
This is a repository copy of Brief announcement: On strong observational refinement and 
forward simulation.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/180756/

Version: Published Version

Proceedings Paper:
Derrick, J., Doherty, S., Dongol, B. et al. (2 more authors) (2021) Brief announcement: On 
strong observational refinement and forward simulation. In: 35th International Symposium 
on Distributed Computing (DISC 2021). 35th International Symposium on Distributed 
Computing (DISC 2021), 04-08 Oct 2021, Freiburg, Germany. Leibniz International 
Proceedings in Informatics (LIPIcs), 209 . Schloss Dagstuhl , 55:1-55:4. ISBN 
9783959772105 

https://doi.org/10.4230/LIPIcs.DISC.2021.55

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 
This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence 
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the 
authors for the original work. More information and the full terms of the licence here: 
https://creativecommons.org/licenses/ 

Takedown 
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



Brief Announcement: On Strong Observational

Refinement and Forward Simulation

John Derrick #

University of Sheffield, UK

Simon Doherty #

University of Sheffield, UK

Brijesh Dongol #

University of Surrey, UK

Gerhard Schellhorn #

Universität Augsburg, Germany

Heike Wehrheim #

Universität Oldenburg, Germany

Abstract

Hyperproperties are correctness conditions for labelled transition systems that are more expressive

than traditional trace properties, with particular relevance to security. Recently, Attiya and Enea

studied a notion of strong observational refinement that preserves all hyperproperties. They analyse

the correspondence between forward simulation and strong observational refinement in a setting

with finite traces only. We study this correspondence in a setting with both finite and infinite traces.

In particular, we show that forward simulation does not preserve hyperliveness properties in this

setting. We extend the forward simulation proof obligation with a progress condition, and prove

that this progressive forward simulation does imply strong observational refinement.

2012 ACM Subject Classification Security and privacy → Formal methods and theory of security;

Computing methodologies → Concurrent computing methodologies

Keywords and phrases Strong Observational Refinement, Hyperproperties, Forward Simulation

Digital Object Identifier 10.4230/LIPIcs.DISC.2021.55

Related Version Full Version: https://arxiv.org/abs/2107.14509

Funding John Derrick: EPSRC Grant EP/R032351/1.

Brijesh Dongol: EPSRC grants EP/V038915/1, EP/R032556/1, EP/R025134/2 and VeTSS.

Heike Wehrheim: DFG Grant SFB 901.

1 Introduction

Hyperproperties [2] form a large class of properties over sets of sets of traces, characterising,

in particular, security properties such as generalised non-interference that are not expressible

over a single trace. Like with trace properties, every hyperproperty can be characterised as

the conjunction of a hypersafety and hyperliveness property.

Recently, Attiya and Enea proposed strong observational refinement, a correctness condi-

tion that preserves all hyperproperties, even in the presence of an adversarial scheduler. An

object O1 strongly observationally refines an object O2 if the executions of any program P

using O1 as scheduled by some admissible deterministic scheduler cannot be observationally

distinguished from those of P using O2 under another deterministic scheduler. They showed

that strong observational refinement preserves all hyperproperties. Furthermore, they prove

that forward simulation implies strong observational refinement. Forward simulation alone is

sound but not complete for ordinary refinement, and in general both backward and forward

© John Derrick, Simon Doherty, Brijesh Dongol, Gerhard Schellhorn, and Heike Wehrheim;
licensed under Creative Commons License CC-BY 4.0

35th International Symposium on Distributed Computing (DISC 2021).
Editor: Seth Gilbert; Article No. 55; pp. 55:1–55:4

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:j.derrick@sheffield.ac.uk
https://orcid.org/0000-0002-6631-8914
mailto:s.doherty@sheffield.ac.uk
mailto:b.dongol@surrey.ac.uk
https://orcid.org/0000-0003-0446-3507
mailto:schellhorn@informatik.uni-augsburg.de
mailto:heike.wehrheim@uni-oldenburg.de
https://orcid.org/0000-0002-2385-7512
https://doi.org/10.4230/LIPIcs.DISC.2021.55
https://arxiv.org/abs/2107.14509
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


55:2 Brief Announcement: On Strong Observational Refinement and Forward Simulation

simulation are required. Forward simulation is furthermore known to not preserve liveness

properties, which motivates our study of forward simulation and observational refinement in

the context of infinite traces and hyperliveness.

As a result we show – by example – that forward simulation does not preserve hyperliveness.

Furthermore, forward simulation alone cannot guarantee strong observational refinement

when requiring admissiblity of schedulers, i.e., when schedulers are required to continually

schedule enabled actions. To address these limitations, we employ a version of forward

simulation extended with a progress condition, thereby guaranteeing strong observational

refinement and preservation of hyperliveness.

2 Motivating Example

int* current_val initially 0
int fetch_and_add (int k):
F1. do n = LL(& current_val )
F2. while (!SC(& current_val , n + k))
F3. return n

Figure 1 A fetch-and-add with a nonterminating schedule when LL and SC are implemented using

the algorithm of [4].

We give an example of an abstract atomic object O2 and a non-atomic implementation

O1 such that there is a forward simulation from O1 to O2, but hyperliveness properties are

not preserved for all schedules. As the atomic abstract object O2 we choose a fetch-and-add

object with just one operation, fetch_and_add(int k), which adds the value integer k to a

shared integer variable and returns the value of that variable before the addition. Let P be

a program with two threads t1 and t2, each of which executes one fetch_and_add operation

and assigns the return value to a local variable of the thread. For any scheduler S, the

variable assignment of both threads will eventually occur. This “eventually” property can be

expressed as a hyperproperty.

Now, consider the fetch-and-add implementation presented in Figure 1. This implement-

ation uses the load-linked/store-conditional (LL/SC) instruction pair. The LL(ptr)

operation loads the value at the location pointed to by the pointer ptr. The SC(ptr,v)

conditionally stores the value v at the location pointed to by ptr if the location has not

been modified by another SC since the executing thread’s most recent LL(ptr) operation. If

the update actually occurs, SC returns true, otherwise the location is not modified and SC

returns false. In the first case, we say that the SC succeeds. Otherwise, we say that it fails.

Critically, we stipulate that the LL and SC operations are implemented using the algorithm

of [4]. This algorithm has the following property. If thread t1 executes an LL operation, and

then thread t2 executes an LL operation before t1 has executed its subsequent SC operation,

then that SC is guaranteed to fail. This happens even though there is no intervening

modification of the location.

Now, let O1 be a labelled transition system (LTS) representing a multithreaded version

of this fetch_and_add implementation, using the specified LL/SC algorithm. Consider

furthermore the program P (above) running against the object O1. A scheduler can continually

alternate the LL at line F2 of t1 and that of t2, such that neither fetch_and_add operation

ever completes. Therefore, unlike when using the O2 object, the variable assignments of P

will never occur, so the O1 system does not satisfy the hyperproperty for all schedulers.



J. Derrick, S. Doherty, B. Dongol, G. Schellhorn, and H. Wehrheim 55:3

There is, however, a forward simulation from O1 to O2. The underlying LL/SC imple-

mentation can be proven correct by means of forward simulation, as can the fetch_and_add

implementation. Therefore, standard forward simulation is insufficient to show that all

hyperproperties are preserved, contradicting Lemma 5.2 of [1].

3 Progressive Forward Simulation implies Strong Observ. Refinement

We will use the notation of Attiya and Enea [1], in particular that of an LTS A = (Q, Σ, s0, δ)

and of a (deterministic, admissible) scheduler S : Σ∗ → 2Σ (full definitions can also be

found in [3]). The main change we make is that the traces in trace sets T (A) and T (A, S)

(S-scheduled traces) now include finite and infinite sequences1. A scheduler is admitted by an

LTS A if for all finite traces σ of A consistent with S, the scheduler satisfies (i) S(σ) is non-

empty and (ii) all actions in S(σ) are enabled in state(σ). Besides being admissible, schedulers

for programs P and objects O (LTSs of the form P × O) also have to be deterministic:

they must resolve the nondeterminism on the actions of the object. An object O1 strongly

observationally refines the object O2, written O1 ≤S O2, iff for every deterministic scheduler

S1 admitted by P × O1 there exists a deterministic scheduler S2 admitted by P × O2 such

that T (P × O1, S1)♣ΣP = T (P × O2, S2)♣ΣP for all programs P .

Contrary to the claim in [1], standard forward simulation does not imply strong ob-

servational refinement (details in [3]). In the example given in Section 2, a deterministic

admissible scheduler S1 for P and O1 could drive P × O1’s execution along the infinite trace

of LL and SC operations, so that calls to fetch_and_add never return. On the other hand,

any scheduler for the O2 system must eventually execute call and return actions for both

fetch_and_add operations, and subsequently execute the writes to the program variables.

Thus, T (P × O1, S1)♣ΣP ≠ T (P × O2, S2)♣ΣP . To guarantee strong observational refinement,

forward simulation additionally has to guarantee some sort of progress, so that the scheduler

S2 is always able to schedule some action without producing a trace not present in P × O1

under S1. This guarantee can be made if we disallow infinite stuttering.

▶ Definition 1 (Progressive Forward Simulation). Let Ai = (Qi, Σi, si
0, δi), i = 1, 2, be two

LTSs and Γ an alphabet. A relation F ⊆ Q1 × Q2 together with a well-founded order

≪ ⊆ Q1 × Q1 is called a progressive Γ-forward simulation from A1 to A2 iff

(s1
0, s2

0) ∈ F , and

for all (s1, s2) ∈ F , if (s1, a, s′

1) ∈ δ1 and a ∈ Σ1, then there exist α ∈ Σ∗

2 and s′

2 ∈ Q2

such that a ♣ Γ = α ♣ Γ, (s2, α, s′

2) ∈ δ2 and (s′

1, s′

2) ∈ F . Whenever α = ε then s′

1 ≪ s1.

The definition requires that the concrete state decreases in the well-founded order when

the abstract sequence α in the forward simulation is empty and s2 = s′

2 (stuttering).

Progressiveness prohibits an infinite sequence of concrete internal steps that map to the

empty abstract sequence. For object O1 above with the fetch_and_add implementation no

such well-founded ordering can be given. We have (full proof in [3]):

▶ Theorem 2. If there exists a progressive (C ∪ R)-forward simulation from O1 to O2, then

O1 ≤S O2.

1 The work of [1] just considers finite traces. However, they still assume schedulers to always be able to
schedule a next action which seems to contradict the fact that all traces are finite.

DISC 2021



55:4 Brief Announcement: On Strong Observational Refinement and Forward Simulation

4 Conclusion

In this paper, we have reported on our findings that forward simulation does not imply

strong observational refinement in a setting with infinite traces. We have proposed a notion

of progressive forward simulation implying strong observational refinement. In future work,

we will investigate whether the reverse direction also holds.

References

1 H. Attiya and C. Enea. Putting strong linearizability in context: Preserving hyperproperties

in programs that use concurrent objects. In J. Suomela, editor, DISC, volume 146 of LIPIcs,

pages 2:1–2:17. Schloss Dagstuhl, 2019. doi:10.4230/LIPIcs.DISC.2019.2.

2 M. R. Clarkson and F. B. Schneider. Hyperproperties. J. Comput. Secur., 18(6):1157–1210,

2010. doi:10.3233/JCS-2009-0393.

3 J. Derrick, S. Doherty, B. Dongol, G. Schellhorn, and H. Wehrheim. On strong observational

refinement and forward simulation, 2021. arXiv:2107.14509.

4 V. Luchangco, M. Moir, and N. Shavit. Nonblocking k-compare-single-swap. In SPAA, pages

314–323. ACM, 2003. doi:10.1145/777412.777468.

https://doi.org/10.4230/LIPIcs.DISC.2019.2
https://doi.org/10.3233/JCS-2009-0393
http://arxiv.org/abs/2107.14509
https://doi.org/10.1145/777412.777468

	1 Introduction
	2 Motivating Example
	3 Progressive Forward Simulation implies Strong Observ. Refinement
	4 Conclusion

