suggested that gastric digestion could be the main driver for these outcomes, there is still no direct 297 

evidence. As far as it is known, there is no in vivo study showing the changes in gastric behaviour during 298 

the digestion of the main dairy proteins.  299 

3. Micro-scale dairy structures: digestion, absorption and physiological responses 300 

Some of the most common processes used in the dairy industry are homogenisation and heat treatment. 301 

These processing conditions will vary the physico-chemical properties and macronutrient organisation 302 

at the microscopic length scale, providing different microstructure. This could, in consequence, affect 303 

the nutritional properties. 304 

3.1.Dairy microstructure changes induced by heat processing 305 

3.1.1 Changes of heat processing 306 

Structural and functional modifications of milk proteins following heating have been extensively 307 

reported (de la Fuente, et al., 2002; Singh, 2004). However, the impact of heat treatments on the 308 

digestion of milk proteins has been much less studied and it is still subject of debate. The main chemical 309 

modifications to milk proteins during heating are denaturation of whey proteins, in particular β-Lg, 310 

casein-whey protein interactions and glycosylation by Maillard reaction. Despite the significant 311 

biochemical alterations induced by heat, some studies have shown no impairment of digestibility in the 312 

intestine (Efigênia, et al., 1997; Rutherfurd & Moughan, 2005), and nitrogen availability (Lacroix, 313 

Léonil, et al., 2006) after pasteurisation and ultra-high temperature (UHT) treatment in rats. 314 

3.1.2. In vivo digestion 315 

From our knowledge, there is only one study in humans assessing the nutritional impact of milk heat 316 

treatment. Lacroix, et al. (2008) compared the treatments of pasteurisation (72°C for 20 s) and UHT 317 

(140°C for 5 s) with non-heated milk. The kinetics of postprandial utilization of dietary nitrogen for the 318 

transfer into serum protein and AA, body urea and urinary urea over 8 hours were significantly faster 319 

for UHT milk compared to pasteurised milk and non-heated milk, which had a similar protein metabolic 320 
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pattern. This shows that the digestive kinetics were more rapid after UHT milk ingestion. There were 321 

no firm conclusions regarding the mechanisms behind this observation. 322 

The faster nitrogen utilisation in highly heat treated milk might be due to faster gastric digestion. 323 

Miranda and Pelissier (1987), using a rat model, compared skimmed milk samples heated using UHT 324 

and autoclaved (120°C for 20 min) conditions with non-heated skimmed milk. The heat treatment, in 325 

particular autoclaved, accelerated the GE rate of total nitrogen and casein hydrolysis. This contrasts 326 

with the work by Barbé, et al. (2013), in mini-pigs, in which a higher mean retention time in the stomach 327 

of heated skimmed milk (90°C, 10 min) was observed when compared to a non-heated system. 328 

However, in the latter study, they used chromium-EDTA, which is a non-hydrolysable and non-329 

absorbable marker of the liquid phase and thus might not be representative of the entire gastric contents 330 

of the heterogenous structures formed in the stomach. In general, there is limited research on the GE 331 

rate of heated milk samples to draw any firm conclusions. 332 

However, a faster GE induced by heating might be more in accordance with some evidence showing 333 

reduced milk protein coagulation in the stomach. The study by Kaufmann (1984), using mini-pigs, 334 

appears to be the only in vivo study reporting visually that heat treatment modifies the structure of the 335 

coagulum formed in the gastric compartment. This study also demonstrated the restructuring of milk in 336 

the stomach, whereby the coagulum formed with UHT sterilized milk in the stomach was less firm and 337 

had crumbly structure compared to pasteurised milk and more so with raw milk. Moreover, Meisel and 338 

Hagemeister (1984) reported a significant effect of UHT treatment on acidification and protein 339 

emptying during gastric digestion. The pH at 360 min of gastric digestion was 4.32 and 1.80 for raw 340 

and UHT+homogenised milk, respectively. The protein content in chyme after 360 min digestion was 341 

approximately 75% in raw milk compared to 25% in UHT+homogenised milk. This could potentially 342 

be related to the differences in pepsin activity found. The analysis of the chyme at 360 min showed that 343 

pepsin activity was approximately 1,000 U/g protein in raw milk in contrast to the approximate value 344 

of 33,000 U/g protein measured in UHT+homogenised milk. 345 

3.1.3. In vitro digestion 346 
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Using the in vitro dynamic model HGS, Ye, et al. (2016b) showed the formation of different structures 347 

of the coagula formed in the simulated stomach between unheated and heated skimmed milk (90°C for 348 

20 min). Unheated milk formed a dense, solid structure with small pores in contrast to the loose and 349 

particulate structure of the heated milk. Gastric behaviour also had an impact on the composition of 350 

nutrient emptying, such that whey proteins were preferentially emptied in unheated milk since they 351 

were not involved in the formation of the coagulum (Ye, et al., 2016b). This contrasts to the small 352 

amounts of caseins and almost no intact whey proteins that were firstly emptied in heated milk. The 353 

rate of release of fat globules from the coagulum was also influenced by the matrix structure. In whole 354 

milk, fat globules were entrapped in the protein matrix but fat globules of unheated milk were 355 

distributed more evenly within the matrix compared to those in heated milk (Ye, et al., 2016a). This 356 

seemed to affect the release of lipid from the coagula, which was faster in heated milk. Therefore, this 357 

study demonstrated the significant influence of heat treatment on the gastric digestion behaviour and 358 

nutrient digestion kinetics of milk. However, the heating conditions of this study (90°C for 20 min) 359 

were not comparable to those used conventionally in the milk industry, which might have different 360 

effects on changes in the protein molecular structure. 361 

Mulet-Cabero, et al. (2019) using a semi-dynamic gastric model, investigated the gastric behaviour of 362 

whole milk after controlled and standard industrial heat treatments, pasteurisation (72°C for 15 s) and 363 

UHT (140°C for 3 s). The authors showed the formation of coagula during gastric digestion, in which 364 

the consistency was profoundly affected by heat treatment. They reported, by rheology, that the higher 365 

the temperature of the treatment, the softer the coagulum obtained. Moreover, this different gastric 366 

restructuring had an impact on the emptied products. The gastric emptying of caseins from raw and 367 

pasteurised milk was delayed due to a more compact coagulation in the stomach whereas caseins were 368 

mostly emptied in hydrolysed form in UHT-treated milk. The gastric behaviour also had an impact on 369 

the emptying kinetics of the total lipid and protein content. 370 

3.1.4. Protein hydrolysis and products of digestion 371 

As pointed out in the previous studies, pepsin seems to play a key role in the disintegration of protein 372 

matrices in the gastric digesta. Aggregation induced by heat treatment might limit or modify the 373 
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accessibility to some cleavage sites by digestive enzymes, which might affect the peptides released 374 

during digestion. There is very little research in this aspect on in vivo systems. Barbé, et al. (2014), 375 

using mini-pigs, compared the release of peptides into the duodenum from raw or heated (90°C, 10 376 

min) skimmed milk. The number of peptides identified was slightly lower in heated milk compared to 377 

the non-heated sample. However, β- and αs1-caseins, which are very similar in their sequence length 378 

and abundance in milk, produced a different number of peptides. The number of peptides deriving from 379 

αs1-casein was less abundant than β-casein, showing more resistance to proteolysis probably due to 380 

differences in secondary structure and phosphorylation. This contrasts to Sánchez-Rivera, et al. (2015), 381 

using the same samples but digested in the dynamic gastric model available in INRA (France), that 382 

found a higher resistance of β-casein regions to digestion compared to other caseins. The latter results 383 

were in accordance with the study performed by Dupont, et al. (2010) using an infant in vitro static 384 

digestion. Moreover, Sánchez-Rivera, et al. (2015) found rapid hydrolysis of caseins after just 4 min in 385 

non-heated milk whereas intact caseins were visible for up to 50 min in heated milk, which was assessed 386 

by SDS-PAGE. The authors suggested that heat induced aggregation between caseins and whey proteins 387 

might be the cause of this behaviour. However, this is opposite to the results reported above with other 388 

dynamic gastric models. It seems that the gastric colloidal behaviour was completely different, 389 

unfortunately there was no reference to that in the study by Sánchez-Rivera, et al. (2015). This 390 

highlights the need for full characterisation of the structure and behaviour of the matrices and also the 391 

physical and chemical environments of the dynamic models that could induce differences in the 392 

coagulation and digestion behaviour. 393 

As illustrated, there are still conflicting results regarding casein digestion, as this appears to be sensitive 394 

to the matrix structure, which in turn is very sensitive to the environmental conditions and processing. 395 

In fact, Li and Zhao (2019) showed the profound effect of heating on the behaviour of casein 396 

coagulation, both by acid and rennet. However, the effect of heat on whey protein digestion is much 397 

simpler and more generally accepted. Native β-Lg is resistant to pepsin digestion while heating β-Lg 398 

promotes its hydrolysis. Temperatures above 75°C denature whey proteins, in particular β-Lg which 399 

unfolds and exposes hydrophobic groups. This susceptibility to proteolysis has been observed in several 400 
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digestion systems; mini-pigs (Barbé, et al., 2013), dynamic gastric model (Ye, et al., 2016b) and static 401 

digestion model (Islam, et al., 2017).  402 

3.2. Dairy microstructure changes induced by homogenisation processing 403 

3.2.1. Changes of homogenisation 404 

Homogenization is another common process used in the dairy industry, which disrupts the milk fat 405 

globule membrane (MFGM) and reduces the fat globule size. This leads to the formation of a new 406 

interface on the fat globules, which mainly consists of adsorbed milk protiens and native MFGM 407 

frgments (Lopez, 2005). Studies of the effect of droplet size on dairy nutrient digestion have been 408 

mainly performed using in vitro static models in particular with regard to lipolysis in infant formula and 409 

human milk (Bourlieu, et al., 2015). It is generally believed that the reduction in droplet size following 410 

homogenisation enhances lipid digestion because of the overall larger interface area available for lipase 411 

action. However, other factors such as protein matrix and droplet interfacial composition play an 412 

important role and it is complex to distinguish the main driver of the digestion outcomes (Garcia, et al., 413 

2014). 414 

3.2.2. In vitro digestion 415 

To our knowledge, the effect of homogenisation of a milk matrix on the digestive kinetics has not been 416 

studied in adult humans to date. However, in vitro systems have been used to get some understanding 417 

of this relationship. Mulet-Cabero, et al. (2019), using a semi-dynamic model, showed a strong impact 418 

of homogenisation in the gastric behaviour. Homogenised milks (d4,3 of 0.4 µm approximately) showed 419 

creaming in the gastric phase. This was regardless the heat treatment applied but it was more 420 

pronounced when homogenisation was combined with UHT treatment compared to pasteurisation or 421 

without heat tretment. The authors suggested that this colloidal behaviour was driven by both droplet 422 

destabilisation and aggregate density. However, the phase separation observed in Mulet-Cabero, et al. 423 

(2019) was not reported in Ye, et al. (2017) using the HGS. It is important to note that this dynamic 424 

model does not allow the visualisation of the digesta in the course of gastric digestion. Nevertheless, 425 

they reported, in line with Mulet-Cabero, et al. (2019), that the structure of the coagula of the 426 
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homogenised milk was more fragmented than raw milk but this effect was much less profound than 427 

when heat was applied. In terms of protein hydrolysis, homogenisation did not affect the pattern of 428 

digestion (Mulet-Cabero, et al., 2019; Ye, et al., 2017). However, the gastric behaviour had an impact 429 

on the nutrient content emptied. The homogenised samples seemed to release more lipid at the end of 430 

the gastric digestion (Mulet-Cabero, et al., 2019). Moreover, they reported a lower lipid/protein ratio in 431 

the serum of the homogenised sample suggesting an easier incorporation of the droplets in the coagulum 432 

and closely linked to the protein matrix. This coagulum could be present with a lower density in the 433 

gastric phase. Indeed, Michalski, et al. (2002) reported that homogenised fat globules interacted with 434 

the casein network, participating in the coagulum structure (rennet and acid gelation) whereas native 435 

milk fat globules were entrapped in serum pores of milk coagulum without much interaction. 436 

The protein network in which lipid droplets are embedded seems to be a critical factor in the hydrolysis 437 

of lipid. This protein matrix can be induced by restructuring in the stomach as the studies cited above 438 

or formed initially (emulsion gel). Guo, et al. (2014) investigated the effect of the droplet size (1, 6 and 439 

12 µm) in whey protein emulsion gels in the oral and gastric compartments using the HGS. The initial 440 

gel structure strongly influenced its disintegration during the gastric phase, resulting in significant break 441 

down of particles and coalescence during digestion for the 6 µm- and 12 µm-droplet gels, which caused 442 

the creaming observed after 300 min of gastric digestion. In contrast, the oil droplets of the 1 µm-droplet 443 

gel bolus, with an initial evenly distributed structure, largely remained within the protein matrix during 444 

gastric digestion. Moreover, the hydrolysis rate of whey proteins was higher in 12 µm-droplet gel. This 445 

could be attributed to the loose protein structure induced to the higher droplet size, which could promote 446 

the access to pepsin to the cleavage sites. 447 

3.2.3. Intragastric colloidal stability and physiological responses 448 

The effect of the droplet size in relation to colloidal stability in gastric environment has been less studied 449 

which can be attributed to the limitations of in vitro systems, in particular static models. Some clinical 450 

studies have shown a significant impact of emulsion droplet size and intragastric stability not only on 451 

nutrient delivery and absorption (Golding, et al., 2011; Marciani, et al., 2007) but also on satiety 452 

(Marciani, et al., 2008), and subsequent regulation of energy intake (Hussein, et al., 2015). 453 
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Unfortunately, there a few studies in which a dairy based ingredients is the main focus. This highlights 454 

the gap of knowledge in understanding the physiological response to consumption of dairy structures. 455 

Peters, et al. (2014) studied the effect of droplet size (3 versus 0.1 µm) in a milk shake. They did not 456 

find any significant effect in CCK released, satiety and food intake for 180 min after drink ingestion. 457 

This is in contrast to the significant enhancement in satiety for the smaller size droplets observed by 458 

Maljaars, et al. (2012). In the latter study, the same milk shake but without lipid was orally administrated 459 

and the lipid droplets were infused directly to the small intestine. In the Peters, et al. (2014) study the 460 

sample including protein could potentially coagulate in the stomach entrapping the lipid droplets, which 461 

could delay or change the effect on satiety that was expected. Unfortunately, the gastric behaviour was 462 

not investigated in the study. Again, this illustrates the crucial importance of studying the gastric phase 463 

and the importance of the effect of the matrix within which the components of interest are arranged. 464 

Droplet size is also thought to influence food intake behaviour. However, the study of satiety is quite 465 

complex because it also involves cognitive factors as well as physiological factors. Lett, et al. (2016) 466 

aimed to modulate satiation and satiety by controlling oil droplet size (d4,3 of 2 versus 50 µm) of an 467 

emulsion (1% wt sodium caseinate and 15% wt sunflower oil). The smaller droplet size within an 468 

emulsion preload resulted in a significant reduction in food intake (62.4 kcal) at a subsequent ad libitum 469 

meal. The authors did not find any conclusive primary mechanism responsible for this effect on satiety, 470 

but it is likely from earlier discussions, that this difference in droplet size would affect the lipid profile 471 

emptied from the stomach, and the subsequent feedback and control of gastric emptying could influence 472 

satiety. 473 

3.3. Conclusions 474 

The literature reviewed in this section illustrated that processing of milk can be seen as a tool to 475 

modulate digestion kinetics which does not imply an imparment of protein quality. In terms of heat 476 

processing, only drastic temperatures seem to have significant effects on protein bioavailability as 477 

reported by the increase of nitrogen availability and utilisation in the body after high heat treatment in 478 

humans. This is supported by the restructuring in the gastric phase observed in relevant in vitro models. 479 
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The important role of pepsin, and the mechanisms by which it controls this process needs to be further 480 

investigated. Also, the effect of heat on caseins digestion is still controversial and needs further 481 

investigation taking into account the digestion model and heating conditions. Moreover, there are no 482 

reports about the effect of heat treatment on satiety in dairy products.  483 

Homogenisation has been observed to cause a profound effect on milk gastric behaviour in vitro but it 484 

needs confirmation in humans. It is generally accepted that lipolysis is enhanced by reduction of droplet 485 

size. However, droplet interface interactions with protein matrix are less considered and play a crucial 486 

role in the lipolysis. Therefore, the effect of droplet size should be investigated together in a food matrix 487 

to assess the gastric colloidal behaviour that will impact not only on lipid absorption rate but 488 

physiological responses such as satiety. 489 

4. Micro-scale dairy structures: digestion, absorption and physiological responses 490 

Milk processing will not only vary the macronutrient organisation at the microscopic level but at larger 491 

scale (i.e. macrostructure) providing products with different rheological properties with liquid, semi-492 

solid and solid consistencies (i.e. yoghurt, cream, butter and cheese). These process-induced physical 493 

structures might influence nutrient release and absorption. 494 

4.1. Effect of macrostructure on digestion 495 

Scanff, et al. (1990) showed, using calves, that caseins from yoghurt  were emptied constantly from the 496 

stomach in both intact and degraded forms in contrast to the longer retention of caseins in milk. In 497 

humans, Mahé, et al. (1994) compared the digesta of proximal jejunum and terminal ileum between 498 

milk and yoghurt. They found, in milk, an early emptying of whey proteins, which remained in solution 499 

whereas caseins coagulated. In contrast, the greater viscosity of yoghurt provided a more delayed and 500 

regular release of nitrogen into the duodenum compared to milk. This was suggested to be due to the 501 

different GE pattern, the gastric half emptying time (measured using 14C-PEG-4000) was shorter in 502 

milk (35 min) than in yoghurt (60 min). However, this did not affect the overall extensive digestion of 503 

milk proteins from both matrices; approximately 91% of nitrogen was absorbed between the stomach 504 

and the terminal ileum in 240 min. These outcomes were supported in humans (Gaudichon, et al., 1995) 505 
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and mini-pigs (Gaudichon, et al., 1994), in which the dependence of liquid to solid ratio of the gastric 506 

digesta in GE was highlighted. The viscosity of yoghurt also influenced the postprandial lipid profile in 507 

humans by delaying the peak in plasma TAG whereas milk provided a lower but more long-lasting rise 508 

of TAG in plasma (Sanggaard, et al., 2004). Interestingly, Mahé, et al. (1994) reported, in humans, that 509 

the absorption of calcium in the duodenum was significantly higher after ingestion of yoghurt (67%) 510 

compared to that of milk (44%), probably due to a higher casein availability in yoghurt. This shows that 511 

the effect of intestinal delivery rates does not only affect macronutrients but micronutrients as well. 512 

Using similar macrostructures, Barbé, et al. (2013) compared the effect of unheated skimmed milk and 513 

its correspondent gel produced using rennet in mini-pigs. The gel matrix ingestion induced significantly 514 

lower and prolonged Leu levels in plasma throughout a 7-hour period after meal ingestion, whereas the 515 

liquid structure peaked after 30 min of meal ingestion. It was suggested that the gel structure could slow 516 

down proteolysis and AA absorption, which could be reflected physiologically. However, the levels of 517 

the GI hormones measured in this study, CCK and ghrelin, did not present any significant difference 518 

between the matrices over a 4-hour period after meal ingestion. Despite the different AA uptake rate 519 

that was obtained, the authors found no significant differences in the mean retention time in the stomach. 520 

The measurement was based on chromium-EDTA which, as mention before, might not be 521 

representative of the entire gastric contents. The effect of these matrices (milk liquid versus gel) was 522 

further studied in relation to the pattern of peptides released into the duodenum at different times using 523 

mini-pigs (Barbé, et al., 2014). The authors reported that the food matrix did not affect the accessibility 524 

of enzymes to the cleavage sites as seen, due to the identification of the same peptides over the digestion 525 

time but the structure had a great impact on the quantity of identified peptides. The gel structure 526 

presented lower amounts of free AAs but higher number of peptides, when compared to the matrix 527 

ingested in a liquid state, even though the latter was supposed to coagulate in the stomach. The 528 

mechanisms behind these results were not clearly identified, which illustrates the difficulty of 529 

interpretation of results in a system with several contributory factors, such as matrix structure, gastric 530 

restructuring and emptying and enzyme accessibility. The mechanisms behind the results of these dairy 531 

structures were investigated by mathematical modelling, which accounted for the main digestive events 532 
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including gastric behaviours of coagulation and syneresis in the stomach (Le Feunteun, et al., 2014). It 533 

was shown that the gastric retention controlled by the physico-chemical properties of the matrix was 534 

the limiting step explaining the differences in the mini-pig data. Importantly, the gastric phase was 535 

determined to have the crucial, rate-limiting effect in explaining the kinetics of AA absorption observed 536 

in vivo. 537 

4.2. Effect of macrostructure on appetite 538 

Only a few studies have investigated the impact of the physical structure of dairy matrices in relation 539 

to appetite. Sanggaard, et al. (2004), did not find any difference in appetite sensation, measured by 540 

visual analogue scale, and insulin and glucose between yoghurt and whole milk in eight healthy men, 541 

despite the significant slower rate of GE observed after yoghurt consumption. However, the level of 542 

GIP was twice higher in yoghurt between 30 and 120 min but the measured gut hormones remained 543 

elevated for longer time after milk ingestion, in agreement with the postprandial lipid profile. The rapid 544 

first emptying of whey proteins and the subsequent slow emptying of the casein coagulum might 545 

counteract the effect of viscosity in the yoghurt with the more homogenous nutrient emptying and lead 546 

to similar appetite sensations. Dougkas, et al. (2012) studied the effect of three isocaloric dairy products 547 

(semi-skimmed milk, yoghurt and cheese) consumed as a snack on appetite and subsequent ab libitum 548 

lunch energy intake in overweight men. The yoghurt intake reduced the rating of hunger of 8 and 10% 549 

compared with cheese and milk, repectively, whereas they did not present any difference in the overall 550 

energy intake or the satiety hormones of ghrelin, PYY and insulin. Similarly, Mackie, et al. (2013) 551 

compared two isocaloric samples (same lipid, protein and carbohydrate content) with a different 552 

physical structure. The liquid sample was a milk protein-stabilised emulsion and the semi-solid sample 553 

was a mixture of grated cheese and yoghurt. The authors showed a different behaviour in the stomach 554 

using MRI; the semi-solid matrix presented sedimentation whereas liquid matrix presented creaming. 555 

The semi-solid sample promoted greater fullness over the three-hour study, which was linked to the 556 

volume of the gastric contents remaining by the slower GE rate over the first hour. However, the 557 

effective reduction of hunger of the semi-solid meal was not reflected in the plasma CCK level, which 558 

was lower over the first hour and then similar for both meals. This shows that the rationale of the satiety 559 
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biomarkers does not always guarantee high perceived satiety, since there is not a mathematical 560 

association (Veldhorst, et al., 2008). The understanding of the underlying mechanisms of the GE 561 

patterns would imply consecutive measurements of the chyme, which is difficult in humans. Mulet-562 

Cabero, et al. (2017) further investigated the same liquid and semi-solid samples using a semi-dynamic 563 

gastric model that could simulate the behaviour observed in the human stomach. The liquid system 564 

showed a delayed nutrient release, in particular lipid, due to the formation of the cream layer during 565 

gastric digestion. In contrast, the sedimentation in semi-solid system led to the early emptying of high 566 

nutrient content since lipid was prolonged entrrapped in the protein matrix. This caused a faster nutrient 567 

hydrolysis in the small intestine, which might enhance nutrient absorption. This shows that the 568 

evaluation of the nutrient delivery during gastric digestion could provide useful information to shed 569 

light on the in vivo observations. Therefore, the approach of combining the strengths of in vivo and in 570 

vitro models could provide more relevant data in order to understand the mechanisms linking food 571 

structure and physiological responses. 572 

Currently, there are no conclusive results of the impact of dairy products on appetite and energy intake, 573 

and research of the satiating power of solid versus liquid matrix remains inconsistent (Almiron‐Roig, 574 

et al., 2003). The potential for dairy products to help individuals control body weight needs further 575 

investigation, which should importantly include the study of the behaviour in the stomach. Also, the 576 

study of the rate of GE usually provides contradictory outcomes when compared to the rate of nutrient 577 

absorption; most of the labelled substrates used only reflect the behaviour of the liquid phase of the 578 

digesta so it is important to understand the structural changes of the whole food matrix within the 579 

stomach. 580 

4.3. Solid dairy foods with different textures 581 

4.3.1. Effect of viscosity and gel strength 582 

Protein gel texture induced by processing might affect disintegration kinetics during gastric digestion 583 

and subsequent AA bioavailability. Guo, et al. (2015) used the HGS to study the gastric disintegration 584 

between two whey protein emulsion gels, i.e. hard gel (69.9 N hardness) and soft gel (19.2 N hardness). 585 
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Prior to the gastric digestion simulation, the samples went through an oral phase simulating the bolus 586 

obtained in an in vivo study (Guo, et al., 2013). In the gastric phase, the soft gel disintegrated faster than 587 

the hard gel, suggesting that the main mechanism of disintegration for hard gel was abrasion whereas 588 

soft gel presented both abrasion and fragmentation during gastric digestion. The disintegration in the 589 

stomach was accelerated by the action of pepsin, in particular after 180 min of digestion for the soft gel. 590 

This could be attributed to the weakly crosslinked protein structure observed in the soft gel, compared 591 

to the intimately linked protein matrix of the hard gel, which could hamper pepsin accessibility. The 592 

behaviour of the gastric disintegration had a significant impact on the GE, which was related to the 593 

retention of solids in the HGS as a function of time. The GE was faster in soft gel after 180 min of 594 

digestion whereas the gastric content retention before 120 min in soft gel was higher, which was 595 

attributed to a larger particles size of the original bolus (Guo, et al., 2013). This shows the relevant 596 

importance of the oral phase in the process of gastric disintegration. The rate of GE between the matrices 597 

was almost the same at the end of gastric digestion (300 min) indicating that slower emptying of the 598 

soft gel at the beginning of digestion due to particle size of bolus was compensated by the more rapid 599 

disintegration due to easier hydrolysis by pepsin. 600 

Cheeses have different consistencies with different structures, which might affect the disintegration rate 601 

and release of nutrients. Tran Do and Kong (2018) used the HGS to study the gastric disintegration  of  602 

Cheddar, Mozzarella and Parmesan cheeses. Mozzarella cheese formed a more dense outer layer during 603 

the dynamic gastric digestion that led to a lower protein hydrolysis, compared to the other cheeses.  604 

A recent study using pigs investigated the effect of viscosity in yoghurt on GE by gama scintigraphy 605 

and protein digestion using the dynamic model DIDGI® (Ménard, et al., 2018). The low and high 606 

viscosity yoghurt with the same nutrient composition but different viscosity (2.2 versus 0.3 Pa·s) were 607 

compared a control yoghurt with lower protein and fiber content, and intermediate viscosity (1.3 Pa·s). 608 

The authors showed that the enrichment of protein and fibre slowed down GE whereas the viscosity 609 

seemed not to be a controlling parameter in emptying since low and high viscosity yoghurts presented 610 

no significant difference. However, since the control yoghurt differed in both nutrient composition and 611 

viscosity, it is not possible to draw any conclusive outcome. Moreover, the pepsin hydrolysis of whey 612 

https://www.sciencedirect.com/topics/food-science/protein-hydrolysis
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proteins was higher in the high viscosity yoghurt compared to the low viscosity sample, which was 613 

suggested by the authors to be due to the different behaviour observed when entering the small intestine. 614 

4.3.2. Effect on lipid digestion and physiological responses 615 

Examples of dairy products in which oil droplets are dispersed in a semi-solid/solid protein matrix are 616 

yoghurt and cheese. The influence of the protein matrix on the release of lipids might impact absorption 617 

and lipaemia, which can have potential effects on risk markers of cardiovascular diseases. Drouin-618 

Chartier, et al. (2017) compared the lipid absorption from hard and soft cheeses and butter, matched in 619 

total calories and macronutrient content. There were no differences in serum TAG, free fatty acid and 620 

apoB-48 in the incremental area under the curve over 8 hours. However, it seemed that the soft cheese 621 

induced greater increase in TAG concentration at 2 hours and attenuated the low dense lipoprotein of 622 

apoB-48 compared to the firm cheese. These results showed that the physical structure may not 623 

necessarily influence the overall magnitude of postprandial lipemia but more importantly the timing 624 

and magnitude of the TAG peak value. This could be related to the protein network and lipid droplet 625 

arrangement within the cheese matrix. The authors suggested that the homogenised lipid droplets in soft 626 

cheese are enclosed in a loose protein gel, which causes easier access for both pepsin and gastric lipase 627 

in the stomach. Moreover, the lipid droplets were smaller, giving the food an overall larger surface area, 628 

which might facilitate lipolysis. Interestingly, they did not find any differences between hard cheese 629 

and butter. This could be attributed to a limited availability of the nutrients; hard cheese could take 630 

longer to be disintegrated in the stomach and the formation of layering could be possible in the case of 631 

butter delaying the delivery of lipid. Similar results were obtained in a study comparing milk, butter 632 

and mozzarella-cheese (Clemente, et al., 2003). There was no significant difference in the average of 633 

postprandial plasma TAG but in the peak time (315, 277 and 225 min for butter, mozzarella and milk 634 

respectively). This contrasts with the GE rate, using ultrasonographic measurements of the antrum-635 

pylorus section, in which mozzarella cheese presented a faster emptying compared to milk and butter. 636 

This study showed that GE might not play a critical role in modulating postprandial lipids in blood, 637 

using this specific methodology. However, it should also be noted that the study was performed with 638 

type 2 diabetic patients, which could modify the outcome when compared with healthy subjects. It is 639 
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important to note that lipemia can be affected by other factors such as fatty acid composition (degree of 640 

saturation and length of fatty acid chain) and the properties of the lipid droplet interface. 641 

There are some studies suggesting that the consumption of fat in cheese form has different effect on 642 

blood lipids by reducing low density lipoprotein cholesterol, when compared to the same amount of fat 643 

consumed in butter form (Hjerpsted, et al., 2011; Tholstrup, et al., 2004). Indeed, Feeney, et al. (2018) 644 

showed that dairy fat in form of cheese lower the total cholesterol levels compared with that of equal 645 

amount of fat, casein and calcium content in different matrices, suggesting the synergistic effect of the 646 

constituents in the cheese matrix. The role of calcium in the fat absorption has been seen one important 647 

factor controlling the metabolic responses observed (Thorning, et al., 2016) but this has to be proven in 648 

humans and, in general, more research is needed to understand the role of the food matrix on gastric 649 

digestion and lipaemia, and metabolic effects, which should be in the context of the lipid/protein 650 

organisation and interaction and their behaviour in the gastric compartment. 651 

4.4. Conclusions 652 

This section illustrated that dairy products with different physical structures can affect the rates of 653 

nutrient hydrolysis as well as absorption, which is mainly driven by the physico-chemical effect of the 654 

structure on gastric digestion. It seems that solid and semi-solid dairy structures have slower digestion 655 

than liquid meals. However, the restructuring of liquid meals in the stomach through, for instance 656 

coagulation and phase separation, should also be considered. Moreover, factors of the initial food matrix 657 

such as hardness, viscosity and pH are also relevant for the breakdown of the food, and how these 658 

properties evolve within the GI tract are crucial in nutrient digestion. For instance, studying the 659 

rheological properties of the chyme during gastric digestion could provide valuable information about 660 

the effect on gastric digestion time. Protein digestion is usually overlooked when assessing lipid 661 

digestion in complex matrices. However, research has shown that disintegration of a protein matrix in 662 

the stomach is crucial for lipid accessibility and subsequent digestion. This is important not only for the 663 

initial design of structures but also the structures that can be formed within the gastric compartment. It 664 

has been evident from the literature that there is a complex relationship between structuring in the 665 

stomach, the content and rate of nutrients emptied from the stomach and the rate of nutrient absorption. 666 
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This could be due to the methodology used for measuring GE and also the characterisation of the food 667 

matrix. It is difficult to assess both absorption of nutrients and bioaccessibility in relation to gastric 668 

behaviour. For that, using both in vivo and relevant in vitro gastric digestion systems could be an 669 

interesting approach to gain more insight into the mechanisms of nutrient digestion. There is currently 670 

no evidence of how the different physical dairy structures can influence nitrogen metabolism, and also, 671 

more research on satiety responses is needed. Moreover, some research in cheese (Fang, et al., 2016; 672 

Lamothe, et al., 2012) has shown that lipid digestion rates can depend on the hardness, cohesiveness 673 

and elasticity of the cheese type, which constitutes an important factor in gastric disintegration. 674 

However, these studies applied an in vitro static model for digestion and there are no clinical studies 675 

showing this influence. 676 

5. General conclusions and perspectives 677 

Dairy structures impact nutrient digestion and physiological responses. This impact has been shown at 678 

different length scales, from molecular level of the individual milk proteins to physical macrostructure 679 

of, for instance, cheese. There are several physiological responses associated with dairy structures but 680 

little is known about the mechanisms behind them. Some research has suggested that the gastric phase 681 

is the critical step explaining the outcomes observed. However, the gastric phase has been mostly 682 

overlooked and few studies have shown direct evidence. The research shown in the present review 683 

highlights the importance of the interactions between the dairy products and the gastrointestinal tract, 684 

in which the stomach was shown to play a key role. The conditions of the gastric phase drive the 685 

restructuring of the initial matrix, which will govern the flow of the digesta and, consequently, nutrient 686 

digestion kinetics. It has been shown that there is a gap in the literature about the structural changes and 687 

nutrient emptying kinetics of dairy products of dairy matrices that will allow us to understand the 688 

postprandial responses. In general, more research is needed to understand the behaviour of foods inside 689 

the stomach, and potentially control it. This will provide the means for regulating nutrients digestion 690 

and metabolism kinetics. 691 

The control of emptying kinetics from the stomach should be targeted by engineering specific gastric 692 

behaviour. In this vein, several approaches can be used to design specific structures, having particular 693 
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physico-chemical properties, to induce certain behaviour in the gastric environment. For instance, 694 

modulation of rheological properties of viscosity or hardness since they are key in gastric emptying. 695 

This could be achieved by designing gels with physical properties or induce gelation with different 696 

consistencies in the gastric environment or droplet interfacial properties that could induce specific 697 

intragastric behaviour such as creaming. 698 

Future foods may be structured in such a way to have specific gastric digestion profiles that may allow 699 

the development of mainstream foods with particular physiological properties targeted to specific 700 

population needs such as the elderly, athletes and those at risk of metabolic disorders such as type 2 701 

diabetes. 702 
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 1038 

Table 1. Influence of dairy matrices at the different length scales on the bioaccessibility, 1039 

bioavailability of nutrients, and physiological responses.a 1040 

 Molecular Level 
(Caseins vs whey 

proteins) 

Microstructure 
(Matrix reorganisation 
due to processing, i.e. 

heat treatment and 
homogenisation) 

Macrostructure 
(Different rheological 

properties: liquid, semi-
solid and solid 

consistencies, i.e. 
yoghurt, cream, butter 

and cheese). 
Bioaccessibility 

(Nutrient 
digestion) 

In vitro: 
Caseins were more 
easily digested 
than whey proteins 
during the static 
gastric digestion. 
The digestibility of 

In vitro:  
- Harsh thermal 
treatment of milk 
formed loose and 
particulate coagula in 
contrast to the dense, 
solid structure of 

In vitro: 
- Dairy protein gel 
texture induced by 
processing affected 
disintegration kinetics 
during gastric digestion. 



36 
 

the latter increased 
by the partial 
unfolding of the 
whey proteins. 
 

In vivo:  
- Rapid apperance 
of mostly intact 
protein form in 
jejunum after β-Lg 
digestion whereas 
caseins were more 
slowly recovered in 
a more degraded 
form.  

unheated milk. - The 
gastric behaviour also 
impacted the 
emptying kinetics of 
both lipid and protein; 
The gastric emptying 
of caseins from raw 
and pasteurised milk 
was delayed whereas 
caseins were mostly 
emptied in hydrolysed 
form in UHT-treated 
milk.  
- Homogenised milks 
showed creaming in 
the gastric phase and 
seemed to release 
more lipid at the end 
of the gastric 
digestion. 
- Droplet interactions 
with protein matrix 
could play a crucial 
role in lipolysis. 
 

In vivo: 
- Drastic heat 
treatment softened 
casein coagula and 
increased gastric 
emptying in pigs. 
  

Soft gels disintegrated 
faster than hard gels. 
- Solid and semi-solid 
dairy structures had 
slower digestion than 
liquid meals. However, 
the restructuring of 
liquid meals in the 
stomach 
throughcoagulation and 
phase separation, 
should also be 
considered.  
- In cheese,  lipid 
digestion rates can 
depend on the 
hardness, cohesiveness 
and elasticity of the 
cheese type. 
 

In vivo:  
Caseins in yoghurt  
were emptied 
constantly from the 
stomach in both intact 
and degraded forms in 
contrast to the longer 
retention in the stomach 
for caseins in milk. 

Bioavailablity 
(Nutrient 

Absorption) 

In vivo:  
- According to 
plasma AA 
appearance, whey 
proteins and 
caseins are 
considered as ‘fast’ 
and ‘slow’ digested 
proteins 
respectively. 
  

- Only drastic 
temperatures seem to 
have significant 
effects on protein 
bioavailability as 
reported by the 
increase of nitrogen 
availability and 
utilisation in the body 
in humans following 
UHT treatment. 
 

-Gel matrix ingestion 
induced significantly 
lower and prolonged 
AAs levels in plasma 
compared to liquid 
structures  
- Soft cheese induced 
greater increase in TAG 
concentration compared 
to firm cheese. 

Physiological 
Responses 

- Caseins 
consumption 
inhibited whole 
protein breakdown 
but only a slight 
increase in whole 
protein synthesis 
compared to whey 
proteins.  

- Smaller emulsion 
droplets in  liquid 
drinks resulted in a 
significant reduction in 
food intake. 
 

- Yoghurt intake 
reduced the rating of 
hunger compared with 
cheese and milk. 
- Semi-solid meal 
promoted greater 
fullness compared to a 
liquid meal which was 
related to the behaviour 
in the stomachof 



37 
 

- Whey proteins 
stimulated muscle 
protein synthesis. 
- Whey proteins 
seemed to have a 
greater satiety 
promoting power in 
the short term in 
contrast to the 
long-term effect 
shown by the slow 
protein digestion of 
caseins. 

sedimentation and 
creaming, respectively.  

 1041 

a Conclusions based on data from the literature presented in this review. 1042 

 1043 

 1044 

 1045 

Figure 1. Structural elements and relevant length scales of milk, as an example of the concept 1046 

of food matrix, i.e. the arrangement and interactions of structural elements at multiscales. 1047 

Electron micrographs of an individual casein micelle and milk fat globule are from Dalgleish et 1048 

al. (2004) and Luo et al. (2014), respectively.  1049 

 1050 
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 1051 

Figure 2. Schematic representation of the approach showing the role of gastric digestion in 1052 

controlling nutrient delivery and absorption by the restructuring of food in the gastric 1053 

conditions. This might, subsequently, exert different physiological responses that can be 1054 

helpful to specific population groups. Images of the stomach by magnetic resonance imaging 1055 

of are from Mackie et al. (2013). 1056 
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 1061 

 1062 
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 1063 

Figure 3. Schematic representation of the possible mechanism for the coagulation of casein 1064 

micelles in the stomach. (A) Caseins are assembled in micelles, with -casein on the surface 1065 

providing steric and electrostatic stability. (B) During gastric digestion, pepsin is secreted 1066 

and there is a gradual decrease of pH due to gradual acid secretion and emptying. Pepsin 1067 

cleaves the Phe105-Met106 bond, which separates para--casein from 1068 

caseinomacropeptide. (C) These gastric conditions destabilise the casein micelles leading to 1069 

coagulation. 1070 


