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ABSTRACT 6 

The terrestrial sedimentary record provides a valuable archive of how ancient depositional systems 7 

respond to and record changes in the Earth’s atmosphere, biosphere and geosphere. However, the 8 

record of these environmental changes in eolian sedimentary successions is poorly constrained and 9 

largely unquantified. This study presents the first global-scale, quantitative investigation of the 10 

architecture of eolian systems through geological time via analysis of 55 case studies of eolian 11 

successions. Eolian deposits accumulating 1) under greenhouse conditions, 2) in the presence of 12 

vascular plants and grasses, and 3) in rapidly subsiding basins, associated with the rifting of 13 

supercontinents, are represented by significantly thicker eolian dune-set, sandsheet and interdune 14 

architectural elements. Pre-vegetation eolian systems are also associated with more frequent 15 

interactions with non-eolian environments. The interplay of these forcings has resulted in dune-set 16 

thicknesses that tend to be smallest and largest in Proterozoic and Mesozoic successions, respectively. 17 

In the Proterozoic, the absence of sediment-binding plant roots rendered eolian deposits susceptible to 18 

post-depositional wind deflation and reworking by fluvial systems, whereby highly mobile channels 19 

reworked contiguous eolian deposits. During the Mesozoic, humid greenhouse conditions (associated 20 

with relatively elevated water-tables) and high rates of basin subsidence (associated with the break-up 21 

of Pangea) favored the rapid transfer of eolian sediment beneath the erosional baseline. The  common 22 

presence of vegetation promoted accumulation of stabilizing eolian systems. These factors acted to 23 

limit post-depositional reworking. Eolian sedimentary deposits record a fingerprint of major 24 



environmental changes in Earth history: climate, continental configuration, tectonics, and land-plant 25 

evolution. 26 

INTRODUCTION 27 

Eolian sedimentary systems are sensitive to environmental forcings, notably climate (Clemmensen et 28 

al., 1994; Cosgrove et al., 2021a), tectonic configuration (Blakey et al., 1988), basin subsidence 29 

(Kocurek and Havholm, 1993; Howell and Mountney, 1997; Cosgrove et al., 2021c), and the presence 30 

and type of vegetation (Gibling and Davies, 2012; Santos et al., 2017, 2019). The preserved eolian 31 

sedimentary record archives the response of eolian systems to changing environmental forcings 32 

through geological time. However, despite a global sedimentary record, comparisons between eolian 33 

systems developed under different environmental conditions are not straightforward: many 34 

depositional models are qualitative and commonly derived from individual case studies (e.g. Kocurek 35 

and Dott, 1981; Mountney and Jagger, 2004; Rodríguez-López et al., 2014). 36 

Here, we undertake the first comprehensive comparison of the preserved architectures of eolian 37 

systems accumulated and preserved through geological time. We consider 1) the thickness of eolian 38 

architectural elements, 2) the relative proportion of different types of eolian elements, and 3) the 39 

relationships of eolian strata with contiguous non-eolian deposits. The aim is to quantify variations in 40 

eolian architectures at multiple scales of observation through geological time, and to interpret these 41 

changes in terms of potential controls. Specific research objectives are 1) to determine which 42 

environmental forcings markedly influence eolian architecture, and 2) to determine how these 43 

forcings have acted and interacted though geological time. 44 

DATA AND METHODS 45 

This study utilizes the Database of Aeolian Sedimentary Architecture (DASA; Cosgrove et al., 2021a, 46 

b, & c), which stores data on eolian and interdigitated non-eolian geological entities. Data considered 47 

here are collated from 58 published accounts associated with 55 eolian successions. A location map of 48 

all case studies and an account of the source literature is provided in Supplementary Information 1 49 



and 2, respectively. Each case study is associated with data on its geological background, derived 50 

from the wider literature, and including geological age, tectonic setting, prevailing climate conditions, 51 

and basin subsidence rates (gathered from total-subsidence curves available in the wider literature; see 52 

Cosgrove et al. 2021c). 53 

Primary data have been extracted from published accounts, such as sedimentary logs or outcrop 54 

panels. Herein, architectural elements are considered in detail, and defined as distinct sedimentary 55 

bodies that are the product of deposition in a specific sub-environment. Definitions of architectural-56 

element types mentioned in the text are given in Supplementary Information 3. Architectural elements 57 

are classified on interpreted origin (e.g., dune, interdune, sandsheet); their maximum observed 58 

thickness is recorded. The proportions of architectural elements in successions, or parts thereof, is 59 

considered as fractions of total recorded thicknesses. 60 

To enable comparisons between eolian systems developed under different environmental conditions, 61 

case studies and data extracted therefrom are grouped according to 1) prevailing climatic conditions 62 

(icehouse versus greenhouse), 2) supercontinental setting, 3) the presence or absence of land plants 63 

and grasses, and 4) rates of basin subsidence. In addition, data are grouped according to geological 64 

age (Proterozoic, Paleozoic, Mesozoic and Cenozoic), to determine the importance of environmental 65 

forcings through time. 66 

Statistical analysis has been undertaken on element thickness data. Two-tailed t-tests and Independent 67 

Group ANOVA have been used to compare mean thicknesses across eolian systems. An α value of 68 

0.05 is considered for all statistical analyses. 69 

RESULTS 70 

In the text, for brevity, mean thicknesses are reported; for values of median, standard deviation and 71 

number of observations, refer to Table 1. All data shown in the figures are reported in Supplementary 72 

Information 4. 73 

Environmental Forcings 74 



Through geological time, the Earth’s climate has fluctuated between two end-member climatic 75 

conditions: icehouse and greenhouse, respectively defined by the presence or absence of major 76 

continental ice-sheets and polar ice (Frakes et al., 1992). Data are grouped according to the prevailing 77 

climatic conditions at the time of eolian accumulation (Fig.1A). When all eolian elements are 78 

considered, their mean thicknesses are 2.7 m and 4.1 m for icehouse and greenhouse successions, 79 

respectively. Greenhouse eolian elements are significantly thicker than their icehouse counterparts 80 

(P<0.01; Table 1). 81 

Continental masses have undergone cycles of supercontinent assembly and subsequent break-up 82 

through geological time (Condie, 2016). Data are grouped according to supercontinental settings (Fig. 83 

1B). Mean thicknesses of eolian elements are 1.9 m, 1.5 m, 2.8 m, 7.4 m, and 2.8 m for 1) Proterozoic 84 

Rodinia and Pannotia, 2) Gondwana, 3) Pangea, 4) Laurasia and Gondwanaland, and 5) dispersed 85 

continental settings, respectively. There is a significant difference amongst groups (P<0.01; Table 1). 86 

The thickest eolian elements are associated with the supercontinents Laurasia and Gondwana (175 – 87 

65 Ma, following the break-up of Pangea). 88 

Rates of basin subsidence are grouped into slow (1-10 m/Myr), moderate (10-100 m/Myr), and rapid 89 

(>100 m/Myr) rates (Fig. 1D). When all eolian elements are considered, mean thicknesses are 2.0 m, 90 

3.4 m, and 8.7 m in slowly, moderately, and rapidly subsiding basins, respectively. Mean differences 91 

across groups are statistically significant (P<0.01; Table 1). 92 

Vascular land plants and grasses evolved at ca. 420 and ca. 66 Ma, respectively (Boyce and Lee, 93 

2017). Data are therefore grouped into bins of 2400 – 420 Ma (eolian accumulation prior to the 94 

widespread evolution of vascular land plants), 420 – 66 Ma (accumulation in the presence of vascular 95 

land plants), and 420 – 0 Ma (accumulation in the presence of vascular land plants and grasses; Fig. 96 

1C). When all eolian elements are considered, mean thicknesses are 2.3 m, 4.5 m, and 4.3 m, for 97 

eolian systems deposited in ranges of 2400 – 420 Ma, 420 – 66 Ma, 420 – 0 Ma, respectively. A 98 

significant difference amongst groups is present (P<0.01; Table 1). Eolian elements developed in the 99 



absence of vascular land plants are significantly thinner than those developed under the presence of 100 

vascular land plants. 101 

Geological Age 102 

Eolian systems are grouped as deposits of Proterozoic (2400-541 Ma), Paleozoic (451-252 Ma), 103 

Mesozoic (252-66 Ma), and Cenozoic (<66 Ma) age (Fig. 2A). When all eolian elements are 104 

considered, mean thicknesses are 2.2 m, 2.2 m, 6.7 m, and 2.8 m in these age groups, respectively. 105 

There is a significant difference in the mean thicknesses of dune-sets, sandsheets and interdunes (P 106 

<0.01), across age groups (Table 1). 107 

Ratios of eolian to non-eolian elements as a fraction of the stratigraphy are 61:39, 73:27, 72:28, and 108 

79:21 in the Proterozoic, Paleozoic, Mesozoic and Cenozoic, respectively. Dune-sets form 46%, 86%, 109 

81% and 89%, sandsheets form 49%, 7%, 4%, and 4%, interdunes form 5%, 7%, 15%, and 7% of the 110 

total recorded aeolian stratigraphy, in the Proterozoic, Paleozoic, Mesozoic and Cenozoic, 111 

respectively. Dune-sets have mean thicknesses of 1.9 m, 3.0 m, 7.8 m, and 5.8 m, sandsheets have 112 

mean thicknesses of 3.6 m, 1.0 m, 3.6 m, and 0.4 m, interdunes have mean thicknesses of 0.8m,  0.7 113 

m, 2.5 m, and 0.8 m in the Proterozoic, Paleozoic, Mesozoic, and Cenozoic, respectively. The non-114 

eolian lithology is dominantly marine (52%) and fluvial (39%) in the Proterozoic; fluvial (62%) and 115 

alluvial (15%) in the Paleozoic; fluvial (67%) and sabkha (14%) in the Mesozoic; and fluvial (42%) 116 

and marine (32%) in the Cenozoic. 117 

Environmental Controls through Geological Time 118 

Environmental controls, for example, the assembly and break-up of supercontinents, or prevailing 119 

icehouse and greenhouse conditions, can span only parts of a geological era, or multiple geological 120 

eras. As such, for each era, the percentage of recorded architectural elements deposited under given 121 

environmental conditions are presented (Fig. 3A). 122 

DISCUSSION 123 



Climate 124 

Greenhouse eolian elements are significantly thinner than their icehouse counterparts (Table 1; Fig. 125 

1A). Under icehouse conditions, eolian systems are subject to episodes of glacial accumulation and 126 

interglacial deflation, which are driven by Milankovitch-type cyclicity (Milankovitch, 1941). During 127 

glacials, drier conditions are associated with strengthened Trade Winds and depressed water-tables: 128 

eolian deposits are therefore more likely to be exposed above the baseline of erosion for extended 129 

periods, and are thus prone to deflation and reworking (Kocurek and Havholm, 1993; Cosgrove et al., 130 

2021a). Conversely, under greenhouse conditions high eustatic sea levels and relatively more humid 131 

conditions generally promote elevated water tables situated close to the accumulation surface, 132 

allowing eolian elements to be rapidly sequestered beneath the erosional baseline and protected from 133 

post-depositional reworking (Kocurek et al., 2001). Uniquely in the Mesozoic, eolian accumulation 134 

occurred exclusively under greenhouse conditions, which may partly account for the preservation of 135 

significantly thicker eolian elements. The roles of humid greenhouse conditions can be inferred by the 136 

high percentage of sabkha elements, which is greater than in other eras (Fig. 2B). 137 

In the Cenozoic, despite the majority of eolian elements being deposited under icehouse conditions – 138 

associated with thinner eolian elements – average dune-set thickness is the second thickest in 139 

geological history (Figs. 2A, 3A). Many relatively thick Cenozoic dune-sets are an artefact of 140 

preservational biases in that they are not yet truly preserved in a long-term sense as they lie above the 141 

level of a long-term erosional baseline: they are accumulated but not yet preserved (sensu Kocurek 142 

and Havholm, 1993). However, comparisons between Quaternary (<2.6 Ma) and earlier Cenozoic 143 

deposits suggest a more complicated relationship: Quaternary deposits are significantly (P=<0.01) 144 

thinner than their Paleogene (ca. 66-23 Ma) and Neogene (ca. 23-2.6 Ma) counterparts (Table 1). The 145 

relative thickness of Cenozoic dune-sets might be due to the evolution of stabilizing grasses at ~66 146 

Ma, which limit the capacity for eolian deflation (see below). 147 

Vegetation 148 



Eolian elements deposited in the presence of vascular land plants and grasses are significantly thicker 149 

than those that were deposited in their absence (Fig. 1C; Table 1). In the absence of vegetation, 150 

substrates lack sediment-binding plant roots; this tends to result in the increased mobility of fluvial 151 

channels, which can more easily wander across eolian landscapes and rework eolian sediments 152 

(Davies et al., 2011; Santos et al., 2017, 2019; Basilici et al., 2021a). The absence of vascular land 153 

plants in the Proterozoic and early Paleozoic (Boyce and Lee, 2017; Fig. 3A) may, in part, account for 154 

the preservation of relatively thin eolian dune-sets, and relatively high percentages of sandsheets 155 

during these time periods. Sandsheets can represent the erosional remnants of landforms of originally 156 

higher relief; their occurrence can represent the reworking of dune bedforms by fluvial processes 157 

(Nielsen and Kocurek, 1986). The highest recorded percentage of interdigitating non-eolian elements 158 

in Proterozoic successions can be interpreted in these terms (Fig. 2B). 159 

The radiation of grasses at 66 Ma has likely further limited the mobility of Cenozoic river systems 160 

(Davies-Colley, 1997; Fig. 3). Moreover, grasses play a crucial role in dune construction and 161 

stabilization, by disrupting primary airflows in the near-surface layer, decelerating winds and causing 162 

the fall-out of airborne sand (Nielsen and Kocurek, 1986; Jackson et al., 2019). After sediment 163 

deposition, grasses can effectively trap eolian sediment, inhibiting re-suspension and erosion (Byrne 164 

and McCann, 1990; Ruz and Allard, 1994). Grasses can inhibit the deflation of dune-sets, and a 165 

record of this can be interpreted in the low percentage of sandsheets in Cenozoic eolian stratigraphies; 166 

the stabilizing effects of grasses act to markedly retard eolian winnowing, thereby reducing the supply 167 

of sediment suitable for sandsheet accumulation (Nielsen and Kocurek, 1986). 168 

Basin Subsidence and Supercontinental Setting 169 

Long-term eolian preservation requires the generation of accommodation in which deposits can 170 

accumulate - most obviously provided by the subsidence of active sedimentary basins (Kocurek and 171 

Havholm, 1993). Mesozoic systems developed in basins with significantly higher rates of subsidence 172 

(Fig. 2A); they record the highest proportion of stratigraphy accumulated in rapidly subsiding basins 173 

(Fig. 3A). Rapid Mesozoic subsidence may correspond with the break-up of Pangea, during which 174 



continental rifting led to the formation of Laurasia and Gondwana (Blakey et al., 1988; Condie, 2016). 175 

Rapid subsidence enables a faster rate of rise of the level of the accumulation surface, which allows 176 

bedforms to climb at steeper angles (Kocurek and Havholm, 1993; George and Berry, 1997; Howell 177 

and Mountney, 1997; Paim and Scherer, 2007; Cosgrove et al., 2021c), leading to the preservation of 178 

thicker eolian elements. 179 

Conversely, the Proterozoic has the highest percentage of eolian elements accumulated in slowly 180 

subsiding basins, where eolian elements are thinnest on average (Figs. 2A, 3A). The slow generation 181 

of accommodation may have favored the accumulation and preservation of relatively thin genetic 182 

eolian units, whereby eolian dune-sets likely climbed at low-angles and accumulated sporadically 183 

between long episodes of sediment bypass under conditions of low rates of accommodation 184 

generation (e.g. Basilici et al., 2020b; Cosgrove et al., 2021c). Proterozoic systems may be affected by 185 

preservational biases, such that the outcropping remains of Proterozoic supercontinents are 186 

preferentially preserved in intracratonic basins in ancient, stable continental interiors (Shaw et al., 187 

1991; Aspler and Chiarenzelli, 1997); basins of this type tend to experience slower subsidence rates 188 

compared to other settings (Xie and Heller, 2009). However, preserved deposits of Proterozoic eolian 189 

systems accumulated in more rapidly subsiding basins are also known (e.g. eolian systems from the 190 

rift-sag Espinhaço Basin; Simplicio and Basilici, 2015; Abrantes et al., 2020; Mesquita et al., 2021). 191 

CONCLUSIONS 192 

This study presents the first large-scale quantitative assessment of how environmental forcings have 193 

influenced eolian architecture through geological time. Significant differences in eolian architecture 194 

are attributed to the interplay of 1) climate, 2) continental configuration, 3) land-plant evolution, and 195 

4) basin subsidence (Fig. 3). The independent effect of each of these forcings on the eolian 196 

stratigraphic record has been demonstrated statistically. Each of these forcings may span only parts of 197 

a geological era, or multiple geological eras, leading to complex interactions between forcing 198 

mechanisms throughout Earth history. Results presented here demonstrate how eolian successions 199 



record variations in eolian landscapes and sediment preservation mechanisms in response to changes 200 

in the Earth’s atmosphere, biosphere and geosphere. 201 
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FIGURE CAPTIONS 205 

1) Thicknesses of eolian and non-eolian architectural elements subdivided by: A) climate (data are 206 

grouped into icehouse and greenhouse periods), B) supercontinental setting, C) the presence and type 207 

of vegetation, and D) rates of basin subsidence. The legend describing all box and whisker plots is 208 

shown in Part C. Outliers are not presented.  209 

2) Variations through geological time in: A) thicknesses of eolian and non-eolian architectural 210 

elements and rates of basin subsidence (outliers are not presented); B) assemblages of architectural 211 

elements.  212 

3) A) Percentages of recorded architectural elements deposited under a variety of environmental 213 

conditions; B) environmental forcings governing eolian construction, accumulation and preservation 214 

through geological time. 215 

TABLE CAPTIONS 216 

1) Results of statistical analyses. Unless otherwise stated, analysis has been completed on all 217 

eolian architectural element types.  218 
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